
1 

Feature Interaction Detection 
using Backward Reasoning with LOTOS 

Bernard Stepien and Luigi Logrippo 

Telecommunications Software Engineering Research Group 
Department of Computer Science, University of Ottawa 
Ottawa, Ont. Canada, KIM 6N5 
(bernard I luigi)@csi. uottawa.ca 

The problem of detecting feature interactions in telephone systems design is 
addressed. The method proposed involves specification of the features in LOTOS, 
and uses an analysis technique called backward reasoning. This is is imple­
mented in LOTOS by a combination of backward and forward execution. A tool to 
help carry out backward execution is presented. A detailed example ofthe use of 
the technique is given, involving the three-way-calling and call-waiting features. 

Keyword codes: D.2.2; C.2.1; H.4.3 
Keywords: Tools and Techniques; Network Architecture and Design; Communica­

tions Applications 

O.OVERVIEW 

Feature interactions have been categorized according to the kinds of features, 
the number of users and the number of network elements [CGLN93]. The causes 
of feature interactions are equally varied. They mainly revolve around problems 
of ambiguity and errors in logic intrinsic to distributed systems. It is reasonable 
to think that different causes require different detection methods. This paper 
concentrates on the problem of detecting ambiguous actions, which are seen as 
symptoms of feature interactions. Features are specified in LOTOS, and the spec­
ification is analyzed by using backward reasoning [DB78] [Hol85] [Lin 90]. 

1. SPECIFICATION OF FEATURES USING THE STATUS ORIENTED 
STYLE 

There are several published LOTOS specifications of telephones with features 
[BL93] [Najm93]. They often use the constraint-oriented specification style where 
abstract data types play an important control role. The status-oriented style 
[SL93], a variation of the resource-oriented style, makes greater use of the princi­
ple of synchronization on discrete values, which usually represent signals and 
phone numbers. When complex control structures need to be specified, the logic is 

S. T. Vuong et al. (eds.), Protocol Specification, Testing and Verification XIV
© Springer Science+Business Media Dordrecht 1995



72 Session Two : Verification Methodology Based on FDTs 

encoded into separate processes that work as constraints on a local basis, corre­
sponding to what one would use as implementation structure. In the constraint­
oriented style, all processes collaborate together to form the global behavior. Thus 
the behavior expressions representing features are mixed together and it may 
become difficult to follow the life cycle of a feature. The status-oriented style is 
closer to the concept of components communicating via interfaces, a concept that 
is central in ODP. 

The specification we have used describes three cases of feature interactions 
that are illustrations of the classification of feature interactions found in 
[CGLN93]. 

The Single User Multiple Element (SUME) class is represented by the case of 
the interaction caused when a user presses the pound key to change her personal 
options in voice mail when accessing it through a calling card call (action which 
also involves the use ofthe pound key). 

The Single User Single Element (SUSE) class is represented by the case of the 
interaction caused when a user attempting to establish a three way call presses 
the flash_hook key while being called by another user and after having sub­
scribed to call waiting. The flash-hook key becomes ambiguous because it can also 
be used to answer the waiting call. 

The Multiple User Single Element (MUSE) class is represented by the case of 
the interaction caused when a user has a number in her originate screen list that 
is the number to which another number this user is calling is forwarded to. 

The two first cases are essentially cases of detections of ambiguities while the 
third case is a violation of intentions. 

While developing the specification we have been faced with one interesting 
reality: for specification of features in LOTOS one can observe the same phenom­
enon as for implementation of features in software: features are scattered 
throughout the code. However while code can be tested only by running various 
test scenarios, LOTOS (due to its algebraic nature) can be manipulated to verify 
properties. Also the very activity of specifying features using LOTOS forces the 
designer to think more and thus detect feature interactions just by trying to spec­
ify them. One difference is that the cost of experimenting with specifications is 
considerably less than the cost of experimenting with real software or hardware. 

