
1

Generalized Fair Reachability Analysis
for Cyclic Protocols: Part 1 *

Hong Liu and Raymond E. Miller

Department of Computer Science, University of Maryland at College Park, College Park, MD
20742

Abstract
In this paper, the notion of fair reachability is generalized to cyclic protocols with n > 2

communicating finite state machines. An equivalence is established between the set of fair
reachable states and the set of reachable states with equal channel length. As a result, deadlock
detection is decidable for cyclic protocols with finite fair reachability graphs. The concept
of simultaneous unboundedness is defined and the lack of it is shown to be a necessary and
sufficient condition for a cyclic protocol to have a finite fair reachability graph. For the first
time, we are able to exactly characterize the class of protocols whose fair reachability graphs
are finite. As far as decidability of deadlock detection is concerned, our result extends the class
of cyclic protocols studied by Peng & Purushothaman, and complements the one investigated
by Pachl. More importantly, our decision procedure is much more straightforward and efficient,
as compared to Pachl's and the one by Peng & Purushothaman. In this respect, we have
improved the complexity of deadlock detection for the class of cyclic protocols with finite
fair reachability graphs. To further demonstrate the strength of generalized fair reachability
analysis, we also show that livelock detection is decidable for the class of cyclic protocols with
finite fair reachability graphs.

Keyword Codes: C.2.2; D.2.1; D.2.4
Keywords: Network Protocols; Requirements/Specifications; Program Verification

1 Introduction
The communicating finite state machine model is one of the most widely used formal models
for protocol specification and verification [1]. In this model, a protocol is specified as a set of
finite state machines exchanging messages via FIFO channels. A simple state space exploration
technique, also known as reachability analysis is used to systematically generate the entire global
state space reachable from the initial global state. Protocol validation is done by checking
each reachable global state against progress criteria in terms of deadlock, unspecified reception

"Research reported in this paper was supported by NASA Center of Excellence in Space Data and Information
Sciences Under USRA Subcontract No. 550-66.

S. T. Vuong et al. (eds.), Protocol Specification, Testing and Verification XIV
© Springer Science+Business Media Dordrecht 1995

272 Session Six : Verification Methods

and boundedness. With this simple model and straightforward verification technique, some
real world protocols have been successfully modeled and validated. However, there are two
problems concerning this model that hampers its practical usefulness to industrial strength
applications. First, progress properties are in general undecidable for protocols modeled as
communicating finite state machines [1], in particular, exhaustive state enumeration is only
feasible for bounded protocols. Second, even with bounded protocols, reachability analysis
suffers from the state explosion problem. Most real world protocols are large and complex, with
tens of thousands of global states. In this case, even though reachability graphs are finite, the
analysis becomes very inefficient due to the brute.force state exploration.

Much research has been devoted to looking for classes of protocols whose progress properties
are decidable and devising techniques to limit state explosion during analysis. As a result, many
techniques have been proposed. These methods differ in the classes of protocols they can handle,
the ease of being automated, and the overhead they incur. For a survey ofthese methods, please
refer to [19].

One of the proposed improved techniques is called fair reachability [18, 10], where each ma­
chine is forced to make a move whenever possible during state exploration. In fair reachability,
global state exploration is reduced by avoiding redundant exploration of equivalent interleaving
execution sequences during the analysis. This technique has been shown effective in validation
for protocols modeled as two communicating finite state machines [18, 10]. However, the con­
cept of fair reachability and its effectiveness for general protocols with more than two machines
has not been studied. To fill this gap, we investigate the generalization of this technique to
cyclic protocols. Through the study, its effectiveness for cyclic protocol validation is shown.

The rest of the paper is organized as follows: In section 2, we briefly review previous
research on fair reachability analysis and highlight our results presented in this paper. Then,
the communicating finite state machine model is formally introduced in the following section.
In section 4, we generalize fair reachability to cyclic protocols with n ~ 2 communicating finite
state machines. Based on this, we present a sufficient condition for a cyclic protocol to have
a finite fair reachability graph, which is a generalization of the one shown in [8]. To build a
theoretical foundation for generalized fair reachability analysis, we study the characterization
of fair reachable state space in section 5. From the investigation, we obtain the key results
of this paper: an equivalence between the set of fair reachable states and the set of reachable
states with equal channel length, and a necessary and sufficient condition for a cyclic protocol
to have a finite fair reachability graph. To demonstrate the strength of our approach, we show
in section 6 that both deadlock detection and livelock detection are decidable for the class of
cyclic protocols with finite fair reachability graphs. We conclude the paper with open problems
in section 7.

2 Previous Work
Fair reachability analysis was proposed as a strategy for reducing state explosion during val­
idation of protocols modeled as two communicating finite state machines. Rubin and West
first observed the redundancy of state exploration in reachability analysis due to equivalent
sequences of interleaving transitions [18]. Based on this observation, they proposed a canonical
sequence technique that forces the two machines to progress at the same speed during state ex­
ploration. They reported a large percentage reduction in state generation when this technique
was incorporated into reachability analysis. For protocols whose reachability graph is finite,
they proved that both the deadlock detection and unspecified reception detection problems are
decidable. In [10], Gouda and Han named this technique fair reachability analysis. The reacha­
bility graph thus generated is termed a fair reachability graph. They showed that for protocols

Generalized fair reachability analysis for cyclic protocols: part I 273

whose fair reachability graph is finite, the boundedness detection problem is also decidable. A
sufficient condition for protocols to have a finite reachability graph was also established in [8];
namely, if a protocol has one of the two channels bounded, then its fair reachability graph is
finite. Therefore, for n = 2, the detection of deadlock, unspecified reception, and unbounded­
ness are all decidable for the class of protocols with at least one bounded channel. Recently,
Cacciari and Rafiq extended the above idea to protocols with "internal" transitions, where an
internal transition of a process is defined as a transition that changes the local state of the
process but does not change the content of any channel associated with that process [2, 3].
They called their technique reduced reachability analysis. In [2], they showed that using this
technique, both deadlock and unspecified reception, among other properties, are decidable for
protocols whose reduced reachability graphs are finite. In [3], they showed that it is undecidable
whether a protocol has a finite reduced reachability graph. However, it is not clear what class
of protocols are amendable for reduced reachability analysis [3].

