
20

A Methodology for the development
of secure Application Systems

H.A.S. Booysena and J.H.P. Eloff"

a Department of Computer Science, Rand Afrikaans University, P.O. Box 524,
AucklandPark, 2006 Johannesburg, South Africa

ABSTRACT

Usually if an application system requires some security features, these are either
not available at all, or are incorporated by means of other software products. The
security features offered by these security products are usually very limited, in the
sense that the application system designer has to rely on the underlying platform's
security measures, or add security features needed by the application system.
This means that security is not considered until the operational requirements have
been defined and the system is well into the implementation stage. This approach
towards application system development poses a problem, since it is seldom
possible to provide a good level of security on a retrofit basis, or in parallel but
separate from the functional design. To overcome this problem, the security
aspects associated with the development of an application system should be
considered during the definition of user requirements and incorporated into the
system during the design stages. This paper presents a methodology that
addresses security requirements as part of system development, while
simultaneously considering other functional requirements.

Keywords: Application system, Information security, Spiral model, CASE tools.

1. INTRODUCTION

When studying the process of analysing and designing an application system,
it is evident that security in application systems is usually implemented in a form
of so-called security services [l), which are developed without considering the
security requirements needed by the application system. Security requirements
are usually added to the system after development, because it is believed (2) that
the final application system will suffer

~ loss of performance with the addition of security features,
' loss of flexibility owing to restrictions and confinements in the target

system's behaviour; and
' higher costs to account for analysis of the security requirements, design and

implementation of the security specifications, and maintenance of security
in the application system.

J. H. P. Eloff et al. (eds.), Information Security — the Next Decade
© IFIP International Federation for Information Processing 1995

256 Part Six Building Secure Applications

Furthermore, imposing security requirements on systems already in operation
shortens the lifespan of the system, complicates the modification process,
increases maintenance costs, raises operating overheads and diminishes the
return on investment in the system.

Currently, the state-of-the-art in application system security is such, that if a
particular application system requires some security services, these are either not
available at all, or incorporated by means of hardware/software into the operating
system or network services. The security features offered by these services may
also be implemented as add-on features through some commercially available
security products. The scope of these products is usually very limited [3,4), in the
sense that the application system designer either has to rely on the underlying
platform's security measures (which are often lacking) or has to add the security
features needed by the application system.

Current system development methodologies do not consider security as part
of application system development. Furthermore, security is not considered until
the operational requirements have been defined and the system is well into the
implementation stage [5). This presents a problem since it is seldom possible to
provide a good level of security on a retrofit basis or in parallel but separately from
functional design. Even if this can be achieved, the costs involved [41 will be quite
high when compared with those incurred when the security requirements are
considered at the very beginning of the system development process.

The security requirements associated with the development of an application
system should therefore be considered during the defmition of user requirements
and incorporated into the system during the design stages. A new development
methodology is needed to provide an approach towards system development that
addresses security requirements as part of system development, while considering
other functional requirements. It is the aim of this paper to describe such a
systematic development methodology towards secure application system
development.

The paper is structured as follows: In Section 2 a high-level view of the new
development methodology is given. Security requirements that should form part
of the development methodology are described in detail in Section 3. A practical
example illustrating the working of the security activities is presented in Section
4, after which concluding remarks are given in Section 5.

2. HIGH-LEVEL VIEW OF ASSDM: Automated Secure Systems Development
Methodology

A key notion underlying the creation of a security development methodology is
to include security activities as part of system development. The proposed
methodology therefore should include security and conventional development
activities (functional requirements).

The development of secure application systems 257

The original spiral methodology developed by BW Boehm [6,7] serves as the
basis for ASSDM. The advantage of using the approach of spirals in presenting
a development methodology, is that one can return to previous spirals during any
stage of the development process. Each spiral contains development activities (as
defined by Boehm) that can be associated with a spiral. The Risk Analysis activity
is used to show the beginning of a new spiral. The original spiral model developed
by Boehm is diagrammatically summarised in Figure 1.

