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In this paper we present the first multisignature scheme giving message recovery based 
on the discrete logarithm problem. An efficient multisignature scheme with appendix 
has been proposed by Harn recently. We cryptanalyze this scheme, present two attacks 
and show how to countermeasure them. Furthermore we adopt the Meta-ElGamal and 
Meta-Message recovery signature scheme with one and two message blocks to the slightly 
modified scheme and give conditions which variants can be used. We show that for the 
variants giving message recovery it is useful to apply the variants with two message blocks 
to prevent the described attacks and to guarantee the efficiency of the scheme. 

1. Introduction 

A multisignature scheme allows multiple signers to sign the same message. A simple 
solution is that every signer signs the message using a normal signature scheme, but this 
has the drawback that the data expansion increases with the number of signers. The goal 
is to design a multisignature scheme without data expansion depending on the number of 
signers. 

Recently a multisignature scheme based on the discrete logarithm problem with this 
property was proposed by Harn [Har194, Har294]. We give a brief review of this scheme 
in section 2 and present two attacks and countermeasure them in section 3. Then the 
Meta-ElGamal (MEG) signature scheme [HMP194, HMP294] and Meta-Message recovery 
(MMR) signature scheme [HMP394] are briefly described in sections 4 and 5. After this 
we show in sections 6 and 7 how to generalize the modified multisignature scheme to some 
variants of the the MEG- and MMR- signature scheme and give conditions which variants 
can be used. The scheme in section 7 is the first multisignature scheme giving message 
recovery based on the discrete logarithm problem. 
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2. The basic multisignature scheme 

First we review the underlying signature scheme and how this can be extended to provide 
multisignatures [Har294]. 

A trusted third party chooses a large prime p, a generator a E z; and publishes them as 
system parameters. The signer Alice chooses a random number XA E z;_1 and com­
putes YA:= axA (mod p). She publishes YA and keeps XA secret. These values are 
constant for all messages to be signed. To sign a message m' E Zp-l Alice computes 
m := h(m') with a suitable hash function h, chooses a random number k E z;_1 and 
computes r := ak (mod p). Then she solves the equation 

s := xA(m + r) - k (mod p - 1). (1) 

The triple ( m; r, s) is the signed message. It can be verified by checking the congruence 

(2) 

In a multisignature scheme we have t different signers u1 , ... , Ut. Each of them has a 
secret key Xi E z;_1 and a related public key Yi:= ax' (mod p). Each signer u;, i E [1 : t), 
chooses a random number k; E z;_1 and computes r; := ak' (mod p). Then he broadcasts 
ri to all other signers, such that every signer can compute 

t 
r :=TI r; (mod p). 

i=l 

Now each signer u; computes his signature parameters; by 

s; := x;(m + r) - k; (mod p - 1). 

He transmits s; to a clerk who additionally knows m and r and whose task is to check 
each individual signature by verifying the congruence 

He also generates the multisignature of the message m by computing 

t 

s := L::s; (mod p-1). 
i=l 

The triple ( m, r, s) is the multisignature of the message m which can be verified by check­
ing the congruence 

ym+r =: ra• (mod p), (3) 
t 

where y := IT Yi (mod p). 
i=l 
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3. Cryptanalysis of the scheme and countermeasures 

In this section we present two attacks which threaten the security of the scheme unless 
modified. The first can be countermeasured easily while the second is somewhat harder 
but can also be avoided. 

3.1 The first attack 
The attacker's (Carol) aim is to claim that a signature for a message m which is given 

by the users Alice, Bob and Donald is additionally signed by Carol and Alice. Thus no 
verifier can proof which of the persons has really signed the message and nobody trusts 
the scheme anymore. 

The trick is that Carol is a normal user with a public key Ye· She chooses this key 
not by choosing xc randomly and computing Ye := axe (mod p) but she computes 
Ye := YBYn (mod p). Note that this attack is weak because Carol doesn't know her own 
secret key and as a result she can't sign any message. But as the congruence 

YAYBYn = YAYc (mod p) 

and the verification equation (3) of the multisignature scheme hold no verifier can decide 
if any message was signed by Alice, Bob and Donald or just by Alice and Carol. 