One important aspect about fair reachability analysis is that in each fair reachable state, the
length of each channel is equal [18, 8]. We call this property the equal channel length property
of fair reachability analysis. On one hand, reduced reachability analysis by Cacciari and Rafiq
resembles fair reachability analysis in that it forces two machines to move at the same time if
the parallelwise condition is satisfied [2]. On the other hand, if the parallelwise condition is
not satisfied, only one machine is allowed to move at one time. As a result, the set of reduced
reachable states no longer has the equal channel property. This is, we feel, one of the major
reasons that makes it more difficult to find a (sufficient) condition for the class of protocols
with finite reduced reachability graphs.

Fair reachability analysis is of importance not only because it can reduce the number of
global states explored, but also because it has the capability to handle some protocols with
unbounded channels. Although in [18], the authors claimed to extend this technique to protocols
with n > 2 communicating finite state machines, so far, we have not seen any follow-up reports
on this issue.

It should be noted that for bounded protocols, the classic reachability technique can be
used for protocols with n > 2 communicating finite state machines. But research in analysis
of protocols with unbounded channels has been mostly limited to only cyclic protocols [13,
14, 16, 17]. Jan Pachl is probably the first person who formalized and investigated the class
of cyclic protocols. His method is based on the channel expression concept [13, 14]. In (14],
he showed that the deadlock detection problem is decidable for the class of cyclic protocols
with recognizable channel expressions. But many of his important results on cyclic protocols
are contained in his unpublished research report [13], in which he showed that the deadlock
detection problem and the unspecified reception detection problem are decidable for the class of
cyclic protocols with one channel whose channel expressions are regular. However, he wrote in
[13] that the decision procedure is hopelessly inefficient for any practical purpose. In [16], Peng
and Purushothaman showed that for the class of cyclic protocols with exactly one unbounded
channel, the deadlock detection problem is decidable. Their method relied on the construction
of a "stable cover set" and the construction of a finite automaton to recognize the stable cover
set. It is not clear, however, that this procedure can. be automated efficiently. In [17], they
proposed a data flow approach to analyzing deadlock and unspecified reception for a protocol
with n ;::: 2 machines by computing a superset of the set of reachable states as an approximated
solution for a set of data flow equations. If there are no deadlock or unspecified reception
states in the superset, then the protocol in question has no deadlock or unspecified reception.
However, if there is a deadlock or unspecified reception state in the superset, then the protocol
under analysis "might" have a deadlock or unspecified reception, depending on whether such a

274 Session Six : Verification Methods

state is indeed reachable. Thus, while this approach works for general protocols, the result of
the analysis is incomplete. It is unknown for what class of protocols the data :How analysis can
yield an exact solution. Furthermore, this approach also suffers from state explosion, as stated
by the authors in (17). Therefore, for the analysis of cyclic protocols with n > 2 communicating
finite state machines, only the decidability aspect has been studied. The complexity of decision
procedures has been largely ignored. For practical analysis, it is highly desirable that the
decision procedure be efficient. Moreover, all these techniques proposed for cyclic protocol
validation analyze global states from the channel language viewpoint [12]. Reachability analysis,
which has been a main focus in the analysis of protocols with two machines, has not been
integrated into any of these approaches at all. As a matter of fact, it seems that there is a gap
between protocols with two machines and protocols with more than two machines. Most of the
methods, if not all, that have been proposed for the two machine case have not yet been carried
over to the n > 2 case.

In this paper, we bridge this gap by looking into the possibility of applying the fair reacha­
bility technique to progress analysis for cyclic protocols with n > 2 communicating finite state
machines. This includes some new results. Our contributions in this paper are summarized as
follows: (1) Fair reachability is formalized in terms of synchronization and concurrency, pro­
viding a deeper insight into the interactions among processes. (2) An equivalence is established
between the set of fair reachable states and the set of reachable states with equal channel length.
As a result, deadlock detection is decidable for the class of cyclic protocols whose fair reachabil­
ity graphs are finite. (3) A necessary and sufficient condition is presented for cyclic protocols to
have finite fair reachability graphs. This condition ensures that for the class of cyclic protocols
whose channels are not simultaneously unbounded, the deadlock detection problem is decidable.
For the first tiine, the class of cyclic protocols with finite fair reachability graphs can now be
exactly characterized. (4) For completeness, we also show that it is undecidable whether a
cyclic protocol has a finite fair reachability graph. (5) Regarding the class of cyclic protocols
whose deadlock detection is decidable, for n = 2, our result properly includes the one studied in
(18, 10]; for n > 2, our result properly contains the one examined in (16) and complements the
one investigated in [13, 14]. More importantly, our decision procedure is much more straight­
forward and efficient for practical analysis, which was lacking in both [16] and [13, 14). (6)
To further demonstrate the power of our generalized fair reachability analysis technique, we
prove that livelock detection is also decidable for the class of cyclic protocols with finite fair
reachability graphs, an easy generalization from the one established for n = 2 in [8)

Generalized fair reachability analysis for cyclic protocols was first reported in [5), along
with the decidability result of deadlock detection for the class of cyclic protocols with finite fair
reachability graphs. Since then, the fair reachability notion has been revised to achieve further
state reduction and allow for easier proofs. Most importantly, we have discovered a necessary
and sufficient condition for the class of cyclic protocols with finite fair reachability graphs, and
proved the undecidability of this condition, a key contribution to the study of cyclic protocols.