Determine objectives,
alternatives constraints

~------
Risk Analysis ·~

--------------­Risk Analysis

Evaluate alternatives,
identify, resolve risks

Operational
prototypes

I
... o(f----t- ---+----+~~ -~-+-·~~--+-~~~~-+----+r- ----O'--->-

\

\ \ Development plan

~Integration and test plan Design validation
~ and verification Integration and

~-~--+.,.--~-------------------_tes_li_ng __ ,,

Plan next phases

Figure 1. Original spiral model [6,7]

Acceptance test .//

Implementation ~~

------------- Develop, verify
next-level product

2.1. Identification of security activities

To include security as part of system development, it is necessary to first
identify security activities that will contribute to ensure that the integrity,
confidentiality and availability of the system are maintained under all
circumstances. These security activities will be identified, when examining the
type of data that the system will process and the functions to be performed by the
system. Integrity, confidentiality and availability requirements share the objective
for describing the access to objects and between objects in an application system.
Access Control Mechanisms must therefore be regarded as the heart of the
information security requirements of any computing system. Access Control
Mechanisms have practical value in ensuring that only authorized objects and
users can gain access to the objects in a system. It is also important to ensure that
the objects protected by the mechanism are classified correctly.

258 Part Six Building Secure Applications

The main problem when developing secure application systems is not only to
introduce access controls, but to correctly assess sensitive information contained
in the application, with regard to the confidentiality of that information. As
information is added continuously to various databases of an application system,
the only way to effectively assess all the information contained in an application
system, is to study how the information flows within the application system.
Various dataflow diagrams can be used to depict the flow of information between
objects in an application system. The flow of information in an application system
is summarised by means of an object matrix. In an object matrix objects from
which information flows are mapped onto objects to which information flows.
Valid information flows between objects are summarised by means of a revised
object matrix. (This is discussed in more detail in paragraph 3)

System development does not occur in isolation. It is therefore necessary to
involve concerned users, system developers and information security specialists
who understand how to incorporate the identified security controls into systems
while the system is still in the process of development. Additional security
requirements needed by the system are identified when the appropriateness of
existing security requirements are validated by means of prototypes. To ensure
that the goal state defined for the system complies with policies, standards and
regulations used in an organization, the system must be audited. Testing the
system will ensure that the security requirements defined for the system are
adhered to. A security report will contain findings of the audit and security tests.

A risk analysis is usually seen as extremely important in analysing the security
features needed by a system. Unpredictable guessing at what the impact of a
threat on an object may be, enhances the fact that a risk analysis is only a very
small portion of what is needed to improve the total security of the application
system under development.

Using the original spiral model as basis for the proposed development
methodology, the security activities identified above can be placed on a security
spiral. The sequence of security activities within the security spiral is explained
as follows:

The security spiral is divided into four quadrants, namely:

' A "Determine objectives, alternatives, constraints" quadrant that helps to
define the security requirements needed by the system. This is done when
the sensitivity level of the application system is determined.

' An "Evaluate alternatives, identify, resolve risks" quadrant to help in
selecting the best security development strategy, while considering security
risks associated with requirements. The security prototype and Revised
object matrix activities assist in selecting the best development solution.

The development of secure application systems 259

' A "Develop, verify next-level product" quadrant that describes the phases
involved in system development. The security requirements needed to
reach the goal state are defined, for example security requirement
validation, security models, information flow analysis and audit.

' A "Plan next phases" quadrant that combines the deliverables from the
other quadrants to assist the project team and developer in planning the
next spiral, by means of revising existing security requirements and
identifying additional security controls needed by the application system.

This newly formed spiral is depicted in Figure 2.

Determine objectives,
alternatives constraints

Plan next phases

Figure 2. Security spiral

Security report

Evaluate alternatives,
identify, resolve risks

Develop, verify
next-level product

When combining the original spiral (Figure 1) and the security spiral (Figure 2)
a new spiral is formed. When using the newly formed spiral to develop a system,
the development and security activities contained in the original and the security
spiral respectively, are considered simultaneously during system development.
In this way security becomes part of system development.