The general structure of the specification is as follows: 

phone[u, n)(numl, { three_way_calling, call_waiting,originate_screening }, no_active_service, numl, { 
num4}) 

Ill 
phone[u, n)(num2, { call_forward }, no_active_service ,num4, no_screen_list) 

Ill 
voice_mail[u, n)(num3) 

Ill 
phone[u, n)(num4,no_services, no_active_service,num4, no_screen_list) 
Ill 
phone[u, n)(num5,no_services, no_active_service,num5, no_screen_list) 



Feature interaction detection using backward reasoning with LOTOS 73 

l[n]l 

network[n,a] 

The formal parameter list of each instance of phone determines the activation 
of the various services presented here. Each phone is defined as a choice of call 
initiator and call responder. The process network allows to manage simultaneous 
connections and is of the usual following form: 

process network[n,a]:noexit:= 
n ? CALLER:phone_number ! tone ; ( connection_handler[n,a](CALLER) Ill network[n,a] ) 

endproc 

The features are inserted wherever they can be invoked within the basic 
POTS behaviors. For example, in the call_initiator _phone behavior, the call-wait­
ing and three-way-calling features are inserted after the connect event in process 
complete_connection as an interleaving between instances of processes user_­
events and features. 

process call_initator _phone[ ... ]( ... ) := off_hook; tone; dial ; complete_connection[ ... ]( ... ) 
where 

process complete_connection[u,n](NUMBER:phone_number,SUBS_SERV:subscrib_services):noexit:= 

n ! NUMBER ! connect 
( user_events[u,n](NUMBER,SUBS_SERV) Ill features[u,n](NUMBER,SUBS_SERV) ) 

endproc 

The process features is itself an interleaving of the two features. 
The structuring offeature interactions proposed in [CGLN93] has been useful 

to explore the problem using LOTOS. It enabled us to isolate problems and to 
concentrate on them. This idea was further developed in the concept of backward 
execution of a specification. By using this method, we can produce rapidly a sce­
nario where an interaction can be found under the guidance of the designer. The 
method consists in decomposing problems into sub-problems to isolate scenarios 
that are likely to generate interactions. 

2. DETECTING AMBIGUITIES BY BACKWARD REASONING 

2.1 Ambiguous actions 
We say that an observable action in a LOTOS specification is ambiguous if in 

the behavior tree of the specification there is a branching point where the action 
is the first observable one in at least two branches. Ambiguity represents nonde­
terministic behavior of the 'black box' being specified: it represents the situation 
where the user presses a button, and one of two different effects can follow. 
Ambiguous actions can be offered in several cases: most obvious are the cases 
where two behaviors are specified using the choice [] or disable [> operator. These 
are easy to detect, thus they are oflimited interest. The most important case is 
when two behaviors are interleaved and both contain the same action, leading to 
the possibility that one of the many combinations of inter leavings produces a sit-



74 Session Two : Verification Methodology Based on FDTs 

uation of ambiguity. 
As a trivial example, in the following behavior 

a; b; c; stop 
Ill 

e; b; f; stop 

after trace <ae> we end up with 

b; c; stop 
Ill 

b; f; stop 

We can think that b here represents an ambiguous key, leading to two behav­
iors that represent two different features . Because of the way the specification is 
written, a disorderly mix of the two features results ifthe user presses b. One can 
easily construct more complex examples involving process instantiations, etc. 
where the nondeterminism is far from obvious. In [BL93] such an example is 
given. We give a similar example in this paper, however much simpler and spec­
ified in a different style. 

specification level execution level 
Fig 1. specification and resulting execution paths 

We concentrate on the problem of detecting cases of ambiguity, seen as symp­
toms offeature interaction. Note that in general ambiguity and nondeterminism 
can involve internal actions, however these will be ignored here for simplicity of 
discussion. 

2.2 Case studies 
The case of call-waiting and three-way calling is relatively simple. Both 

involve the action flash_hook. Since the two processes are interleaved, it is clear 
that an interaction could exist. 