It should be clear that in this paper, we only study detection of deadlocks and livelocks
in cyclic protocols using generalized fair reachability analysis. For detection of other logical
errors in cyclic protocols, pure fair reachability analysis is not sufficient, as will be addressed in
another paper [7).

3 Communicating Finite State Machines
In this section, we brie:Hy introduce the communicating finite state machine model. Due to
space limitations, some of the common definitions in the model are omitted. For a complete
treatment of the model, please refer to [1, 4) and the full version of this paper (6).

Generalized fair reachability analysis for cyclic protocols: part I 275

Notation: (1) We use ·to denote concatenation. Given a set M, M* denotes the reflexive
and transitive closure of M under concatenation. IMI denotes the cardinality of set M. For
any Y EM*, IYI denotes the length ofY. We use f to denote an empty string. By definition,
lEI = 0. (2) We define two operators, EB and e. Given n, for any 1 ~ i ~ n, 0 ~ j < n,
i E!) j = i + j if i + j ~ n else i E!) j = (i + j) mod n; i 8 j = i - j if i > j else i 8 j = i - j + n,
where mod stands for the modulo operation. (3) We define an interval [i .. j] for an ordered set
of at most n consecutive integers i, i E!) 1, ... , i E!) k = j, where 1 ~ i ~ n 1\ 0 ~ k < n. The
corresponding (unordered) set is denoted as {i .. j}. The cardinality of [i .. j], denoted as l[i .. jJI,
is defined as k + 1. We define [i' .. j1 ~ [i .. j] if and only if { i' .. j'} ~ { i .. j} and [i' .. j'] C [i .. j]
if and only if {i' .. j'} C {i .. j}. Also we denote P[; .. j] as the set of processes indexed by [i .. j],
called a process interval. (4) We designate n as the number of processes in a protocol. Unless
otherwise specified, we assume n ~ 2 and let i,j range over [l..n].

In the communicating finite state machine model, a protocol is specified as a set of n finite
state machines, where each machine communicates with other machines via FIFO channels.

Definition 3.1 A protocol P =(Pt. P2, ... , Pn), n ~ 2, is a four-tuple (S, M, 0, r), where

• Each P; is a process represented as a finite state machine.
• S = (S1 , S2, ... , Sn), where S; represents the finite set of local states of process P;.
• M = (Mt. M2, ... , Mn), where M; = (Mt;, M2;, ... , M;-t;, Mi+ti, ... , Mn;), i E [l..n].

Each Mj;, j =f i, represents the set of messages that can be sent from Pj to P;.
• 0 = (s~,sg, ... ,s~), where s? E S; is the initial local state for P;.
• r, a partially defined transition function: Uf=1(S; X M; S;), where M; = (Uj;i;{ -ml

mE M;j}) U (Uj,.d+mlm E Mj;}).

A channel C;j, i =f j, is modeled as a FIFO queue connecting P; to Pj. The contents of C;;
is denoted as c;;, which is a sequence of messages mE M;;. If C;; is empty, c;; =f.

For each P;, a transition defined at local states; E S; is denoted as r(s;, a), where a EM;.
When u = -m, it is a sending transition, representing the transmission of message m by P;.
When a = +m, it is a receiving transition, representing the reception of message m by P;.
We use the notation r; = r(s;,a) to give a name r; for this transition, and use the notation
s: = r(s;, a) to denote that s: is the local state resulting from the execution of the transition.
A local state s; in P; is a receiving local state if and only if all transitions defined in s; are
receiving transitions. By definition, each P; is deterministic but partially defined.

Given a protocol P = (Pt. P2, ... , Pn), a communication topology graph of Pis a directed
graph such that each node of the graph is labeled as one process P;, and there is an directed
edge from node P; to node P;, i =f j, if and only if there is a FIFO channel C;; from process
P; to process Pj. A protocol is cyclic if and only if its communication topology graph is a ring
in which there is a directed edge from each node P; to P;an· Thus, in a cyclic protocol, each P;
has only one input channel C;eti and only one output channel C;;an·

From now on, we are dealing with cyclic protocols. Although concepts and notations intro­
duced in the remainder of this section are presented in the context of cyclic protocols, they can
be adapted to general protocols witl].out significant changes. However, for results established
later in this paper, it should be clear that they apply to cyclic protocols only.

Given a cyclic protocol P = (Pt. P2, ... , Pn), a global state S is represented as a 2n-tuple
(St. s2, ... , sn, Cnt. c12, ... cn-tn), where s; is the local state of P; in global state S, and c;eti
is the content of channel C;91; in global state S. In particular, the initial global state S 0 is
denoted as (s~,sg, ... ,s~,f, .. . ,€).

For the sake of brevity, a global state is called a state for short. As a convention, we use
capital letters S,X to denote a state and small letters s;, x; to denote a local state of P;.

276 Session Six : Verification Methods

Definition 3.2 Given two states S = (8b 82, ... , 8n, Cnt. c12, ... , Cn-ln) and S' = (s~, 8~, .. . ,

8~, c~H ~2, ... , c~-ln)· S' is directly reachable from S, denoted as S ,..... S', if and only if
3i E [l..n] such that the elements of S' can be derived from S by executing one of the following
transitions: (1) 8: = r(8;, -m) and c:iE!ll = CiiE!ll · m. (2) s: = T(8;, +m) and Cieli = m · c:eli
Except for the elements affected by the one transition applied, all other elements of S' remain
the same as those in S.

