
1
Hardware Synthesis from a Restricted Class of
LOTOS Expressions

Teruo Higashino, Keiichi Yasumoto, Junji Kitamichi and Kenichi Taniguchi

Department of lnfonnation and Computer Sciences,
Osaka University, Toyonaka, Osaka 560, Japan
Email : higashino@ics.es.osaka-u.ac.jp

Abstract
Recently, some studies for developing hardware circuits using LOTOS as a hardware

description language have been proposed. In this paper, we introduce a LOTOS-like language
called LOTOS/HD. Although LOTOS/HD can treat I/0 parameters, LOTOS/HD expressions are
functionally closed to Basic LOTOS expressions whose LTS's are fmite. Then, we propose a
technique for synthesizing hardware circuits semi-automatically from LOTOS/HD expressions. As
the target circuits, synchronous sequential circuits are considered. In the proposed technique, frrst,
the designers describe a specification S of a synchronous sequential circuit in LOTOS/HD where
they only describe which values should be calculated and how such values are calculated using
some functions implemented as combinational logic circuits. Next, from the data dependency
relations and the temporal ordering of the events in S, a candidate C of sequential circuits
implementing S is derived where Cis also written in LOTOS/HD. The derived circuit Cis a correct
implementation of S if C satisfies some conditions. If C does not satisfy the conditions, the
designers must modify C so that the conditions hold. The variables and functions in Care allocated
to the registers and combinational logic circuits, respectively. Using a data path allocation
technique, the connections between their components are decided automatically.

Keywords Codes : C.2.2, D.l.2, F.4.3
Keywords : Network Protocols, Automatic Programming, Fonnal Languages

1. Introduction
Many specifications of communication protocols and distributed systems have been described in

LOTOS [ISO 89]. The systems implementing such specifications have been developed as the
communication software. Since recently hardware technologies have been improved, such systems
may be implemented as the hardware circuits. Recently, some studies for developing hardware
circuits using LOTOS as a hardware description language have been proposed [FaLo 93, Turn 93a,
Turn 93b]. In this paper, frrst, we introduce a LOTOS-like language called LOTOS/HD where
LOTOS/HD expressions are functionally closed to Basic LOTOS expressions whose LTS's are
finite although it treats I/0 parameters. Then, we propose a technique for synthesizing hardware
circuits semi-automatically from LOTOS/HD expressions. As the target circuits, synchronous
sequential circuits are considered. In hardware research areas, many hardware description
languages such as VHDL [IEEE 88], Verilog HDL [Veri 91] and SFL [Naka 87] have been used.
Also many hardware synthesis techniques have been proposed (for survey, see [McPa 88]). One
may think that those synthesis techniques can be applied for LOTOS expressions directly.
However, in most cases, those hardware synthesis techniques use procedural languages as the
hardware specification languages [DiPa 81, Naka 87, WaTh 89]. In such languages, the abstract
level's specifications are described as procedural programs where the parallelism in the calculation
is not considered explicitly in this level although such a parallelism is considered in the derived
circuits. On the other hands, in LOTOS, the parallelism and interruption are very common in the
abstract level's specifications. Therefore, the proposed hardware synthesis techniques based on the
procedural languages cannot be applied directly for LOTOS expressions. Some specific ideas are
needed.

In our approach, frrst, the designers describe a specification S of a synchronous sequential
circuit in LOTOS/HD. In this level of abstraction, the designers do not consider its hardware

S. T. Vuong et al. (eds.), Protocol Specification, Testing and Verification XIV
© Springer Science+Business Media Dordrecht 1995

380 Session Nine : FDT-Based Design, Specification and Implementation

architecture. They only describe which values should be calculated and how such values are
calculated using some primitive functions which can be implemented as combinational logic
circuits. Here, we say that a LOTOS/HD expression C is a correct implementation of another
LOTOS/HD expression S if and only if the simulation relation given in Section 3 holds between C
and S where C may be more deterministic than S. From the data dependency relations and the
temporal ordering of the events in the abstract specification S, a candidate C of sequential circuits
implementing S is obtained where C is also written in LOTOS/HD. The derived sequential circuit C
is correct if C satisfies some conditions. If C does not satisfy the conditions, the designers must
modify C so that the conditions hold. The variables and functions in C are allocated to the registers
and combinational logic circuits, respectively. Using a data path allocation technique (for survey,
see [TsSi 86]), the connections between the registers and combinational logic circuits are decided
automatically.