Feature interaction detection using backward reasoning with LOTOS 15 

processfeatures[u, n](NUMBER:phone_number,SUBS_SERV:subscrib_services):noexit:= 
call_waiting[u,n](NUMBER,SUBS_SERV) 
Ill 
three_way_calling[u,n](NUMBER,SUBS_SERV) 

endproc 

where 

process call_waiting[u,n](NUMBER:phone_number, SUBS_SERV:subscrib_services):noexit:= 
[call_ waiting lsln SUBS_SERV]-> 

endproc 

n ! NUMBER ! ring 
; u ! NUMBER ! flash_hook 
; n ! NUMBER ! connect 

( user_events[u,n](NUMBER,SUBS_SERV) 
[> 

( n ! discon_req 
; stop 

) 

process three _way _calling[ u,n](NUMBER:phone_number, 
SUBS_SERV:subscrib_services):noexit:= 

[ three_way_calling Isln SUBS_SERV]-> 

endproc 

u ! NUMBER ! ftash_hook 
; u ! NUMBER ! dial ? C:phone_number 
; n ! NUMBER ! conreq ! C 
; n ! NUMBER ! connect 

( user_events[u,n](NUMBER,SUBS_SERV) 
[> 

( n ! discon_req 
; stop 

) 

Note that the simplest case of call-waiting sequence has been proposed. In 
reality one should be able to answer call waiting immediately after receiving a 
dial tone. We found that it is difficult to specifY this more general case by using 
existing LOTOS operators. This is because when a subscriber is involved in a fea­
ture, the other features can sometimes be disabled, something that cannot be 
expressed easily with the interleave operator. In order to deal with such cases, we 
have proposed a new suspend and resume operator for LOTOS, which is described 
in [CDN93]. 

The SUME case of ambiguity, resulting when a user tries to change the per­
sonalized options of the voice mail feature while a card connection is being used, 
is more complex because the ambiguity of the pound key action is due to two pro­
cesses that are not directly interleaved. The interleaved situation is entirely con­
tained in process network_complete_connection via instances of processes 



76 Session Two : Verification Methodology Based on FDTs 

calling_card_intercept and relay_user _events where the predicate is_user _actions 
could be evaluated with respect to the value pound_key. This case shows that it is 
not always easy to find feature interactions directly. 

process network_complete_connection[n,a] (CALLER,CALLED:phone_number):noexit:= 
n ! CALLED ! ring 

; n ! CALLED ! connect 
; n ! CALLER ! connect 

relay_user_events[n](CALLER,CALLED) 
Ill 
calling_card_intercept[n,a](CALLER) 

) 
endproc 

where 
process relay_user _events[n] (CALLER,CALLED:phone_number):noexit:= 

n ! CALLER ? EVENT:primitives [ is_user_actions(EVENT)] 
; n ! CALLED ! EVENT 
; relay _user_events[n](CALLER,CALLED) 

[] 

endproc 

process calling_card_intercept[n,a](CALLER:phone_number):noexit:= 
n ! CALLER ! pound 

; a! CALLER! play_announce_new_number 
; n ! CALLER ? NEW _NUMBER:phone_number ! conreq 
; network_complete_connection[n,a](CALLER,NEW _NUMBER) 

endproc 

process voice_mail[v, n](NUMBER:phone_number):noexit:= 
n ! NUMBER ! ring 

) 

v ! NUMBER ! voice_mail_answer 
n ! NUMBER ! connect 
v! NUMBER! play_announce_pwd 
n ! NUMBER ! pwd 
v ! NUMBER ! deliver_messages 
v! NUMBER! play_announce_star_pound 

n ! NUMBER ! star 
; v ! Number ! good_bye 
; stop 
[] 

n ! NUMBER ! pound 
; v! NUMBER! play_announce_management 
; stop 

endproc 



Feature interaction detection using backward reasoning with LOTOS 77 

It is the evaluation of the predicate [ is_user _actions(EVENT)] that risks pro­
ducing an ambiguity with respect to the two actions in boldface. If the variable 
EVENT captures a pound sign, the predicate will be true and thus the action will 
be executable. It is process voice_mail that plays the role of the environment and 
decides this case. 

2.3 The method 
Most LOTOS tools available today are based on systematic use of inference 

rules or expansion. In both cases one runs sooner or later into state explosion. 
Some new techniques such as goal oriented execution [HLS93] [BE93] and inter­
leaved expansion [QLP93] provide partial relief to this problem. 