Denote ,.....• as the reflexive, transitive closure of Given two states S and S', S' is
reachable from S if and only if S ,.....• S'. In this case, local state 8: is also said to be reachable
from 8; in P;. When S = S0 , we say S' is a reachable state. The set of reachable states is called
the reachability state space.

For protocol validation, we classify reachable states according to some general error condi­
tions. Given a reachable state S, S is a receiving state if and only if all local states in S are
receiving local states. S is a deadlock state if and only if it is a receiving state and all the chan­
nels in S are empty. Similarly, we can define unspecified reception, nonexecutable transition,
and channel/protocol unboundedness for reachable states in a cyclic protocol [7].

Deadlock, unspecified reception, nonexecutable transition, and channel unboundedness are
called logical errors in a protocol. A protocol is said to have the required progress properties if
it does not contain any unspecified receptions or deadlocks. A protocol is said to be logically
correct if and only if it does not have any logical errors.

Logical correctness of a protocol P can be determined by constructing the reachability
graph for P and checking each node for logical errors. This state exploration technique is
called reachability analysis. Obviously, in order for this technique to be useful, the reachability
graph must be finite. In fact, it was shown that for protocols with n = 2, none of the logical
errors are decidable [1]. Therefore, logical correctness is not decidable for cyclic protocols. For
completeness of this paper, we present this general result as a theorem below.

Theorem 3.1 For cyclic protocols, detection of deadlock, unspecified reception, nonexe­
cutable transition, and channel/protocol unboundedness are all undecidable.

4 Generalized Fair Reachability
In this section, we extend the fair reachability notion for cyclic protocols with n ~ 2 machines.
The concepts of concurrency and synchronization are described to provide better understanding
of the interactions among processes and both are incorporated into the formation of fair progress
vectors. With that, the generalized fair reachability relation is formulated. Based on this
relation, we are able to show that all fair reachable states are reachable states with equal
channel length. A sufficient condition is established for a cyclic protocol to have a finite fair
reachability graph. This condition is a generalization of the one in [8]. Due to space limitations,
lemmas and theorems presented in the rest of the paper are stated without proof. Please refer
to the full paper [6] for details.

4.1 Fair Progress Vector Space

Given a cyclic protocol P = (PbP2, ... ,Pn)· LetS= (sbs2, ... ,sn,Cnt.Cl2,•··•cn-ln) be a
state and r; = r(s;, u) be a transition defined at local state s;. r; is executable at s; in S if and
only if (u = -m) v ((u = +m) A (c;81; = m · C:eli)), where (mE M;eti) A (c:eli E M;eH)· r;
is enabled at s; in S if and only if (u = +m) A (c;eti = £) and r(s;eb -m) is defined at local
state s;81 for some mE M;eti· Note that in S, s; can have more than one enabled transitions.

The set of all executable transitions at s; inS is denoted as E;(S) = Ei(S)+ Et(S), where
E;-(S) stands for the set of all executable sending transitions at s; in S, while Et(S) for the

Generalized fair reachability analysis for cyclic protocols: part I 277

set of all executable receiving transitions at s; in S. The set of all enabled transitions at s; in
Sis denoted as Ef+(s). When Sis given and no confusion arises, we drop S from the above
notations. By definition, for any stateS of P, the following formula is true: Vi E [l..n] : (0 ~
IEtl ~ 1) 1\ (Et = 0 vEt+ = 0).

Given a state S, a pseudo transition vector in S is a n-tuple t = (tt. t2, ... , tn) such that
Vi E [l..n]: t; E E; U Et+ U {>.},where A stands for a null transition in P;. Denote TV= {t =
(It, t2, ... , tn)IVi E [l..n]: t; E E; U Et+ if E; U Ef+ i- 0; t; = A otherwise}. TV is a subset
of all the pseudo transition vectors in state S. For each pseudo transition vector t E TV, we
compute a pseudo transition vector v = (vb v2, ... , vn) from t according to one of the following
three cases:

(1) t E (Xl'=t En U (Xf=t Et). In this case, set v = t. v is called a concurrency vector in S.
(2) 3j : (t; E Ej) 1\ (t;et E Ete1 u Et9t1). In this case, Vi E [l..n] : if ((t; E En/\ (t;et E

E~1 U E~1J) V ((t;et E EiE:ll) 1\ (t; E Et U Ef+)), then set v; = t;; else set v; = A. Each
such pair (v;, Viall) is called a send-receive pair in v. v is called a synchronization vector
inS.

(3) Neither condition for Case 1 nor condition for Case 2 holds. In this case, set each
v; = A. The resulting pseudo transition vector is called the null vector, indicating no
progress from any process P;.

For each pseudo transition vector v thus computed, vis a fair progress vector in S if and
only if it is either a concurrency vector or a synchronization vector. Denote Vc(S) (V,(S)) as
the set of concurrency (synchronization) vectors inS. Let V(S) = Vc(S) UV,(S). V(S) is called
the fair progress vector space inS. If V(S) = 0, then Sis a dead end state; otherwise, it is not a
dead end state. When S is given and no confusion arises, we drop S from the above notations.

By definition, we have Vc n V, = 0 and V ~ Xl'=t (E; U Ef+ U {>.}). Hence, Vis finite and
can be effectively computed.