With a slight modification this attack can easily be countermeasured: The trusted third 
party accepts just those public keys y; where the signer can proof that he knows the dis­
crete logarithm of the public-key using the zero-knowledge-proof due to Chaum, Evertse 
and van de Graaf [ChEG87]. Obviously this attack does not work anymore now. Another 
solution, due to one of the anonymous referees, is that every user i signs a fixed message 
(e.g. "My public key is y;'') and sends the signature to the trusted third party. It is 
accepted if the verification equation holds and - to avoid a replay attack - y; was not used 
before by any other user. 

3.2 The second attack 
This attack works if two or more signers of a document and the clerk collude. Alice, 

Bob, Carol, Donald and Eve should sign a document m. Carol, Donald and Eve (the tiger 
team) collude and choose the parameters kc, kn, kE E Zp-1 such that 

kc+ kn+ kE = 0 (mod p-1). 

Therefore rcrnrE = 1 (mod p) and r := rArBrcrnrE = rArB (mod p). Furthermore 
the clerk colludes with them and reveals SA and SB· Then the tiger team knows that 
r and s :=SA+ SB (mod p - 1) is a signature from Alice and Bob on the message m. 
Thus no signer has a guarantee that the other signers sign the document in spite of the 
r;-broadcasting in the first step of the signature generation. 

How can the parameters k; of the tiger team be generated ? A simple solution is that 
the members of the tiger team have unconditional trust to each other and they generate 
them together. Note that the secret key of each member can be computed by the other 
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members if the clerk reveals the signature parameters s;. With more computational effort 
the attack can be done by the tiger team without assuming unconditional trust between 
the team members: Every member u;, i E [l : w], of the tiger team chooses the parameter 
k; and l E z;_1 values b;i E Zp-l which satisfy 

l 

L b;i = 0 (mod p - 1). 
j=l 

Then the values C;j := k; + b;j (mod p - 1) are sent through a secure MIX-net [Chau81]. 
The outputs of the MIX-net are added. We get 

w l w 

o := LLCij = lLki (mod p-1) 
i=l i=l i=l 

Now one member, e.g. Carol, recomputes her chosen kc with 

w 

kcnew :=kc - Lki =kc - z-10 (mod p-1) 
i=l 

and the condition is satisfied. Note that l must be chosen relatively prime to p - 1. If 
the MIX-channel is secure and at most w - 2 of thew members of the tiger team collude 
then there are at least 

possibilities to map the outputs of the MIX-net to the sender. If the parameter l is chosen 
large enough such that z ;::: p then the (secret) parameters k; of the tiger team members 
can't be computed. 

How can the second attack be avoided ? One solution is that the clerk is a trusted third 
party and does not reveal the individual signature parameters s;. But this assumption is 
strong and not acceptable for the users. One possible solution seems to be that each of 
the t signers has to check that the product of any subgroup of the r's is not equal 1. But 
note that these are 

~ (~) = 21 -1 
i=O z 

many and this number increases exponential with the number of signers t. A better 
solution is that the number of signers or the identity of the signers is appended to the 
message. 
If we sign the original message (which is always the case using message recovery sig­

nature schemes) we have the drawback that the expansion rate of the signed message 
(that is the ratio of the length of the signature parameters and the length of the message) 
increases. But if we can sign the hashvalue of the message or include the identity of the 
signers in the signature equation then there is no drawback at all and thus the attack can 
be countermeasured. We present the resulting schemes in the next sections in detail. 
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4. The Meta-ElGamal signature scheme 

The Meta-ElGamal signature scheme has been proposed in [HMP194] and is based on 
ideas first published in [HoPe94]. 

For an ElGamal signature [E1Ga84, E1Ga85] the trusted authority chooses a large prime 

p and a generator a E z;. p and a are public system parameters and authentically 

known to all users. The signer Alice chooses her secret key XA E z;_1 and computes 

YA:= axA (mod p). She publishes YA and keeps XA secret. These values are constant for 
all messages to be signed. To sign a message m E Zp-l Alice chooses a random number 
k E z;_1 . She computes r := ak (mod p) and solves the congruence 

m = XAr +ks (mod p - 1) (4) 

for the parameters. The triple (m;r,s) is the signed message. It can be verified by 
checking the congruence 

(5) 

Instead of signature generation by the equation ( 4) we can also choose the general 

equation 
A=xAB+kC(modq) (6) 

with q E Pr, qj(p - 1 ), and choose A, B, C as general functions e, f, g : Zg 3 --+ Zg with 
arguments m, rands. As m E Zp-l we imply that mis reduced modulo q before it is used 
as an argument but in the following description we omit this for the sake of clearness. 