260 Part Six Building Secure Applications

3. SECURITY SPIRAL

A typical example of the security spiral can be described as follows:

To incorporate security activities into the development process of an
application system it is necessary to determine the sensitivity level of the
application system (indicated as Sensitivity in Figure 2). The degree of sensitivity
of an application system depends upon the data it will process, and/or the type of
functions that the software will accomplish [9]. Data sensitivity can be caused by
several factors that include the value of data, the source of data and declarations
about data made by the owner of the data [10, 11]. The objective of this activity is
therefore to determine the impact of unauthorised access to the application
system.

When the sensitivity of the application system has been determined, it is
necessary to define the goal state of the application system (indicated as Goal
state in Figure 2). The goal state of any application system can be defined as the
breach between the current state and the expected state of the application system.
When defining the goal state of an application system, it is necessary to define it
in terms of three security objectives, namely integrity, confidentiality and
availability [8]. This will ensure that information in the application system is only
available to, and continuously accessible by authorised parties of the system.

To improve the overall security of an application system, it is necessary to
consider the risks associated with the planned security features. The planned
security features were identified when the goal state of the application system was
defined. Conducting a security risk analysis (indicated as Security risk analysis
in Figure 2) will help to determine whether it would be possible to reach the goal
state defined for the application system when using countermeasures (for example
access control lists, security policies) currently available in the organization. A
security risk analysis will also identify the security vulnerabilities and
shortcomings of the application system. For example, when conducting a risk
analysis it will become evident that a specific information security policy might be
needed to ensure that the security of the system is maintained. A security risk
analysis will also help to identify countermeasures that will ensure that the
integrity, confidentiality and availability of information are maintained under all
circumstances.

To ensure that the system under development performs according to its
specifications, it is necessary to involve the user. The use of prototypes (indicated
as Security prototype in Figure 2) helps to give an overview of the co-ordination of
application characteristics (i.e., the user requirements) in conjunction with the
underlying security features of the system. The prototype will also highlight
security related problems in the design of the application system, when security
requirements are validated (indicated as Security requirement validation in
Figure 2).

The development of secure application systems 261

When validating security requirements it will become evident whether
additional security controls are needed, or whether existing controls need to be
revised to meet the security requirements of the users. This is indicated as Revise
security controls in Figure 2. An object classification scheme, for example, can be
used to classify objects according to their sensitivity. In a commercial application
system, objects can be classified, for example, as top secret, secret, confidential
or unclassified.

A Security model (indicated as Security model in Figure 2) gives an overall
view of the application system on a high level. Various diagrams (dataflow,
context, entity relationship) are used to represent the application system visually.
A dataflow diagram for example, consists of four basic objects, i.e., processes,
entitles, data stores and flows. A powerful feature of a dataflow diagram is that it
provides the opportunity for modelling the security requirements of system
functions by extending them to include object classifications and object
interactions (indicated as Sensitivity classification of objects in Figure 2). The
security class of an object consists of a weight (value) allocated by the Information
Security Officer (ISO) and user, based on his assessment of the sensitivity level of
the information contained in an object. The interdependence that exists between
objects can also contribute to determine the sensitivity level of an object. As a
commercial application contains several objects, it would be feasible to automate
the process of classifying objects as far as possible [13].

Objects are connected on a dataflow diagram by means of an arrow symbol.
The action that one object performs on another object is defined by the arrow
symbol on the dataflow diagram. In a commercial application system the
interactions between objects usually include read, write, append, update and
delete actions. The arrow symbol also portrays the direction of information flow
on a dataflow diagram. These actions can be used to construct an object matrix.
An object matrix is a rectangular array in which objects from which information
flows (origins) are mapped onto objects to which information flows (destinations).
The entry for a particular row and column reflects the information flow action
between the corresponding objects. Rows in the object matrix indicate origins of
information flow, and columns indicate destinations of information flow. An
object matrix shows only direct (binary) information flow between objects, in other
words, information flowing between objects linked directly to one another. For
example, an object matrix contains both valid and invalid binary information flows
between objects. If a top secret object reads information contained in a
confidential object, the binary flow between the two objects would be valid, but if
a confidential object reads information from a top secret object, the binary flow
would be invalid. (According to the access rules as defined in the Bell-Lapadula
model [8].)