Note that given S, if Vi E [l..n] : E; i- 0, then any pseudo transition vector t E TV can
produce a fair progress vector. Thus, if S is a dead end state, then 3i : E; U Et+ = 0. In this
case, if c;eti i- £, then the dead end stateS must have an unspecified reception at s;.

For a dead end stateS, it is "dead" in the sense that no fair progress vectors can be derived
from S. However, S might still have some transition executable at some local state s;. The
notion of extendibility is captured by the following definition.

A stateS is an extendible state if and only if 3i E [l..n] : E; i- 0. In this case, Sis extendible
in P;. A state S is extendible in P[i .. j] for some interval [i .. j] if and only if Vk E [i .. j] : S is
extendible in Pk. S is maximal extendible in P[i .. j] if and only if Sis extendible in P[i .. j] and
there is no interval [i' .. j1 ::> [i .. j] such that S is extendible in P[i' .. j~· Thus, a dead end state
S can be an extendible state. Moreover, if S is an extendible dead end state, then S must be
maximal extendible in some process interval Jt; .. ,}

Let's study in more detail the relationship among transitions in each process in a state
S from the fair progress vector generation point of view. Let [i .. j] be an interval. A vector
U[i .. J1 = (u;,u;Eill•···•u;) is called a transition vector inS if and only if Vk E [i .. j]: (Ek i-
0) 1\ (Uk E Ek)· When [i .. j] = [l..n], U[i .. j] is simplified as u. Therefore, a pseudo transition
vector tis a transition vector if and only if ViE [l..n]: (E; i- 0) 1\ (t; E E;).

Let U[i .. J1 be a transition vector in S. U[i .. j] is an incompatible transition vector in S if and
only if no fair progress vector can be derived from pseudo transition vector t =(It, t2 , ••• , tn),
where Vk E [l..n] : tk = Uk if k E [i .. j]; tk = A otherwise. U[i .. j] is a proper incompatible
transition vector in S if and only if it is an incompatible transition vector in S, S does not have
a concurrency vector, (u; E Et)::} (Eif31 = 0), and (u; E Ej)::} (Etet U Ete~ = 0). U[i .. j] is

278 Session Six: Verification Methods

a maxima/ proper incompatible transition vector in S if and only if it is a proper incompatible
transition vector inS and there is no proper incompatible transition vector ii[;• .. j'] in S such
that ii[;• .. j'] ::) U[i .. j]> i.e., ([i' .. j']::) [i .. j]) II ('Vk E [i .. j]: u~ = uk)· For notation convenience, we

also denote ii[;• .. j'] as u(i' .. j'] when ii(;• .. j'] -;2 U[i .. j]·

Lemma 4.1 For any stateS, let U[i .. j] = (u;,u;an, ... ,uj) be an incompatible transition
vector in S, t be any pseudo transition vector in S. The following statements hold: (1) If tis
a transition vector, then a fair progress vector can be derived from f. (2) 1 ::; J[i .. j]J < n. (3)
(u; E Et} V (Uj E Ej). In other words, it is always true that either u; is a receiving transition
or Uj is a sending transition. (4) For any u[i' .. j'] <:;; U[i .. j]> u[i' .. j'] is also an incompatible
transition vector inS. (5) U[i .. j] is a maximal proper incompatible transition vector if and only
if (Eie1 = 0) II (Ejffil U Etffii = 0). Note that when l[i .. j]l = n- 1, i = j Elll.

4.2 Generalizing Fair Reachability Relation
In this subsection, we generalize the fair reachability notion from (cyclic) protocols with two
communicating finite state machines to cyclic protocols with n > 2 communicating finite state
machines. The validity of this extension is also discussed.

Defintion 4.1 Given a protocol P = (P1>P2 , •.• ,Pn), for any two global states S =
(s1, s2, ... , Sn, Cnb c12, ... , Cn-1n), and S' = (si, s~, . .. , s~, c~1 , cb, ... , c~-ln), S' is directly fair
reachable from S, denoted as S ,_.. f S', if and only if there exists a fair progress vector v E V (S)
such that the execution of v in S leads the system from global state S to S'. Specifically, there
are three cases to consider:

(1) v E V,(S). For each send-receive pair (v;,v;ffil),i E [l..n], there are two subcases to
consider:

(a) Ciiffil = t. Let v; = r(s;, -m) and Viffil = r(siffib +m) for some mE M;;ffil· Execu­
tion of (v;,v;ffil) will cause transition r(s;, -m) to be taken, followed by transition
r(s;an, +m), where si = r(s;, -m) and s;ffil = r(siffil, +m).

(b) Ciiffil :f f. Let v; = r(s;, -m), Viffil = r(Siffil, +m'), and Ciiffil = m' · ci\ffi1 for
some m, m' E M;;ffil and ci\ffil E M;";ffi1. Execution of (v;, v;ffil) will cause transitions
r(s;, -m) and r(siffib +m') to be taken in arbitrary order, where si = r(s;, -m),
siffi1 = r(Siffil, +m'), and c;iffil = ci\ffi1 · m.

Except for the elements affected by the transitions applied in each of the send-receive
pairs, all other elements of S' remain the same as those in S.

(2) v E Vc(S) II (\li E [l..n] : v; = r(s;, -m;) E E;), where 'Vi E [l..n] : m; E Miiff!l· The
result of applying von Sis such that \liE [l..n]: si = r(s;, -m;) and c;iffil = Ciiffil · m;.