The parameter s should either be used as argument in only one of the three functions or 

the functions have to be chosen carefully, such that the signature equation can be solved. 

Also all of the parameters m, r, s have to occur at least once. If two or three functions 
use exactly the same arguments, then they should be chosen as different operations. The 
occurrence of the insecure rs- and ms-variants [HMP194], where the parameters rand 
s ( m and s) occur exactly in one of the three functions e, f and g together but neither 
r nor s (m nor s) occurs in one of the two other, should be avoided. All four conditions 
apply also for equivalent variants, in which the signature equations rnn be transformed 
into each other. Furthermore none of the three functions should be equal to zero. To 

get efficient variants, the functions should be chosen, such that s can be easily extracted 
(e.g. without inversions). It's also an advantage to choose one of the functions equal to 
one, to obtain an efficient signature verification. This verification is done by checking the 
equation 

aA = y~rc (mod p). (7) 

As there are numerous variants, in the following we will only consider some efficient special 
cases of permutations, namely to choose A, B, Casa permutation of one of the following 
five types EG I - EG V, which have been analyzed in detail in [HMP194]: 

EG I: (m,r,s),EG II: (f(m,r),s,l),EG III: (f(m,r),g(m,s), 1), 
EG IV: (J(m,r),g(r,s),1),EG V: (J(m,s),g(r,s),l). 
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The functions f, g : Zq 2 -; Zq have to be invertible in the argument s to guarantee the 
solubility of the general signature equation (6) for the signature parameter s. 

For every type we get one of the following six permutations of the coefficients, which 
are enumerated by No. 1 - 6: 

1 : (a, b, c) 2 : (a, c, b) 3 : ( c, b, a) 
4: (c,a,b) 5: (b,c,a) 6: (b,a,c) 

For example (a,b,c) = (m,r,s) in Type EG I and (a,b,c) = (f(m,r),s,l) in Type 
EG II. Additionally we can generalize the computation of the parameter r by choosing 
r' := ak (mod p) and computing r := d(r',m) with a suitable function d: ZP 2 _, Zp. It 
is also possible to vary the mode of operation that determines the group orders and the 
length of the parameters [HMP194]: 

XL: ElGamal mode with jpj = Jqj = 512, 

L: Schnorr mode [Schn89] with jpj = 512, Jqj = 160, 

M: DSA mode [NIST91] with jpj = 512, Jqj = 160, r reduced modulo q, and 

S: small mode [Schn89, Knob94] with jpj = 512, Jqj = 160 and a qi bit number 
h(r) (50:::; jq1 J:::; 160) reduced by any hash function h. 

All these generalizations can also be applied to the ElGamal signature scheme with 
two message blocks (Type EG VI - EG X) and the signature scheme with three message 
blocks (Type EG XI) [E1Ga84, HMP194]. Combining the described variations we get the 
Meta-ElGamal signature scheme which can be written as 

MEG = (M ode.Type.N o.e7, d, e, f, g ). 

The parameters are chosen in the following way: 

• Mode E {XL, L, M, S} gives the mode of operation, 

• No E {l, 2, 3, 4, 5, 6} gives the number of the permutation, 

• Type E {EG I, EG II, ... , EG XI} gives the type of permutation, 

• d : Zp 2 -; Zp specifies the computation of r, 

• e, f, g : Zq 3 -; Zq invertible in the argument s. 

In a simplified manner, we can also describe the Meta-ElGamal scheme by the tuple 
(Mode, d, e, f, g) but then we loose useful structural information for the security analysis. 
Therefore we prefer the first notation although it contains redundancy. 
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5. The Meta-Message recovery scheme 

In a similar manner the ideas of the Meta-ElGamal signature scheme were applied to 
signature schemes giving message recovery [HMP394]. 