The method presented here consists in exploring a specification by focusing on 
detection of ambiguities when a new feature is introduced, thus exercising only 
portions of the specification that are relevant to the problem. This is achieved by 
using well-known concepts and techniques, but in a particular manner. We 
decompose the specification, we find local traces, we substitute them into the 
overall behavior expression, and then conventional stepwise techniques are 
applied. Therefore, this is an incremental method. 

The method consists of three steps: 
Step 1: collect the various instances of an action found in different features 

throughout the specification. 
Step 2: verify if the behavior expressions that contain these identical actions 

are interleaved. 
Step 3: apply backward reasoning to verify if there are cases where the 

behavior expressions found in step 2 that are interleaved can produce non­
deterministic choices when these behaviors are executed under the con­
straints of their environment. This means verifying if other behaviors that 
are in parallel with them can lead to such a case. In other words the fact 
that two behaviors containing the same action are interleaved is a neces­
sary but not a sufficient condition. 

Note that we have made the hypothesis that features are interleaved, and 
that their simultaneous occurrence is pathological, which seems to be true in 
most cases. 

The above method is relevant to detect ambiguity of signals. There are other 
cases of non-determinism that are not caused by ambiguities of signals but by 
errors in logic. In LOTOS these reveal themselves as incomplete or contradictory 
abstract values in guards and/or predicates. In these cases, step 1 is no longer 
necessary, and the method consists in finding features that are interleaved in 
step 2 and then applying the procedures of step 3. 

Step 3 has been implemented in a tool, which is discussed below. 

2.4 Backward reasoning in LOTOS 
As mentioned, the simple fact that an action is in interleave with itself is not suf­
ficient for two behaviors to lead to ambiguities. It is also necessary that paths 
leading to the ambiguity be simultaneously possible under a given set of condi­
tions. The fact that two events that are interleaved can create non-determinism 



78 Session Two : Verification Methodology Based on FDTs 

can be proved by executing the specification to reach the first case and then, 
using the resulting behavior expression, trying to execute the second case. This 
can be done in several ways, for example by using already known techniques such 
as forward step-by-step execution in combination with automatic generation of 
symbolic trees and goal-oriented execution [HLS93][BE93].However these tech­
niques will produce state explosion to various degrees. Most of the state explosion 
is the result of interleaved behavior expressions. The multiple combinations of 
solutions all lead to the same desired state where our two ambiguous actions are 
possible. Backward reasoning allows to find the two paths necessary to reach our 
ambiguous case without having to worry with the problems created by interleav­
ing. 

Initial 

behavior 

execute 
first 
feature 

Fig 2. stepwise execution of features 

execute 
second 
feature 

succeeds 

Our method of 'backward reasoning" appears to be effective in many cases. In 
a step-by-step, interactive way, LOTOS specifications can be executed backward. 
This is due to the fact that the language has no side effects, with the exception of 
those that determine the order of actions in traces. One can start from a selected 
behavior expression and travel in reverse direction through action prefix, choice, 
disable, and enable operators. Whenever a new variable is encountered, a value 
for it is provided.This value may fail because of predicates encountered later; 
however the same thing can also occur in forward execution. When interleaved 
behavior expressions are encountered, they are attached to the behavior tree 
developed so far, since they could be needed for synchronization later. When a syn­
chronization operator is encountered, the trace developed so far needs to be vali­
dated, so it needs to be executed forward with respect to the synchronized 
behavior. This may require synchronization with some of the interleaved behavior 
expressions attached earlier. There can be several such behavior expressions, 
both on the trace side and on the synchronized behavior side. Note also that this 
synchronization may depend on appropriate values having been entered earlier. 
Goal-oriented execution can be used to facilitate the process. When a process dec­
laration is encountered, we must search all the instantiations of that process in 
the behavior expression, choose one of them, and decide on parameters passed 



Feature interaction detection using backward reasoning with LOTOS 19 

(this is the only case of choice in backward execution, which otherwise is deter­
ministic). If we can travel all the way to the root of the main behavior declaration, 
we have found an executable path. Just as for regular forward execution, exe­
cuted actions are removed from the behavior expression. Obviously, as in forward 
step-by-step execution, success ofthe procedure depends on the insight of the 
user who must select meaningful paths and values to build an appropriate sce­
nario. 