(3) v E Vc(S) II (\li E [l..n] : v; = r(s;, +miel) E Et}, where \li E [l..n] : m;el E M;el·
Assume that before applying v, \li E [l..n] : c;eli = m;e1 · ciEni for some c\Eni E M;"8 li"

The result of applying von Sis such that 'Vi E [l..n] : si = r(s;, +m;el) and c\iffil = ciiaw
Denote ~->j as the reflexive and transitive closure of >-'>J· Given two states SandS', S' is

fair reachable from S if and only if S ~->j S'. When S = S0, we sayS' is fair reachable. Unless
otherwise stated, when we sayS' is a fair reachable state, we mean it is fair reachable from S0 .

Given a protocol P, the set offair reachable states, denoted as F, is called the fair reachable
state space of P. As is the case for reachable states, we can define logical errors for fair reachable
states. Given S E F, S is a fair deadlock state if and only if S is a deadlock state. Similarly,
we can define unspecified reception, nonexecutable transition and unbounded channel for S [7].

Since in a fair progress vector, multiple processes can make a move, we want to make
sure that such concurrent transition execution is well-defined in the sense that any executable

Generalized fair reachability analysis for cyclic protocols: part I 279

interleaving sequence of these concurrent transitions will lead to the same state. Careful study
on the formulation of the synchronization vector and the concurrency vector shows that both do
satisfy the above requirement. Therefore, , is well-defined for cyclic protocols. Inductively,
the generalized fair reachability relation >--+ j is also well-defined.

A state S = (81> s2, ... , sn, Cnl, c12, ... , Cn-ln) is a state with equal channel length if and
only if lcnll = led= ... = lcn-lnl· Note that any deadlock state is a state with equal channel
length of zero. Note also that the initial state S0 is a state with equal channel length of zero.
Moreover, any fair progress vector in S0 maintains the equal channel length property in the
resulting state. Using this argument inductively, we arrive at the conclusion that the set of fair
reachable states is included in the set of reachable states with equal channel length, as stated
in the following theorem.

Theorem 4.1 Any fair reachable stateS is a reachable state with equal channel length.

As a result, the set of all fair reachable states F is closed under application of fair progress
vectors from their respective fair progress vector space. In section 5, we will also show that any
reachable state with equal channel length is also fair reachable, and it is this result that leads
to deadlock detection using fair reachability analysis.

Based on this theorem, we can partition the fair reachable state space F into subsets by
channel length. Let Fk, k :::>: 0, be the set of fair reachable states whose channel length is k.
Note that the set of fair deadlock states is included in F 0 .

Lemma 4.2 Given a fair reachable state space F, the following statments hold: (1) Vk, k':
k,k' :::>: 0 II k i- k',Fk n Fk' = 0. (2) F = Uk:oFk. (3) vs E Fk,k?: 0, if s , S', then
S' E Fo U F1 when k = 0; S' E Fk-1 U Fk U Fk+l otherwise. (4) Fk, k 2': 0 is finite. In fact,
IFkl ~ m~liS;I) * (ITi=liM;;ann· (5) F is finite if and only if 3J(: /(:::>: O,FK+l = 0.

As in reachability analysis, we construct a graph to systematically explore the fair reacha­
bility state space of a protocol during validation. Formally, a fair reachability graph FRG is a
directed graph such that each node is labeled with a fair reachable state, and there is a directed
edge from a node labeled with S to a node labeled with S' if and only if S >-> 1 S'. In particular,
the node labeled with S0 is called the initial node of FRG. Therefore, there is a directed path
in FRG from the node labeled asS to the node labeled asS' if and only if S >-+j S'. From now
on, we will use the term "a fair reachable state" and the term "a node labeled with that state
in a FRG" interchangeably. We sometimes use S E FRG to denote that S is a fair reachable
state. Note that the branching factor for each node in any FRG is finite, though FRG itself
can be infinite.

Even if FRG is infinite, it may still be possible to characterize it with invariant properties
and prove some results. Of course, we have not done so here. Thus, we can only say, when
FRG is finite, it provides a useful tool to analyze the protocol. In [8], Gouda et a! showed
that for n = 2, if a (cyclic) protocol has one bounded channel, then its fair reachability graph
is finite. The following theorem confirms that this result is also valid for n > 2.

Theorem 4.2 Given a protocol P = (P1, P2, ••• , Pn), its fair reachability graph FRG is
finite if one of the channels is bounded.

In fact, the above result also holds for a protocol with at least one bounded channel. Note
that this sufficient condition is weaker than the one presented in (16].

However, the converse of the above theorem is not true. For example, let P = (PI> P2) be a
protocol such that: in P1. there is only one states~ with one sending transition r(s~, -m) = s~;
in P2, there is only one state sg with one receiving transition r(sg, +m) = sg. Clearly, channel
C12 can grow unbounded. But the fair reachability graph of this protocol is finite with only

280 Session Six : Verification Methods

one fair reachable state (s~,sg,E,E).
Therefore, it would be highly desirable to find a necessary and sufficient condition to com­

pletely characterize the class of protocols whose fair reachability graphs are finite. This problem
has not been solved in previous studies, even for n = 2. In section 5, we present a solution to
this important problem.

5 Theory of Fair Reachability Analysis
In this section, we investigate two important theoretical aspects of fair reachability analysis.
The first problem has to do with its error detecting capability, while the second one has to do
with the termination of the state exploration procedure. Solutions for both problems contribute
to the decidability results for cyclic protocols presented in the next section.