To comprehensively address all combinations of information flow in a system,
it is necessary to conduct an information ftow analysis (indicated as Information
flow analysis in Figure 2) on an information flow diagram such as a dataflow

262 Part Six Building Secure Applications

diagram. An information flow analysis also assists in considering the flow type
that exists between objects not linked directly to each other, but rather indirectly
by means of intermediate objects. We refer to this kind of information flow as
Compound Information Flow. A compound information flow between objects is
determined using the rationale of the "grant" right in the Talce-Grant model [12).
The objective is to determine the "combined" flow type that could exist between:

ObjectA and Objectc. ObjectA
and Object0 and Object8 and
Object0 in the example
presented in figure 3.

In determining the compound
flow type that exist between ObjectA
and Objectc. it is necessary to
substitute the append flow type
between Object8 and Objectc with
"write". This allows one to indicate
a compound flow type in terms of
the actual action that occurs. As an
update flow requires information to
be read before it is written to

11. =m§~,·1i.:
... =~-D l

Figure 3. Example compound dataflow diagram

another object, the update flow type is replaced by "read-write". A compound flow
type is determined between the first object and the third object. The "newly"
formed information flow type is then used as the "first" flow type in determining
the compound flow type between the next two objects. For example, the
compound information flow between ObjectA and Object0 is determined as follows:

The information flow type between ObjectA and Object8 is "read", and the flow
type between Objecte and Objectc is "write" (append), we obtain a "read-write" flow
type, indicating an update. Therefore the compound information flow between
ObjectA and Objectc is "Update". This "newly'' formed flow type now serves as the
first information flow type in determining the compound flow between ObjectA and
Object0 • As the flow type between Objectc and Objecto is read, the compound flow
between ObjectA and Object0 would be "Read". (The combination of Update -
between ObjectA and Objectc. and Read between Objectc and Object0 .) Possible
combinations of compound flow types are depicted in Table 1.

The development of secure application systems 263

Table 1
Compound information flow type combinations

Between Object1 and Between Objec12 and :. Between Object1 and
Objec12 Object3 Object3

Read Append Update

Read Update Update

Read Read Read

Append Read Read

Append Append Append

Append Update Update

Update Read Read

Update Update Update

Update Append Read

The security activities performed so far have assisted in determining both valid
and invalid binary and compound information flows. From a security point of
view, the question arises as to when the binary and compound information flows
would be valid or invalid. Valid binary and valid compound information flows are
determined by using the security classes assigned to objects (indicated as
Sensitivity classification of objects on Figure 2), and by applying access rules (for
example Bell-LaPadula [8]) which state when a flow is valid or invalid. All valid
combinations of information flow are summarized in a revised object matrix
(indicated as Revised Object matrix in Figure 2).

In comparing the object matrix and revised object matrix, invalid information
flows are identified. When these flows are examined, and the necessary actions are
taken (for example, changing the security class of an object), the security state of
the application system is improved.

To ensure that the system complies with standards, policies and regulations
within an organization, it is necessary to perform an audit (indicated as Audit in
Figure 2), on the system. After conducting the audit, additional security controls
can be designed (indicated as Design security controls in Figure 2).

To show that an application system can be trusted, and that specifications are
adhered to, it is necessary to perform certain security testing and evaluation
activities (indicated as Test safeguards in Figure 2). The testing of security
safeguards must focus on assuring that the user uses safeguards correctly and that

264 Part Six Building Secure Applications

safeguards cannot be bypassed.

A security report (indicated as Security report in Figure 2) is used to document
all test results and findings. Deficiencies in safeguards taken to improve security
must be identified. Actions that are necessary to improve these deficiencies must
be identified, carried out and tested.

System documentation (indicated as Security documentation in Figure 2) is
created during any software development process. This is especially necessary for
security relevant code. It is advisable to keep the documentation of the relevant
security relevant code in a separate development document, owing to the
sensitivity of the data contained in the documentation.