The concept of backward execution of protocols and service specifications has 
already been studied in [DB78] [Hol85], and more recently, by using logic pro­
gramming concepts related to ours, in [Lin90]. 

II 
Environment side 

sync. \ 
' ' 

·•1111•~· ~\. 
/ . Ill\ 

,' resolvmg \ 

verifying trace ,/ ··••ll·~~~:'d~;:n'u·J \ 
/ Ill I \ 

Service side 

gathering trace 

// , ..•• }~;~i'~i""""""""'"ll••·· \., 
,' determinism Ill \ 

/ \ action 

// [] ···•u ................ ;;:~~/i;;~iw'ii~~7 ........... u•·· \ 

I I \1;;i;;iiQi';;;;im;;;;ll;;, \\,- jea~~Jn 
with interleave of trace 

Fig.3 Backward reasoning on a parse tree like representation 

From the above, it should be clear that backward reasoning uses both back­
ward execution and conventional forward execution. While backward execution 
requires specially designed tools, forward execution can be done with existing 
interpreters and expanders, although in our experience goal-oriented execution is 
a necessity. 

2.5 Applying the method 
In this section, we present the application of the method to the SUSE case of 

ambiguity of the flash_hook in the three-way calling and call-waiting case. First 
we assume that we have a fully functioning specification of the three way calling 
service. We add the call waiting feature and try to see if some of the actions of this 
new feature risk nondeterminism with respect to existing features. 

The method is applied in two steps. First we must prove that a backward 
path satisfying all conditions of synchronizing processes, starting with the action 



80 Session Two : Verification Methodology Based on FDTs 

flash_hook, does exist within the first feature, in our case the three-way calling. 
This path is summarized in Fig. 4. Then, given the behavior expression after pro­
ducing this path, we attempt to execute a second path starting from the call wait­
ing flash_hook action. The resulting path is summarized in Fig. 5. Since the two 
paths are executable within each feature, we can conclude that it is possible for 
the flash_hook action to present itself in a situation of nondeterminism. 

We now describe how the first path is derived. Processes involved in this path 
have been shaded in Fig. 4. Boxes represent behavior expressions or instantiated 
processes. Let's start with the flash_hook. Step 1 tells us to look for more occur­
rences of a flash_hook action. We find out that there is one in the three-way call­
ing feature. Step 2 tells us to verify if the behavior expressions where the two 
flash_hook actions belong are in a situation of interleaving. This is indeed the 
case, as it can be seen by simple inspection. Having these two behavior expres­
sions, which happen also to be processes, we can start to analyse how they can be 
executed in interleaving. 

We therefore start to execute the three-way-call feature backward. First we 
observe that our two features are instantiated in a process called features that 
itself is instantiated in a process completed_connection: 

process complete_connection[u,n] (NUMBER:phone_number, 
SUBS_SERV:subscrib_services):noexit:= 

n ! NUMBER ! connect 

user_events[u,n](NUMBER,SUBS_SERV) 
Ill 

features[u,n](NUMBER,SUBS_SERV) 

endproc 

Within the above process we discover that our instance of process features is 
further interleaved with user _events. Inspection of this second process leads to 
the conclusion that there is nothing of interest for our problem in it, consequently 
we keep going backward following action prefixes to end up with the n ! NUM­
BER ! connect action. This action is important because it tells us that a full con­
nection exists when the call_waiting feature is activated. 

We are now at the top of the behavior expression of process complete_connec­
tion. We now must look for an instance of this process. We find one of interest in 
process call_initiator _phone. We observe that we can follow a series of action pre­
fixes all the way back to the top of the behavior expression of this process to the 
off_hook action. Again we look for instances of this process and we find that the 
only case is in process phone. Thus we know the path that leads to a full connec­
tion of a phone. 



-

-

-

-

-

Feature interaction detection using backward reasoning with LOTOS 81 

the phone. 

phone: numl (call initiator_role) 

backward trace I three way call 

I 
off_hook-- r-- ~r--r_n:! 