5.1 Partial Fair Execution Sequence

LetS= (st,B2,·· .,sn,Cn1,c12,.··•Cn-1n) and S' = (s~,s~, ... ,s~,c~1 ,c~2 , ... ,c~_1n) be two
I

states such that S >-+* S'. An execution sequence from S to S', denoted as e, is a sequence X 0 ::_.
2 k • • . . •

X 1 ::_. ••• ::_. Xk,k ~ 0, such that (1) Vj: 0 ~ j ~ k,Xi = (x{,x~, ... ,x~,d,1 ,ci 2 , ... ,c~_1n)·
(2) X 0 =; S and Xk = S'. (3) Vj : 1 ~ j ~ k, Xi- 1, Xi via the execution of transition
ri = r(xr1 , u) by some process P; in local state xr1 of state xi-1• The length of e, denoted
as lei, is defined as the number of transitions in e, i.e., lei = k ~ 0. The corresponding local

'Tl 2 l;i

execution sequence, denoted as e; in process P;, is a sequence x? 4 x~ ~ •... , ~ x:; such that
Vj: 1 ~ j ~ k;, r/ = r(xf-1, u) is the j-th transition of P; taken in e, and xf = r(xf-I, u). The
length of e; is defined as the number of local transitions in P;, denoted as le;l, i.e., le;l = k;. We

use notation e ~ {e1,e2, ... ,en} to denote the correspondence among an execution sequence
and its local execution sequences.

When S = S0 , e is an execution sequence for reachable state S'. In this case, it can be

rewritten as S0 ~ S1 ~ ••• ~ Sk with Sk = S'.
Similarly, if S' is fair reachable from S, then there is a sequence X 0 ~ X 1 ~ • • • ~ Xk, k ~

0, such that (1) Vj: 0::::; j ~ k,Xi = (x{,x~, ... ,x~,d,.1 ,c{2 , ..• ,d,._1n)· (2) X 0 =Sand
Xk = S'. (3) Vj : 1 :5 j :5 k, Xi is fair reachable from xi-1 via the execution of fair progress
vector v; in state xi-1• Such a sequence is called a fair execution sequence from S to S',
denoted as fs(S,S'). The length of fs(S,S'), denoted as 1/s(S,S')I, is defined the number of
fair progress vectors in the sequence, i.e., lfs(S,S')I = k. The corresponding local execution

sequence in P; is also denoted as e;, i.e., fs(S,S') ~ {e1,e2, ... ,en}· Note that if Sis fair
reachable, then Vj: 0 :5 j :5 k,Xi is fair reachable. In this case, S' is a fair reachable state.

When S = S0 , fs(S,S') is simplified to fs(S), and is rewritten as S0 ~ S1 ~ • • • ~ Sk, k ~
0. In this case, f s(S') is called a fair execution sequence of fair reachable state S'.

By definition, for each reachable state, there exists at least one execution sequence, but such
a sequence might not be unique. However, some of these execution sequences may have the

same set oflocal execution sequences. Let e ~ { et, e2, ... , en} and e' ~ { eL e~, ... , e~} be two
execution sequences for a reachable state S. We define a relation= over the set of execution
sequences for S as follows: e = e' if and only if Vi E [l..n] : e; = e:. It is straightforward that =
is an equivalence relation over the set of execution sequences for S. Therefore, for any reachable
state S, each such local execution sequence set characterizes a set of execution sequences for
S. For state exploration, it is sufficient to examine these local execution sequence sets for each
reachable state.

Generalized fair reachability analysis for cyclic protocols: part I 281

Formally, a local execution sequence set {ebe2, ... ,en} is schedulable for a stateS if and
only if there is an execution sequence e for S such that the corresponding set of local execution
sequences in e is {ebe2, ... ,en}·

Similarly, a local execution sequence set { eb e2, ... , en} is fair schedulable for a state S if
and only if there is a fair execution sequence fs(S) for S such that the corresponding set of
local execution sequences in e is { e1. e2, ... , en}·

Given a reachable stateS and one of its schedulable local execution sequence sets, { e1, e2, ... ,

en}, we want to construct for S from { e1, e2, ... , en} a fair execution sequence f s(Sk) = S 0 ~
S 1 ~ • • • !i Sk, k ~ 0, such that Sk ,__.• S and there is no S' such that Sk ,__. 1 S' and
S' ,__.• S via the remaining local transitions in { eh e2, ... , en} in state Sk. It is not difficult
to show that given S and { e1. e2, ... , en}, f s(Sk), and thus Sk, is unique. Hence, f s(Sk)
and Sk are called the partial fair execution sequence and the fair precursor for S with respect
to {ebe2,. .. ,en}, respectively, denoted as pfs(S,{ehe2, ... ,en}) and fp(S,{el!e2,···•en}).
When {e11 e2, ... ,en} is given and no confusion arises, they are denoted as pfs(S) and fp(S)
for short. Note that in state fp(S), at least one of the local execution sequences is in its tail
state, i.e., 3i E [l..n], the local state of P; in fp(S) is equal to s;, the local state of P; inS.

The construction of pfs(S) and fp(S) for S with respect to {ebe2, ... , en} is carried out
by the following algorithm:

Step 1: Initially, set X = S0 , and seq = S0 •

Step 2: Construct tin state X as follows: Vi E [l..n] : t; is set to the transition in e; in
state X if x; is not the tail state in e;; t; = A otherwise.

Step 3: Compute v from t. If no v can be derived from t, goto step 5.
Step 4: Let X' be the state resulting from the execution of v in X. Set seq= seq· v ·X

and X= X'. Goto step 2.
Step 5: Output pfs(S) as seq and fp(S) as X. End of procedure.