The paper is structured as follows. In Section 2, we introduce LOTOS/HD and give an example
hardware specification. In Section 3, we defme the correctness of the implementation formally. A
technique for deriving sequential circuits from given LOTOS/HD expressions is explained in
Section 4. The conclusion and future works are discussed in Section 5.

2. Hardware Descriptions in LOTOS/HD
2.1 LOTOS/HD

In this section, we will introduce our LOTOS/HD language.
[Definition 2.1]

LOTOS expressions satisfying the following conditions are called LOTOS/HD expressions.
(1) If an observable gate is used as an input (output) gate, then the gate must not be used for an

output (input) gate.
(2) An observable input event must be represented as g?x:type, i.e., the number of the variables x

must be one.
(3) An observable output event must be represented as g!y where y is a defined variable.
(4) Each choice statement must be described in a form of ([f(yl, ... ,yn)] -> a) []

([not(f(y1, ... ,yn))] -> ~) where f(y1, ... ,yn) is a total function and the type of the function
f(y1, ... ,yn) is Boolean. The choice statements without the guards are not permitted. This
means that each choice must be deterministic.

(5) Each process must not invoke two processes in parallel. As the result, only one process is
activated, i.e., if we treat a LOTOS/HD expression as a Basic LOTOS expression, then the size
of the corresponding L TS is finite.

(6) Each unobservable event must be an input event whose form is g?y:type[y=f(x1, ... ,xn)] where
y is a new variable and x1, ... ,xn are either defmed variables or constants. In LOTOS/HD, only
the function name and its type are defmed and the axioms for f(x1, ... ,xn) are not specified.

(7) Each interruption must be described in a form of (a[> g?x:type; ~)where the gate name g
must be observable and it must not be appeared in a. If an interruption (a[> g?x:type; ~)is
contained in a process P, then the process P must not be invoked from the behavior expression
~- That is, the number of possible interruptions must be finite. D

The conditions (1) to (4) represent the constraints in hardware circuits. In general, each 1/0 port
is used either an input gate or an output gate in most hardware circuits. The condition (1) represents
it. In most hardware circuits, the number of parameters which are input (output) from (to) each port
is one. Such a restriction is described as the conditions (2) and (3). The condition (4) means that
we do not treat non-deterministic behaviors. Here, we would like to derive circuits whose numbers
of states are fmite. The condition (5) is used for the purpose. The conditions (6) and (7) are used
for simplifying our hardware synthesis. The details are explained in the following sections.

2.2 Example Specification in LOTOS/HD
In this section, we give an example specification in LOTOS/HD. For example, consider the

LOTOS expression P(n:int) in Example 2.1. Here, we use a slightly simplified syntax and do not
write the gate declarations in the process definitions.
[Example 2.1]
P(n:int) :=

(a?x:int; a?y:int; exit(x,y,any:int,any:int) Ill b?z:int; b?w:int; exit(any:int,any:int,z,w))

Hardware synthesis from a restricted class of LOTOS expressions 381

>> accept x:int, y:int, z:int, w:int in
([x+y+z+w=O] -> c!O ; stop
D
[not(x+y+z+w=O)] -> d!((x*x-z*z)+(y*y-w*w))/(x+y+z+w); P(n+1)) D

In Example 2.1, two integers x andy are given from the gate a. The other two integers z and w
are also given from the gate b. Those event sequences are executed in parallel. If the sum of input
data is zero, then the integer "0" is emitted to the gate c. Otherwise, the value of the expression
((x*x-z*z)+(y*y-w*w))/(x+y+z+w) is emitted to the gate d. Fig. 1 represents the relations
between the gates and input data. In this specification, the designers do not describe how the
output value is calculated. On general principles, we can construct a combinational logic circuit
calculating the value of the expression ((x*x-z*z)+(y*y-w*w))/(x+y+z+w) for given four integers
x, y, z and w. However, such a circuit is very complicated, and the cost for constructing the circuit
may be expensive. Therefore, as a more general solution, we assume that we use the combinational
logic circuits corresponding to the addition (+), subtraction (-), multiplication (*), division (/) and
equality (=) for implementing the specification in Example 2.1. Under this assumption, for
example, we can describe the specification in LOTOS/HD as follows. yx=ta ct=o