The basic Message recovery scheme 
For a signature giving message recovery [NyRu93] the trusted authority chooses large 
primes p and q, where q is a large integer factor of p - 1. She also chooses an ele­
ment a E z; of order q. p, q and a are system parameters and authentically known 
to all users. The signer Alice chooses XA and YA as in the ElGamal scheme. To sign 
a message m E Zp-l satisfying a suitable redundancy scheme, she chooses a random 
k E z;, computes r' := ak (mod p), r := (r't1m (mod p) and solves the congruence 
s = k - XAT (mod q) for the parameters. The signature is given by the tuple (r,s). 
The message can be recovered by computing m := a 5 y'Ar (mod p). The correctness of the 
signature can be checked by the given redundancy scheme. 

The Meta-Message recovery scheme 
We can apply the Meta-ElGamal scheme to this approach to obtain the Meta-Message 
recovery scheme [HMP394]. The general signature equation, which has to be solved for 
the parameter s isof the form 

A= xAB + kC (mod q) (8) 

with A, B, C permutations of general functions e, f, g : Zq 2 -+ Zq with arguments r and s. 
The parameter r can be computed by r' := ak (mod p) and r := d( m, r') with a suitable 
function d : Zp 2 -+ Zp, where d- 1 (r, r') = m exists. The signature is given by the tuple 
( r, s) and message recovery can be done by computing 

The verification can be done by checking if m satisfies the redundancy scheme. If we look 
carefully on the necessary conditions on the functions e, f, g described in section 4, we see 
that we get the following ten types of permutations: 

Type (A, B, C) permutation of Type (A, B, C) permutation of 

MRI 1 r s MR VI r s f(r,s) 
MR II 1 s f(r,s) MR VII s s f(r,s) 
MR III 1 r f(r, s) MR VIII r f(r, s) g(r,s) 
MRIV 1 f(r,s) g(r,s) MRIX s f (r, s) g(r,s) 
MRV r r f(r,s) MRX e(r,s) f(r, s) g(r,s) 

Among these only the types MR I, III and V are solvable for all choices of e, f, g. The 
most efficient types are the Type MR I - IV if we choose the parameter C = 1, because 
we need no inversion for message recovery. In Type MR II, IV, VI - X we have to choose 
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suitable functions e, f, g to guarantee the solvability for the parameter s. In Type MR IV, 
we have to choose different functions f,g without homomorphic properties to guarantee 
the security of the signature scheme. It is argued in [HMP394] that Mode L is best suited 
for message recovery schemes. 

We also have message recovery schemes for two and three message blocks, where the 
functions e, f, g have arguments m2 , r, s. Among these especially the following types, 
described by the permutation of the coefficients A, B, C will be considered later: 

MR XI: (f(m2, r), s, 1), MR XII: (f(m2, r),g(m2, s), 1), 

MR XIII: (f(m2,r),g(r,s), 1), MR XIV: (f(m2,s),g(r,s), 1). 

6. The Meta-ElGamal multisignature scheme 

We now discuss how to adopt the Meta-ElGamal signature scheme to the modified 
multisignature scheme. We fix the choices of r; := ci• (mod p), 

t t 

r' :=II r; (mod p), r := d(r', m) and y :=II y; (mod p). 
i=l i=l 

Furthermore the verification equation aA = yBrC (mod p) should be satisfied where A, B 
and C are chosen as general functions e, f, g with arguments m, r and s. For the sake of 
clarity we choose the function d equal to d( r', m) = r' (mod p) and use the Mode L. The 
general case will be discussed briefly at the end of this section. The computation of the 
signature parameter s; by the user u; is done by transforming the congruence 

A;= x;B; + k;C; (mod q), 

where A;,B; and C; are choosen as general functions e,f,g with arguments r,m ands;. 
Thus we have the following congruence: 

If C; and B; do not depend on s;, such that C = C; and B = B;, we get 

= (g aA' g r;c) re= aE:=, A; (mod p). 

This should be equivalent to aA to satisfy the verification equation. Hence we get the suf­
ficient conditions for A;, A, B;, B, C;, C that A = El=t A; (mod q), B = B; and C = C;. 
The parameters has to appear in the coefficient A as it must not appear in Band C. 