4. PRACTICAL EXAMPLE

To illustrate the practical working of the security spiral, an example is
presented below. The following activities of the security spiral are illustrated:

4.1. Determine the sensitivity level of the application system and define the
goal state of the application system

4.2. Perform a security risk analysis
4.3. Security prototype, security requirement validation and revise existing

security controls
4.4. Security model and sensitivity classification of objects
4.5. Information flow analysis and Revised object matrix

The remainder of security activities contained on the security spiral, i.e., Audit,
Design security controls, Test safeguards, Security report and Security
documentation will not be discussed here, as these actions are merely an
extension of the corresponding activities contained in Figure 1.

Consider the following user requirements:

An application is needed with a process that can calculate salaries for the
employees of a large company. There is an existing database containing
employee data, for instance personal data and rate per hour paid. The
process appends salary data to a datafile. A salary clerk needs access
to the salary data so as to resolve ad-hoc enquiries.for example average
salaries.

4.1. Determine the sensitivity level of the application system and define the
goal state of the application system

Using the security spiral, and having studied the user requirements, the
developer decides that the application should be regarded as sensitive, as the
impact of unauthorized access to the application system can result in the

The development of secure application syste~ 265

disclosure of confidential data (salary data) to unauthorized parties. Currently,
a manual system is used to satisfy user requirements. The goal of the new
application would be to ensure that information is only available to, and
continuously accessible by authorised parties of the system. The new application
system will also ensure greater efficiency in the personnel department while
conducting their day-to-day business.

4.2. Perform a security risk analysis

Security risks that can be associated with the application system are as follows:

' Accidental and/or deliberate modifications to employee and/or salary data;
' Disclosure of salary data to unauthorized employees and/or outsiders;
' Incorrectly classified system objects (process, data file, external entity),

causing invalid information flows;
' Lack of security controls to detect the presence of a Trojan horse; and
' Inadequate testing of security controls.

4.3. Security prototype, security requirement validation and revise existing
security controls

In building a prototype of the system, security requirement validation has
indicated that the following additional security controls are needed to reduce the
risks associated with the system to an acceptable level:

C::.. An access control mechanism which provides protection against invalid
binary and invalid compound information flow. In considering
information flows while developing the system, risks of accidental and/or
deliberate modifications to data, and disclosure of data to unauthorised
employees and/or outsiders, will be reduced.

' An object classification scheme which takes the interdependence between
objects into consideration, will assist in reducing the risk of classifying
objects incorrectly. If objects are classified incorrectly, protection
provided by the access control mechanism, will not ensure that only
authorized objects can gain access to objects.

' An automated tool, eg. a CASE tool, that will automate mundane activities,
in order to limit human errors in time-consuming activities, such as
testing of security controls.

4.4. Security model and sensitivity classification of objects

Using a system development tool, for example a CASE tool, the designer
transforms the user requirements into a visual representation as depicted in
Figure 4.

266 Part Six Building Secure Applications

Top Secret Unclasslfled

P-1
Secret EE-1

Calculate Append :;._: 02 j Salary data Salary clerk
salaries

·~

Read Read

P-2

I 01 I Employee data
Read Retrieve

- data
-

Confidential

Secret

Figure 4. Example dataflow diagram

Calculate salaries (process): Top Secret
Retrieve data (process): Secret
Employee data (data file): Confidential
Salary data (data file): Secret
Salary clerk (external entity): Confidential

In classifying objects
contained on the
dataflow diagram
according to their
sensitivity and
interdependence on
another, the ISO in
conjunction with the
system developer and
users, have indicated that
the following security
classes should be
assigned to the process,
data files and external
entity objects contained
in Figure 4:

4.5. Information flow analysis and Revised object matrix

In conducting an information flow analysis as described in the previous section,
the following object matrix and revised object matrices are constructed. Recall
that an object matrix contains both valid and invalid binary and compound
information flows. A revised object matrix contains only valid binary and valid
compound information flows.

Object Matrix

Calculate Employee Retrieve Salary Salary
salaries data data data clerk

Calculate salaries Read Append Read

Employee data Read Read Update Read

Retrieve data Read

Salary data Read Read

Salary clerk

The development of secure application systems 267

Revised Object Matrix

Calculate Employee Retrieve Salary Salary
salaries data data data clerk

Calculate salaries

Employee data Read Read Update Read

Retrieve data

Salary data

Salary clerk

When the designer compares the Object Matrix and the Revised Object Matrix,
the following invalid binary information flows can be identified:

' Information flow between "Retrieve data" and "Salary clerk"; and
' Information flow between "Calculate salaries" and "Salary data".