b p d (X"X-z"Z)+!Y'Y-w"W)
w z - - X+Y+Z+W

Fig. 1 Process P(n:int)
[Example 2.2]
P'(n:int) := hide g1, ... ,g9 in

(a?x:int; a?y:int; exit(x,y,any:int,any:int) Ill b?z:int; b?w:int ; exit(any:int,any:int,z,w))
>> accept x:int, y:int, z:int, w:int in

(((g1 ?xl:int[x1=x+z] ; g2?x2:int[x2=x-z] ; g3?x3:int[x3=xl*x2] ; exit(x3,any:int)
Ill g4?yl:int[yl=y+w]; g5?y2:int[y2=y-w]; g6?y3:int[y3=yl*y2]; exit(any:int,y3))

»accept x3:int, y3:int in g7?z1:int[z1=x3+y3] ; exit(z1,any:int))
l[gl,g4]1 g1 ?z2:int[z2=x+z]; g4?z3:int[z3=y+w]; g8?z4:int[z4=z2+z3]; exit(any:int,z4))

>>accept z1:int, z4:int in
([z4=0] -> c!O; stop

[]
[not(z4=0)] -> g9?z5:int[z5=zl/z4]; d!z5; P'(n+l)) 0

We can easily show that the value of the variable z5 in Example 2.2 is equal to that of the
expression ((x*x-z*z)+(y*y-w*w))/(x+y+z+w) in Example 2.1. In Example 2.2, the new gate
names g1, ... ,g9 and new variables x1, .. ,x3, y1, .. ,y3, z1, ... ,z5 are introduced. We use the
unobservable events gl, ... ,g9 only for defining the ordering of the calculation. The new variables
are used for keeping the intermediate results for calculating the final result

3. Correctness of Implementation
Here, we defme the correctness of the implementation formally. One possible definition of the

correctness is the weak bisimulation equivalence [Miln 89]. In general, the hardware specifications
written in LOTOS/HD may be described using parallel operators. However, since we will derive
synchronous sequential circuits, such circuits are more deterministic than given hardware
specifications and the weak bisimulation equivalence does not hold in general. Therefore, we will
introduce another relation called the simulation relation.

The simulation relation PImp Q means that the process P may be more deterministic than the
process Q, and that all executable event sequences of P must be also executable in Q. Formally, the
simulation relation P Imp Q is defined as follows. Here, let Act denote the set of fmite observable

a i a i
events. AndletB => B' denote B (~)· ~ (~)· B'.
[Definition 3.1]

Let Imp denote a relation between two processes and suppose that P Imp Q holds. If the
following condition (1) holds, then the relation PImp Q is called the simulation relation.

a a
(1) For any observable event ae Act, if P :::::> P' holds, then 3Q'[Q => Q' and P' Imp Q']. 0

382 Session Nine : FDT-Based Design, Specification and Implementation

Next, we give a transformation Proj(P) from LOTOS (LOTOS/HD) expressions into Basic
LOTOS expressions.
[Defmition 3.2]

For a given LOTOS (LOTOS/HD) expression P, let Po denote the LOTOS (LOTOS/HD)
expression obtained by replacing all guarded expressions ([C]-> a) and ([not(C)]-> a) in P by the
expressions (i;a). By ignoring all input/output variables and selection predicates in Po, a Basic
LOTOS expression is obtained. Here, we denote such a Basic LOTOS expression as Proj(P). D

For example, for the process P in Example 2.1, Proj (P) denotes :
Proj(P) := (a ; a ; exit Ill b ; b ; exit) » (i ; c ; stop D i ; d ; Proj(P))

Here, we define the correctness of the implementation using the simulation relation as follows.
[Definition 3.3]

LetS and C denote two LOTOS (LOTOS/HD) expressions. If the simulation relation Proj(C)
Imp Proj(S) holds, then we say that Cis a correct implementation of S. D

For example, for the two expressions P and P' in Examples 2.1 and 2.2, the simulation relation
Proj(P') Imp Proj(P) holds. Therefore, P' is a correct implementation of P.