Table 1 gives an overview about the suitable ElGamal variants of the first five types for 
multisignature schemes. The corresponding types of the Meta-_EJGamal Multisignature 
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No. A B c signature verification 
EG I.3 s r m s=xAr+km as= YATm 
EG I.4 s m r s = XAm + kr as= y'J:rr 

EG II.3 s f(m,r) 1 s=xAf(m,r)+k as = y~(m,r)r 
EG II.4 s 1 f(m, r) s = XA + kf(m,r) Os = YATJ(m,r) 

EG III.3 g(m,s) J(m,r) 1 g(m,s)=xAf(m,r)+k ag(m,s) = Y~(m,r)r 
EG III.4 g(m, s) 1 J(m,r) g(m,s) = XA + kf(m,r) ag(m,s) = YA rf(m,r) 

EG V.3 g(r, s) 1 J(m,r) g(r,s) = XA + kf(m,r) ag(r,s) = YATJ(m,r) 

EG V.4 g(r, s) f(m,r) 1 g(r,s)=xAf(m,r)+k ag(r,s) = y~(m,r)r 

Table 1: Variants of the Meta-ElGamal signature scheme suitable for multisignature 

scheme are abbreviated by EM followed by the capital roman number of the corresponding 
ElGamal variants. 

The function f can be chosen arbitrarily as far as the necessary conditions de­
scribed in section 4 hold, while the function g must satisfy the additional con­
dition that g( m, s) = I:l=l g( m, si) (mod q) in types EM III.3 and EM III.4 or 
g(r,s) = L:l=1 g(r,si) (mod q) in types EM V.3 and EM V.4. Note that the computa­
tion of s can vary depending on the function g. As a result we can choose an arbitrarily 
function g which is invertible in the argument s and compute 

s := g-1 (~g(m,si),m) (mod q) ors:= g-1 (~g(r,si),r) (mod q), 

where the function g- 1 is implicitely defined by g- 1(g( a, b), a) = b. 

Now we describe the Meta-ElGamal multisignature scheme in Mode L: 

1. The trusted third party chooses a primes p and q with ql(P - 1) and a generator 
a E z;. These values are published as system parameters. 

2. Each user u;, i E [1: t] chooses a value Xi E Zq and computes Yi:= ax; (mod p). He 
keeps Xi secret and sends Yi authentic to the trusted third party. Furthermore he 
shows that he knows the discrete logarithm of Yi using the zero-knowledge proof due 
to Chaum, Evertse and van de Graaf. Then the accepted public-keys are published 
by the trusted third party. Alternatively the user u; signs a fixed message (which 
includes the public key Yi) using his secret key Xi. He sends it to the trusted third 
party who accepts it if Yi has not been used as a public key of any other user so far. 

3. If the t users u 1 , ••• , u 1 want to sign the message m' every signer u; 
computes m := h(m',ID1, ... ,ID1) using a public collision-free hash function 
h : z;'.:.~ --> Zp-1, where ID; is the unique identifier of user U;. 
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4. Every signer u; chooses a random k; E Zq, computes r; := O!k; (mod p) and broad­
casts r; to the other signers and the clerk. 

5. Every signer computes r := ITl=i r; (mod p) and the individual signature using a 
suitable variant of the Meta-ElGamal signature scheme by solving the equation 

A;= XiB + kiC (mod q) 

for the signature parameter Si where the coefficient Ai is chosen as a suitable function 
with arguments m', s; and r. Coefficients B and C are chosen as general functions 
with arguments m' and r. All functions are pre-arranged between all signers. Then 
he sends s; to the clerk. 

6. The clerk collects the parameters Si of all signers, checks the individual signatures 
and computes r and s. For the computation of s he uses an equation such that 
the congruence A= El=i A; (mod q) holds. Then he publishes the message m, the 
multisignature (r, s) and the identities of the signers. 

7. The multisignature can be verified by checking the congruence 

O!A = yBrC (mod p) 

t 
where y = IT y; and m = h(m',IDi, ... ,ID1). 

i=O 

Another solution for avoiding the second attack described in section 3 is to use signature 
schemes with two message blocks. This solution might be used if the message itself and 
not a hash value should be signed. Here we use one message block for the message. The 
other one contains the hash value of the identities ID; of all signers. We give a more 
detailed description of this approach in the next section. 

As already mentioned above we can generalize the computation of the parameter r by 
the function din the following way [HMP194]: First r' := TI7=i r; (mod p) is computed 
and then r := d(r', m). If c-1 (mod q) is computable (which is always the case in modes 
L, Mand S), we can verify the multisignature by the equation 

r = d(O!Ac-'y-Bc-• (mod p),m). 