I flash_hook 
Ill 

I call-: waiting 
flash_hook I rmg ~ 

Ill 

phone: num2 ( call_responder role) 

1 111111111111111111111111111111 1111111111111111111111111111111111 111 11~11111•·-
ring ____.. answer ____.. connect I , 

Ill ~ ~ 
~ 

phone: num'~., , , ,, , ,, , ,, 
inactive process ,, , ,, ~ ,, ,, ,, ,, ,, ,, ,, 

,, 
~ , , 

l[n]l 
,, .fynchronization with the interleaved ,, j behaviors of the backward trace ,, ,, ,, ,, , 

,, \' network ,, ,,, , 
connection_handler num I - numi\, 

,, 
, ~ 

numl 
,, ~ tone_.. 

conreq __.. ring _____. connect .. connect 
num2 num2 num2 numl r f backward trace synchroni~ation i 

Ill 

I 
network 

inactive process 

Fig. 4 Call waiting interaction with tree way calling summary 

Backward execution path starting from three way callingftash_hook 

I 



82 Session Two: Verification Methodology Based on FDTs 

This figure depicts the execution of the call waiting path from the state 
where the three way call is activated. 

the phones 

phone: numl 

I three_way_call 

flash_hook 
Ill 

nil ..... IIIIIIIIIIIIIIUIIIIIIIIIIUIItiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiUIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIUIIIII 

Jcall_waiting 

1111111~1~~11111~ flash 

Ill 

phone: num2 

I talking[u] inactive process 

Ill 

I 

phone: num5 

I off_ hook ---.. tone ____.. conreq ? numl 

, ••UIIillnmnnnllllllllllllll ~ 
,, ~ 

goal oriented exet'ution to detect t one signal 
~ ' 

l[n]l 

network 

connection_han~~r num I -num2 ~ 
.... ~ ,,...... s 

stop 1 ~ 
inactive process 

I 

I -hook 

I 

I I 

~ ~ 
~------~,$~'--------------------~~--------------------------------------------~ 

~ 
Ill / $ 

~ ~ 

conne~ n_handler num5 - num I $ 
.~·••lllllllnnumuummuunnm •••••u•••••••••• 

tone ~ numS conreq numl ----.. ring numl 
-=- numS t 
~ goal oriented execution of the trace 
~1111 IIU lllllllllllntllllllllllllllllllllllllllllllllllll llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll 

Fig. 5 Call_ waiting interaction with three way calling summary 
Backward execution path starting from call waitingjlash_hook 



Feature interaction detection using backward reasoning with LOTOS 83 

Process phone has many instances that are all in parallel with an instance of pro­
cess network. First we must pick one of these instances. This has the effect of 
instantiating the value of the formal parameter number. In our case we have 
picked the instance of phone[u,n](numl). Concerning this choice, as well as the 
other choices of parameters that are necessary at this level, note that since the 
method consists of finding at least one scenario that verifies our goal, any appro­
priate values can be supplied by the user. In simple phone specifications these 
values are usually phone numbers that decide which phones are involved in com­
munication. Here we only need to establish a connection between a phone that 
has both features (call waiting and three way calling) and a sort of neutral phone 
(without any features) to avoid interferences from features that are not presently 
of interest. The instance of process phone[u,n] that we have selected belongs to a 
behavior expression that is in parallel with an instance of process network. We 
must now verify if the collected trace satisfies the conditions of process network. 

Thus we have obtained, by backward execution, the following instantiated 
trace, which we call T3waycaJJ: 

u ! numl! off_hook --> 
n ! numl! tone --> 

n ! numl! conreq ? num2 ( instance of variable Called_num) --> 
n ! numl! connect--> 

u ! numl! flash_hook --> ... 

In other words, the trace must be composed with the remaining high-level 
behavior expression: 

( T3waycan Ill phone[u,n](num2) Ill ... Ill phone[u,n](num5)) 
l[n]l 

network[n] 

Thus we must try to compose T3waycaJJ with the network, this time in forward 
execution, keeping in mind that any actions of process network that cannot syn­
chronize with the trace could synchronize with the remaining behavior expres­
sions that are interleaved with the trace (here phone[u,n](num2) I II ... I I I 
phone[u,n](num5) ). 

One available technique to help in this process, is to apply goal oriented exe­
cution taking the sequence of actions of trace T awaycall as a goal. However we shall 
continue describing the process as if it were purely manual one, in order to 
explain the steps. 