Here, we will explain why we use Proj(P) for defining the correctness of the implementation.
Let's consider the following LOTOS expression R.

R := a?x:int; ([x=O] -> b!x; stop [] [not(x=O)] -> c!x; stop)
For this LOTOS expression R, Fig. 2(a) represents the general LTS based on [ISO 89]. In this

case, at the time when the input event a?x is executed, we have decided which event b!x or c!x is
executed. This is a natural notion for general purposes. However, in hardware circuits, it is natural
that such a selection should be carried out internally as an unobservable event after the input event
a?x has been executed. The L TS for Proj(R) in Fig. 2(b) represents such a situation appropriately.
Then, we use Proj(R) for defining the correctness of the implementation.

Note that the simulation relation Imp only discusses the ordering of the events and it does not
consider the correctness of the correspondence of the 1/0 parameters. Such a correspondence

'hoold be <li"u"''' "'ing ADT (A"'tmct Dam TYPI'') teobn;qu". '):_;

b()c
(a) General LTS (b) L TS for Proj(R)

Fig. 2 Two Types of L TS's

4. Transformation into Sequential Circuits
In this section, we explain how to transform a given LOTOS/HD expression S into a

synchronous sequential circuit C such that Cis a correct implementation of S. For simplicity of
discussion, in Sections 4.1 and 4.2, we assume that (1) we do not treat interruptions, and (2) there
is only one process in a given LOTOSIHD expression. The expression P'(n:int) in Example 2.2
satisfies those conditions. We use this expression P'(n:int) as an example for explanation. A
method for the cases without those assumptions is described in the end of Section 4.3.

4.1 Construction of Synchronous Sequential Machines
4.1.1 Data Dependency between Input/Output Variables

The temporal ordering of the events in a given LOTOS/HD specification must also hold in a
constructed sequential machine. Here, the constraints concerning with the temporal ordering are
given as integer linear inequalities. First, for each event, we will add the identifier representing its
execution step in the constructed sequential machine. Each variable in an input event can be used as
the identifier representing its execution step. Here, we assume that P _x denotes an identifier
representing the step number in which an input event g?x is executed. For each output event, we
will give an identifier so that we can distinguish each other. For example, in Example 2.2, there are
two output events c!O and d!z5. Here, we use, for example, P _cl and P _dl as the identifiers for
c!O and d!z5, respectively.

Hardware synthesis from a restricted class of LOTOS expressions 383

The constraints are given as follows. First, we give the constraints for observable events. H an
observable event, say a?x, must execute before another observable event, say b?y, then we give the
following constraint.

(0-l)P_x<P_y
Next, for two unobservable events and for the pair of an observable event and an unobservable

event, the constraints are specified from their data dependency relations. Han expression "g1 ?x[..]
; .. ; g2?y[..] ; g3?z[z=f(x,y)]; .. " is given, and if the events gl, g2 and g3 are unobservable
events, then we give the following constraints. These constraints mean that in order to calculate the
value of the variable z, the values of the variables x and y must be executed before g3?z[z=f(x,y)]
is executed.

(U-1) P_x < P _z (U-2) P _y < P _z
Note that P _x < P _y may not hold if there are no data dependency relations between the

variables x andy.
Finally, we give the constraints between the synchronous parallel events. If an expression" ...

g1 ?x[..] ; ... 1[0]1 ... g1 ?w[..] ; ... " is given and the gate gl belongs to G, then we give the
following constraint This constraint means that the two events gl ?x and gl ?w must be executed at
the same step.