If d is invertible in the argument r', which means that d- 1 ( r, m) = r' exists, we can also 
verify the multisignature by the equation 

O!A =YB (d-1(r,m)t = yB(r')c (mod p). 

The other modifications for the different modes are straightforward. 

Security analysis 
First it is interesting to outline how to classify the result of attack and the strength of 
the attack. Based on the distinctions in [GoMR88] we have 
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• A total break: The attacker can compute the secret key of one of the users, 

• Universal forgery: The attacker can find signatures of one group of users for nearly 
all arbitrary messages chosen by him, but doesn't know their secret keys , 

• Selective forgery: The attacker can find signatures of one group of users a particular 
messages chosen by him a priori, 

• Existential forgery: The attacker can find signatures of one group of users for a 
message which might be random or nonsencial. 

The strength of a attack is determined by the possiblities the attacker possesses: Thus we 
have key only attacks, message attacks, known-message attacks, generic chosen-message 
attacks, directed chosen message attacks and adaptive chosen-message attacks [GoMR88]. 
The first three can be regarded as weak and the last four as strong attacks. In the mul­
tisignature schemes we have several possible attackers: Outsiders, who are not registered 
users, insiders who a,.re registered users and can play an active part in the signing process 
and the clerk. Furthermore some of these different attackers might collude. 

1. Outsider attack: In the known-message scenario the outsider knows the public pa­
rameters, some multisignatures and the related individual signatures if he eavesdrops 
the communication channel or corrupts the clerk. One possiblity he has is a replay 
attack: He eavesdrops r A,I and sA.l of user Alice from the signature generation and 
tries to use this for generating a new signature. He puts r A,I into the broadcast 
channel as the new parameter r A,2· As he doesn't know the related parameter kA,2 
he can't compute SA,2· Thus he has to use the eavesdroped value SA,I· But this is 
only the correct value if m~ = m~ and r 1 = r2 • As the hash function is collision-free 
the first condition is satisfied in those cases where the same group of signers signs 
the same message twice. Thus this attack is not successful. Other possibilities might 
be to forge the individual signature of Alice or the multisignature. Both cases can 
be seen as the attempt to forge the used variant of the Meta-ElGamal signature 
scheme. A detailed security analysis for the Meta-ElGamal scheme is described in 
[HMP294]. Stronger attacks seems to be useless because m' changes if a different 
group of signers signs the same messsage or different messages are signed. It seems 
to be hard to combine them to get additional signatures. 

2. Insider attack: Insiders can try to choose their parameters k; such that r is chosen 
suitable, like in the second attack described in section three. If they fix r in advance 
they must be able to compute discrete logarithms if they don't know at least one of 
the values r;. This contradicts the discrete logarithm assumption. 

3. Clerk attack: The clerk might reveal individual signatures but this doesn't endanger 
the security of the scheme. If he doesn't compute the multisignature correctly 
from the individual signatures the verification equation of the multisignature is not 
satisfied and thus this attack can be discovered by the verifiers. 
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Performance analysis 
For the signature generation each signer has nearly the same computational effort than 
in the chosen variant of the Meta-ElGamal signature scheme. The clerk has to check 
each individual signature, for which he needs 2t or 3t exponentiations depending on the 
chosen variant. The computation of the multisignature needs low costs if the parameter 
g is chosen suitable (e.g. as addition or multiplication). The signature size is given by 
two long integers and the message. For the verification of the multisignature two or three 
exponentiations are necessary, depending of the used variant. The most efficient variants 
are corresponding to the most efficient variants of the Meta-ElGamal signature scheme 
(e.g. EG Il.3, EG Ill.3, EG V.4). Thus the scheme reviewed in section 2 is one of the 
most efficient multisignature schemes. 