Thus, let us examine process network. 

process network[n,a]:noexit:= 
n ? CALLER:phone_number ! tone 

connection_handler[n,a](CALLER) 
Ill 



84 Session Two: Verification Methodology Based on FDTs 

network[n,a] 

endproc 

The network's first action is to provide a dial tone. This matches with the sec­
ond action ofT3waycan· 

The execution of this action instantiates also the variable CALLER to the 
value numl by value passing. 

The next step is to instantiate process connection_handler, noting that we also 
have the possibility to interleave recursively with process network. 

process connection_handler[ n,a](CALLER:phone_number):noexit:= 

( 

n ! CALLER ? CALLED:phone_number ! conreq ? SCR_LIST:screen_list 

[ CALLED Notln SCR_LIST] -> 
n ! CALLED ! ring 

n ! CALLED ! connect 
; n ! CALLER ! connect 
; relay_user_events[n](CALLER,CALLED) 

[] 

endproc 

Again we see that the next action in T3waycan can match the first action of pro­
cess connection_handler, i.e. n! CALLER ? CALLED:phone_number! conreq, but 
then the next action from T3waycaJI ( n! NUMBER! connect) can no longer match 
the remaining sequence of process connection_handler. Thus at this point we 
have to go back to the many instances of process phone that are interleaved with 
T Jwayoan to see if one of these instances can provide a matching action to the ring. 
We pick instance phone[u,n](num5). Eventually we reach the connect action that 
matches our call initiator. This was the last action before the flash_hook action. 
No other actions from the network process are required in order to proceed in 
T3waycan· So far this exercise has produced a full connection between phones 1 and 2 
that is necessary in order to reach the flash_hook action of feature three-way call. 

Now we are back to the original problem: how can process call_waiting be acti­
vated when a full connection is established ? This is the second path to explore as 
summarized in Fig. 5. Processes involved in this path have been shaded. As we 
mentioned at the beginning of this exercise, the second path will be derived with 
all behavior expressions starting in the state they have reached while deriving 
the first path. We can use again the same kind of backward reasoning, leaving 
the details to the reader. 

We start with the following behavior expression that results from the back­
ward execution of the first feature (where Rest of3way_cau is now reduced to the 
flash_hook action and what follows it). 



Feature interaction detection using backward reasoning with LOTOS 85 

( (Rest of Jway_caulll Call_waiting(numl)) Ill talking[u](num2) Ill •.• Ill phone[u,n](num5) ) 
l[n]l 

(Stop of connect_handler(numl,num2) Ill network[n]) 

The call waiting trace will have to find a matching trace in the interleaved 
process network and there we can expect that some synchronization will be 
required with one of the remaining interleaved phone instances. 

When this is done, we have proof that nondeterminism can exist on the flash_­
hook trigger for the three-way-calling and the call-waiting features. 

The same reasoning can be applied to the call waiting, call forward on busy 
example. This time it is the ring action that is ambiguous. 

2.6A tool 
The backward execution method used in step 3 has been implemented in a 

prototype tool programmed in Prolog. The backtracking feature ofProlog is 
uniquely suited for this purpose. The internal representation of LOTOS specifica­
tions in the tool is quite unlike what is found in usual interpreters or expanders. 
We have used an inverted data base which makes it possible to walk a behavior 
both top- down and bottom-up. Actions, process identifiers, etc., are uniquely 
labelled so that the user can instruct the tool to direct execution to those she 
wants to use. No new inference rules are needed, the only novelty being in the 
way the inference rules are applied. Our tool does not try to validate parameter 
values with relation to expressions contained in parameter lists. For example, if 
we have an instantiation such as P[ ... ]( ... ,n-1, ... ) for a process declaration 
P[ ... ]( ... ,m, ... ) it would be necessary to see that n has value m+l. Currently, it is 
responsibility of the user to choose values so that such consistency is assured. In 
a more sophisticated tool, values would have to be derived automatically when­
ever possible, or at least consistency checks would have to be included. 