StopO

Stop1

Stop2

Stop3

StopS

StopS

Stop7

(S-1) P_x=P_w

StepO

n-n1
Step 1

Step2

Step3

Step4

StopS

StopS

Stop7
I d!z5 ~

(a) State Diagram Using Varia les (b) State Diagram Using Registers
Fig. 3 State Diagram of Derived Synchronous Sequential Circuit

Let Max({xl, ... ,xn}) denote the maximum value in the set of variables xl, .. ,xn. Let Cons(P)
denote the set of all identifiers used in a process P. H we can minimize the value of Max(Cons(P)),
then the number of steps of the constructed sequential machine is also minimized. That is, if the
minimum value ofMax(Cons(P)) is k, then the LOTOS/HD expression P can be implemented by a
sequential machine with k steps. Since all the constraints among Cons(P) are described as integer
linear inequalities, the minimum solution k can be obtained by using a procedure for solving integer
linear programming problems where Max(Cons(P)) is treated as the objective function.

In the hardware research areas, the decision of the concrete values for the variables in the set
Cons(P) is called a scheduling [McPa 88]. The scheduling is a technique for deciding when we
should execute each event. There are many possibilities. In the ASAP (As Soon As Possible)
method, all executable events must be executed as soon as possible. That is, possible minimum
values are assigned for the variables in the set Cons(P). In this paper, we use the ASAP method.

For the set Cons(P') of the process P' in Example 2.2, the minimum value of Max(Cons(P')) is
7. Therefore, the LOTOS/HD expression P'(n:int) can be implemented by a sequential machine
with 7 steps. The synchronous sequential machine in Fig. 3(a) satisfies the constraints for
Cons(P), and it corresponds to one of the most efficient implementations.

4.1.2 LOTOS/HD Representation of Sequential Machines

384 Session Nine : FDT-Based Design, Specification and Implementation

Here, we define the semantics of the derived sequential machines in LOTOS/HD. We assume
that the LOTOS/HD expression P"(n:int) in the following Example 4.1 corresponds to the
sequential machine in Fig. 3(a) where the events executed in each step of the sequential machine are
treated as the parallel events.
[Example 4.1]
P"(n:int) := hide g1, ... ,g9 in

(a?x:int ; exit(x, ..) Ill b?z:int ; exit(.. ,z, ..))
>> accept x:int, y:int in

(a?y:int; exit(y, ..) Ill b?w:int; exit(.. ,w, ..) Ill g2?x2[x2=x-z] ; exit(.. ,x2, ..) Ill
(g1 ?x1:int[x1=x+z] ; exit(.. ,x1, ..) l[g1]1 g1 ?z2:int[z2=x+z] ; exit(.. ,z2)))

>>
>> accept y3:int, z4:int in

(([z4=0] -> (c!O; exit)» (stop))
D

([not(z4--Q)] -> (g7?z1:int[z1=x3+y3] ; exit(z1))
»accept z1:int in (g9?z5:int[z5=zl/z4]; exit(z5))
» accept z5:int in (d!z5 ; exit) » P"(n+ 1))) 0

For the LOTOS/HD expressions P'(n:int) in Example 2.2 and P"(n:int) in Example 4.1, the
simulation relation Proj(P"(n:int)) Imp Proj(P'(n:int)) holds. Therefore, P"(n:int) is a correct
implementation of P'(n:int). The LOTOS/HD expression P"(n:int) is more deterministic than the
LOTOS/HD expression P'(n:int) because the input event a?x:int must be executed before the input
event b?w:int is executed in P"(n:int) although b?w:int may be executed before the input event
a?x:int is executed in P'(n:int).

4.1.3 Conditions for Deriving Correct Sequential Machines
The sequential machines obtained by the method described in Section 4.1.1 may not be

meaningful as the circuits.
Suppose that two input/output events at the same gate may be allocated to the same step. If the

LOTOS/HD expression "(a?x:int; ... Ill a?y:int; ...)"is given, then the events a?x:int and a?y:int
may be allocated to the same step. However, it is natural that, in the derived sequential machine,
only one input is permitted for each gate at a step. Therefore, if such two input/output events are
allocated to the same step, the designers must allocate them to different two steps.

If "(g?x:int[x=fl(..)] ; ... l[g]l .. g?y:int[y=£2(..)] ; ...)" is given and g?x and g?y are executed
simultaneously, and if the functions fl(..) and £2(..) are not the same, then the deadlock may
occur. For such a case, the designers must check whether there exist other possibilities of
rendezvous by themselves.