7. The Meta-Message recovery multisignature scheme 

We can adopt the MMR-signatures to the multisignature scheme. Every signer computes 
ri := ak; (mod p) and r' := IT:=l r; (mod p). The choice of randy is fixed to 

t 
r := d(r',m) and y :=IT Yi (mod p). 

i=l 

Furthermore a-1 (r, aAc-l y-BC-l) = m should be satisfied where A, Band c are choosen 
as a permutation of functions e, f, g. The computation of the signature parameter s; by 
the user u; is done by transforming 

A;= x;B; + k;C; (mod q), 

where A;, B; and C; are choosen as general functions with arguments r and s;. Thus we 
get 

a-1 (r,aAc-1y-Bc-1 (mod p)) = a-1 (r,aAc-1 (gy;-Bc-1) (mod p)) 

= a-1 (r, aAc-1 (il a-(A;-C;k;)Bi1Bc-1) (mod p)) 

= a-1 (r,aAc-1 (IT a-A;BilBc-• IT rf;BilBc-•) (mod p)). 
t=l t=l 

If C; and B; do not depend on the signature parameters;, such that C = C; and B = B;, 
we get 

= a-1 (r, aAc-l (IT a-A;c-• IT r;) (mod p)) 
t=l t=l 

c-1 A-l:A; t 

( 
( t ) ) =d-1 r,a •=• !]r;(modp) =d-1(r,r')=m. 
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Hence we get the sufficient conditions for A;, A, B;, B, C;, C that 
A = L:l=i A; (mod p-1), B = B; and C = C;. The parameters has to appear in A 
because it must not appear in Band C. 

Table 2 gives an overview about the variants the first five types of the Meta­
Message recovery scheme which are suitable for multisignature schemes, where 
d(r', m) = (r't 1 · m = r (mod p) and therefore d- 1(r, r') = r' · r = m (mod p). 

No. A -B c signature message recovery 
MR I.3 s r 1 S = -XAT + k m = a'y_Ar 
MR I.4 s 1 r S = -XA + kr m = asr-1 YA.-1 r 

MR IIl.3 f(r, s) 1 r f(r,s) = -XA + kr m = aflr,s)r y_A 
MR IIl.4 f(r,s) r 1 f(r, s) = -xAr + k m = af(r,•)yA.r 

Table 2: Message recovery signature schemes suitable for multisignatures 

Note that in message recovery signature schemes the message and not a hash value of 
the message must be signed if we don't want to append the message to the signature. 
Furthermore in the schemes with one-message block the data expansion is rather high 
because the identifiers of the signers must be appended to the message to countermeasure 
the second attack given in section three. Another solution is to use message recovery 
signature schemes with two message blocks - one is recovered by the verification equation 
and the other one is appended to the signature and just contains the identifiers of the 
signers. We give some efficient variants in table 3, where ID is computed by ID := 

h(I Di, ... , I Dt) using a public hash function h assuming that the users u1, ... , Ut wants 
to sign the message m and the function d is chosen as above. 

No. A -B c signature message recovery 

MR Xl.3 s f(r,ID) 1 s:: -XAf(r,ID) + k m = a'y~(r,,,,Jr 
MR XI.4 s 1 f(r,ID) s = -xA + kf(r, ID) m = a•f(r,ID)- 1 i/.(r,ID)- 1 r 

MR XIIl.3 f(r,s) 1 g(r,ID) f(r, s) = -XA + kg(r, ID) m:: af(r,•)g(r,ID)-1 ~(r,ID)-' 

MR XIll.4 f(r,s) g(r,ID) 1 f(r, s) = -xAg(r, ID)+ k m = af(r,a )y9.(r,ID) r 

Table 3: Efficient MMR schemes with two messages blocks suitable for multisignatures 

A detailed description of the Meta-Message recovery multisignature scheme is similar to 
the Meta-ElGamal multisignature scheme described above and hence we skip it here. 

Security analysis 
The security analysis is similar to the security analysis of the Meta-ElGamal multisigna­
ture scheme. 
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Performance analysis 
The computational effort for signature generation and verification is similar to the Meta­
Message recovery variants. Note that the message needs not be transmitted additionally 
to the signature parameters, but the message can't be hashed. 

8. Conclusion 

We presented two attacks on the multisignature scheme proposed by Harn and showed 
how to countermeasure them. Then we generalized a modification of this scheme to some 
variants of the Meta-ElGamal signature schemes and suggested the first multisignature 
schemes giving message recovery. Furthermore we gave sufficient conditions to decide 
which of the Meta-E!Gamal and Meta-Message recovery variants are suitable for mul­
tisignatures. 
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