The information flow between "Retrieve data" and "Salary clerk" is invalid, as
the Salary clerk can only read information which has a confidential or unclassified
clearance. To make the flow valid, the security class of the Salary clerk needs to
be raised to be at least the same as the security class of the ''Retrieve data" object,
i.e., Secret.

The information flow between "Calculate salaries" and "Salary data" is invalid
as information is flowing from a Top secret object to a Secret object. This can
potentially be solved by inserting a sanitizer object between the "Calculate salaries"
and "Salary data" objects. A sanitizer object will ensure that only information

Top Secret Top Secret

P-1 SP-1

Calculate
salaries

Read Append

--

I 01 I Employee data I 02 I Salary data
Read
~

Conlldentlal Secret

Figure 5. Revised dataflow diagram

Secret

EE-1

Salary clerk

Read

P-2

Retrieve
data

Secret

with the same security class
as that of the receiving
object are filtered through
to the receiving object.
Therefore, inserting a
sanitizer object (SP-1)
between the "Calculate
salaries" and "Salary data"
objects will ensure that only
secret information is
allowed to flow to the
"Salary data" object.

When the designer has
made the changes as
described above, invalid

268 Part Six Building Secure Applications

re-analysed, to ensure that identified risks have been addressed. The revised
dataflow diagram is depicted in Figure 5.

The Revised object matrix will assist in ensuring that only authorised users can
gain access to system objects. This will assist in minimising the risks of
accidental/deliberate modification to data, and disclosure of data to unauthorised
personnel. The insertion of a sanitizer object, assists in reducing the risk of
inadequate security controls. Thereby improving the security state of the
application system.

5. CONCLUSION

This paper showed how the existing spiral systems development life cycle can
be enhanced to include security concepts and tools. In combining security
activities with traditional development activities. as proposed by the security spiral.
security aspects are considered during the definition of user requirements and
incorporated into the system during the design stages. This allows security to
become part of system development.

The advantage of using a CASE tool when developing a system has several
benefits to the security state of the application system under development. Firstly,
it potentially assists in assigning a security class to an object while developing the
system. Secondly, the information flow activity can be conducted automatically,
thereby eliminating human errors.

REFERENCES

I. Muftic S, Hatunic E, "CISS: Generalized Security Libraries", Computers &
Security (11), 1992.

2. Baskerville R, "Designing Information Systems Security", Addison-Wesley
Publications, 1983.

3. Baskerville R, "Information Systems Security Design Methods: Implications for
Information Systems Development'', ACM Computtng Surveys (25) 4, December
1993.

4. Cresson Wood C, "Principles of Secure Information systems design with
groupware examples", Computers & Security (12), 1993.

5. Ettinger JE, "Information Security", Chapman & Hall, 1993.
6. Boehm BW, "A Spiral model of Software Development and Enhancement", ACM

SIGSOFT Software Engineering Notes (11) 4, 1986.
7. Boehm BW. "Applying process programming to the Spiral model", Proceedings

of the 4th International Software Process Workshop, 1988.
8. Pfleeger CP, "Security in Computing'', Prentice-Hall International, 1988.
9. Tompkins FG, Rice R, "Integrating Security Activities into the Software

Development Life Cycle and the Software Quality Assurance Process",
Computers & Security 5 (5), 1986.

The development of secure application systems 269

Computers & Security 5 (5), 1986.
10. Denning DE, "Cryptography and Data Security", Addison-Wesley Publishing

Company, 1983.
11. Denning DE, "A Lattice Model of Secure Information Flow'', Communications

oftheACM, 1976.
12. Lipton RJ, Snyder L, "A Linear Time Algorithm for Deciding Subject

Security", Journal of the Association for Computing Machinery, 24 (3), 1977.
13. Booysen HAS, Eloff JHP, "Classification of objects for improved access

control", Submitted for publication in Computers & Security.