If the state diagrams of the derived circuits are meaningful, then the derived circuits are correct
Since some heuristics may be used for constructing sequential machines, the designers must check
whether Proj(C) Imp Proj(S) holds for the pair of a given LOTOS/HD expression S and the
LOTOS/HD expression C corresponding to the obtained sequential machine.

4.2 Data Path Allocation
Here, we must allocate some registers for keeping the values of variables in a given LOTOS/HD

expression. For simplicity of the circuit, the number of the registers should be minimized.
Suppose that the value of a variable x is defmed at the step i and that it is referred at the step j and it
is not referred after the step j. Then we say that the life time of the variable x is [ij-1]. If x is
emitted as an output at the step j, then we say that the life time is [ij]. If two variables x and y are
used in rendezvous events, then we introduce the life time for the pair of the variables x and y. For
example, in Fig. 3(a), the life time of the variables x1&z2 is [2,3] because the life times of x andy
are [2,2] and [2,3], respectively. Fig. 4 represents the life times for all variables used in the
sequential machine of Fig. 3(a). In Fig. 4, the life times of the variables x2 and y2 are not
overlapped. The values of such variables may be kept in the same register. Fig. 5 represents a
register allocation. In Fig. 5, only five registers are used for keeping the values of the variables in
Fig. 4. It is known that such a register allocation is obtained by the technique called a clique­
partitioning technique [GaJo79]. In Fig. 5, we use a special register R1 for keeping the process
parameter. It is used when the process P" is invoked recursively.

X

z

w
x1&z2
X2
x3

y1&z3
y2
y3
z4
Zl
z5

Hardware synthesis from a restricted class of LOTOS expressions 385

0 I 2 3 ~ 5 6 7 -------------Fig. 4 Life Times

Re ist Step 0 1 2 3 4 5 6 7

R1

R2

R3

R4

R5

---------------~~ n n+1
__..__..__..~__..

x Y y1&z3 y3 z1 z5

77~ --x1&z2 z4 -­x2 y2

Fig. 5 A Register Allocation

..,,
(Z4-0?)

Fig. 6 Derived Circuit

4.3 Construction of Circuits
Here, we explain how to construct the circuit from a given data path allocation described above.

We can construct a new state diagram using registers by replacing the variables by the allocated
registers. In the new state diagram, each unobservable event, say g?x[x=f(y,z)], is also replaced by
the substitution statement "Rxf-f(Ry,Rz)" where Rx denotes the register keeping the value of "x".
Fig. 3(b) is the replaced state diagram based on the register allocation in Fig. 5. For example, for
the events a?y and g2?x2[x2=x+y] in Step 2 in Fig. 3(a), the corresponding actions are a?R2 and
R5f-R2-R3, respectively.

Next, we construct a concrete circuit from the state diagram using the allocated registers. If
there is a substitution statement Rif-f(Rl, ... ,Rn), then the outputs of the registers Rl, ... ,Rn must
be connected to the inputs of the combinational logic circuit calculating the value of the function
f(...), respectively. If some of Rl, ... ,Rn are constants, then the corresponding constants are given
to the inputs. The output of the combinational logic circuit must be connected to the input of the
register Ri. If the outputs from two or more combinational logic circuits must be connected to the
input of a register Ri, then we use a multiplexer for selecting one of them. If the outputs from two
or more registers must be connected to an input of a combinational logic circuit, then we also use a
multiplexer for selecting one of them. We also use a gate for controlling whether an output should
be emi~d to each output gate.

Fig. 6 represents the derived circuit based on this method. In Fig. 6, the symbols MPX and G
represent a multiplexer and a gate, respectively. Each multiplexer MPX selects one of the inputs
depending on the value of its control signal mpxi. Each gate G emits its input as the output only if
its gate signal sigi is 1. Each register Ri loads the input only if its load signal loadi is 1. For
selecting one of the conditional branches of the sequential machine, one selection signal sell is
used. This selection signal emits 1 if and only if the value of the variable z4 is zero.

For executing this circuit, the control circuit must be also designed. That is, we must decide the
values of the control signals when we execute the circuit. Using popular techniques, the control

386 Session Nine : FDT-Based Design, Specification and Implementation

circuit and its micro program can be derived mechanically. In [Riga 94], we give the control circuit
and its micro program for the above circuit.