To carry out easily the type of analysis advocated in this paper, it would be 
desirable to include a backward execution facility in conventional LOTOS inter­
preters, together with features to replace behavior expressions with the obtained 
traces, and then continue with forward execution (possibly goal-oriented), as we 
have shown. 

3. CONCLUSIONS 

Detection of feature interaction is an existence proof. We explore all the poten­
tial alternatives until we find a symptom of interaction. Backward and forward 
execution work together to reduce the number of cases to be considered. The 
backward trace from the point of interest acts like a partial test case where a 
number of interleaved actions are missing and can be filled by choices of the user. 

We have shown that this technique can be facilitated by the use of appropriate 
tools. The use of appropriate specification styles may also be important, although 
we have insufficient experience in this respect. 

This technique has other applications beyond the one discussed in this paper.­
For example, it allows generating meaningful scenarios or use cases, starting 



86 Session Two : Verification Methodology Based on FDTs 

from the desired goals, in a stepwise fashion and with meaningful values. 

ACKNOWLEDGMENTS. We wish to thank Yow-Jian Lin of Bellcore for having 
motivated us to explore the concept of backward reasoning in LOTOS. Several 
members of our group, and especially M. Faci, provided stimulating feedback. We 
are also indebted to a referee for several useful comments. This research was sup­
ported by grants ofBellcore, Bell-Northern Research, the National Institute of 
Standards and Technology, the NSERC, and the Telecommunications Research 
Institute of Ontario. 

REFERENCES 

[BE93] Brinksma, E., and Eertink, H. Goal-Driven LOTOS Execution. Th appear 
in: A. Danthine, G. Leduc, and P. Wolper (eds). Protocol Specification, Test­
ing and Verification, XIII. North-Holland. 

[BL93] Boumezbeur, R., and Logrippo, L. Specifying telephone systems in 
LOTOS. IEEE Communications Magazine, Aug. 1993, 38-45. 

[CDN93] The suspend and resume operator. Canadian contribution to ISO TC97/ 
SC21, WG 1, November 1994 (available from authors). 

[CGLN93] Cameron, E.J., Griffeth, N., Lin, Y.-J., Nilson, M.E., Schnure, W.K., 
Velthuijsen, H. A Feature Interaction Benchmark for IN and Beyond. 
IEEE Communication Magazine, 31, 3, 64-69, 1993. 

[DB78] Danthine, A., and Bremer, J. Modeling and Verification of End-to-End 
Transport Protocols. Computer Networks, 2 (1978), 381-395. 

[FL94] Faci, M. and Logrippo, L. Specifying Features and Analyzing their Inter­
actions in a LOTOS Environment. Th appear in the Proc. of the 2nd Inter­
national Workshop on Feature Interaction in Telephone Systems, 
Amsterdam, 1994. 

[HLS93] Haj-Hussein, M., Logrippo, L., and Sincennes, J. Goal-oriented Execu­
tion of LOTOS Specifications. In: M. Diaz and R. Groz (Eds.) Formal 
Description Techniques, V. North-Holland, 1993, 311-327. 

[Hol85] Holzmann, G.J. Backward Symbolic Execution of Protocols. In: Y.Yem­
ini, R. Strom, and S. Yemini (eds.) Protocol Specification, Testing, and Veri­
fication, IV North-Holland, 1985, 19-27. 

[Lin90] Lin,Y.J. Analyzing Service Specifications Based upon the Logic Program­
ming Paradigm. IEEE GLOBECOMM '90, vol. 1, 611-655. 

[Najm93] Dahl, O.C. and Najm E. Specification and Detection ofiN Service Inter­
ference using LOTOS. Th appear in: R. Tenney, P.D. Amer, M. 0. Uyar (eds) 
Formal Description Techniques, VI, North-Holland, 1994. 

[QLP93] Quemada, J., Larrabeiti, D., and Pavon, S. Compressing the state space 
representation, Th appear in: R. Tenney, P.D. Amer, M. 0. Uyar (eds) For­
mal Description Techniques, VI, North-Holland, 1994. 

[SL93] Stepien, B. and Logrippo, L. Status-Oriented Telephone Service Specifica­
tion. Th appear in: T. Rus and C. Rattray (eds.) Theories and Experiences 
for Real-Time System Development, 1994. 