In Sections 4.1 and 4.2, we assume that there is only one process. If two processes P and Q are
used, then we construct the state diagrams for P and Q and connect them into one state diagram.
From the connected state diagram, we can construct the concrete circuit. In Sections 4.1 and 4.2,
we also do not treat interruptions. If an interruption (P [> Q) is given, then we construct the state
diagrams for P and Q. During an interruption has not occurred, we execute the state diagram for P.
If an interruption occurs, then we execute the state diagram for Q. Since the timing of the
interruption is arbitrary, a control mechanism for changing from the state diagram for P to that for
Q is needed. For the details, see [Riga 94].

5. Conclusion
In this paper, we have proposed a methodology for synthesizing hardware circuits from a

restricted class of LOTOS expressions called LOTOS/HD. In the hardware research areas, such
synthesis techniques have been studying actively. In the proposed technique, some restrictions are
given. The further studies are needed for removing the restrictions. Now, we have been developing
a tool for deriving the register transfer level's (RTL) circuits from given LOTOS/HD expressions
based on our technique. For the transformation from the register transfer level's (RTL)
descriptions into the IC level's real concrete circuits, we will use the synthesizer PARTHENON
developed in NTT Corp., Japan, which is based on the hardware description language SFL [Naka
87]. One of the future works is to investigate the usefulness of our technique by using this tool.

[DiPa 81]

[FaLo 93]

[GaJo79]
[Riga 94]

[IEEE 88]
[ISO 89]

[McPa88]

[Miln 89]
[Naka 87]

[TsSi 86]

[Turn 93a]

[Turn 93b]

[Veri 91]

[WaTh 89]

References
S. W. Director, A. C. Parker, D. P. Siewiorek and D.E. Thomas : "A Design
Methodology and Computer Aids for Digital Systems", IEEE Trans. on Circuits &
Systems, 28, 7, pp.634-645, 1981.
M. Faci and L. Logrippo : "Specifying Hardware Systems in LOTOS", Proc. of
Computer Hardware Description Languages and their Applications XI (CHDL'93),
pp.305-312, North-Holland, 1993.
M. R. Garey and D. S. Johnson: "Computers and Intractability", FreeMan, 1979.
T. Higashino : "Synthesis of Sequential Circuits from a Restricted Class of LOTOS
Expressions ", ICS Research Report, 94-ICS-5, Dept. I.C.S., Osaka Univ., 1994.
IEEE: "IEEE Standard VHDL Language Reference Manual", IEEE, 1988.
ISO : "Information Processing System, Open Systems Interconnection, LOTOS - A
Formal Description Technique Based on the Temporal Ordering of Observational
Behaviour", IS 8807, 1989.
M C. McFarland, A. C. Parker and R. Composano : "Tutorial on High-Level
Synthesis", Proc. of 25th Design Automation Conf., pp.330-336, June 1988.
R. Milner: "Communication and Concurrency", Prentice-Hall, 1989.
Y. Nakamura : "An Integrated Logic Design Environment Based on Behavioral
Description", IEEE Trans. on Computer-Aided Design Integrated Circuits & Systems,
6, 3, pp.322-336, 1987.
C. Tseng and D. P. Siewiorek : "Automated Synthesis of Data Paths in Digital
Systems", IEEE Trans. on Computer-Aided Design Integrated Circuits & Systems, 5,
3, pp.379-395, 1986.
K. J. Turner: "An Engineering Approach to Formal Methods", Proc. 13th IFIP WG
6.1 Symp. on Protocol Specification, Testing and Verification (PSTV-XIII), North
Holland, pp.357-380, 1993.
K. J. Turner and R. 0. Sinnott: "DILL: Specifying Digital Logic in LOTOS", Proc.
Sixth Int. Conf. on Formal Description Techniques (FORTE'93), North-Holland,
1993 (to appear).
Open Verilog International : "Verilog Hardware Description Language Reference
Manual", 1991.
R.A. Walker and D.E. Thomas: "Behavioral Transformation for Algorithmic Level IC
Design", IEEE Trans. on Computer-Aided Design Integrated Circuits & Systems, 8,
10, 1989.