The correctness of above algorithm can be argued informally as follows. Let k be the
number of iterations from step 2 through step 4 in the algorithm. Denote Sk as X at the time
the algorithm terminates. First, observe that during each iteration, if a fair progress vector
is formed, then at least two local execution sequences e; and eiEBl are involved. As a result,
the number of transitions remained in e; and eiEBl are decreased by 1, respectively. Since the
number of transitions in each ej is finite, termination of the algorithm is guaranteed. Second, it
is straightforward that at the time the algorithm terminates, seq is the fair execution sequence
for Sk with respect to { eb e2, ... , en}· Note that at this point, no fair progress vector can be
derived from Sk with respect to the remaining transitions in {el! e2, ... , en}· Therefore, at the
time the algorithm terminates, seq and X are indeed the partial fair execution sequence and
fair precursor for S with respect to {el,e2,···•en}, respectively.

In section 4, we have shown that for a cyclic protocol, any fair reachable state is a reachable
state with equal channel length. Now, with the partial fair execution sequence construction
algorithm, we are able to show that the converse is also true.

Theorem 5.1 Any reachable state with equal channel length is fair reachable.

Thus, we obtain an equivalence between the s~t of fair reachable states and the set of reach­
able states with equal channel length. In other words, we now have a completely characterization
for the fair reachability state space.

Theorem 5.2 The fair reachability state space is exactly the set of reachable states with
equal channel length.

An important implication of this theorem is that the notion of fair reachability is consistent

282 Session Six : Verification Methods

with the notion of fair execution sequence in the sense stated in the following theorem.

Theorem 5.3 Let { e1, e2, ... , en} be a schedulable local execution sequence set for S. If
{ e1, e2, ... , en} is fair schedulable for S, then any other schedulable local execution sequence
set {e~,e~, ... ,e~} for Sis also fair schedulable for S. In other words, if Sis fair reachable,
then it is fair reachable via any ,execution sequence for S.

5.2 Finite Fair Reachability Graph

Fair reachability analysis for a cyclic protocol P depends on the construction of the fair reach­
ability graph FRG for P. For fair reachability analysis to be useful, FRG thus constructed
must be finite. However, no necessary and sufficient condition has been established so far to
exactly characterize the class of cyclic protocols amendable for fair reachability analysis. With­
out such a condition, the class of cyclic protocols whose FRG's are finite cannot be completely
described.

In this section, we solve this problem in two steps. First, we investigate the class of cyclic
protocols without a sending cycle, i.e., no P; has a cycle in which all transitions are sending
transitions. Through the study, we discover the concept of simultaneous unboundedness, which
is more fundamental in causing a cyclic protocol to have an infinite fair reachability graph
than is the notion of a sending cycle. Then, we go on to show that the lack of simultaneous
unboundedness is indeed a necessary and sufficient condition for a cyclic protocol to have a finite
fair reachability graph. For completeness, we also show the undecidability of whether a cyclic
protocol has a finite fair reachability graph.

For ease of presentation, we formalize the concept before the result.

Definition 5.1 A cyclic protocol P = (Ph P2, ••• , Pn) is simultaneously unbounded if for
any constant K 2::0, there exists a reachable stateS= (s1,s2, ... ,sn,cn1,c12 , ••• ,cn-ln) such
that ViE [l..n]: [c;;anl > K; otherwise, it is not simultaneously unbounded.

First, we notice that for a cyclic protocol without sending cycles, the notion of unbounded­
ness is equivalent to simultaneous unboundedness.

Lemma 5.1 Given a cyclic protocol P = { P1. P2, ... , Pn} without sending cycles. If one of
its channels is unbounded, then all the other channels are unbounded.

Second, we show that for a simultaneously unbounded cyclic protocol, we can find a fair
reachable state whose channels are simultaneously unbounded.

Lemma 5.2 Given a cyclic protocol P = (P1, P2, ... , Pn), if there is a reachable state
S = (sl,s2, ... ,smcnl,c12,·· .,cn-1n) such that ViE [l..n]: [c;;aill 2:: K for some constant
K 2:: 0, then there exists a fair reachable state S' = (sL s~, ... , s~, c~1 , cb ... , c~_ 1n) such that
ViE [l..n]: [c:;$1 [2:: K.

With these two lemmas, we can establish an equivalence between the finiteness of reach­
ability graph and finiteness of fair reachability graph for the class of cyclic protocols without
sending cycles.

Theorem 5.4 Given a cyclic protocol P = { P1, P2, ... , Pn} without sending cycles, its fair
reachability graph is finite if and only if its reachability graph is finite.

In fact, we can derive a stronger result based on the preceding proof.

Theorem 5.5 Given a cyclic protocol P = {PhP2, ... ,Pn} without reachable sending
cycles, its fair reachability graph is finite if and only if its reachability graph is finite.

From this theorem, we can see that simultaneous channel unboundedness is another factor,
and probably a more fundamental factor than sending cycle in causing a fair reachability graph

Generalized fair reachability analysis for cyclic protocols: part I 283

to become infinite, as is confirmed by the following theorem.

Theorem 5.6 Given a cyclic protocol P =(PI> P2, ... , Pn), P has a finite fair reachability
graph if and only if P is not simultaneously unbounded.

The next theorem says that if a cyclic protocol has a finite FRG, then we will be able to
find the least upper bound K ~ 0 such that each reachable state has at least one channel whose
length is bounded by K. In fact, K takes on the value that is the longest channel length any
S E F can have.

Theorem 5.7 Given a cyclic protocol P with a finite FRG, we can determine the least
upper bound K ~ 0 such that each reachable state of P has at least one channel whose length
is bounded by K. Specifically, K is exactly the value such that FK ;/; 0 A FK+l = 0, i.e., the
longest channel length among all the nodes in FRG.

The discovery of this necessary and sufficient condition is significant in that we are now
able to exactly describe the class of cyclic protocols with finite fair reachability graphs from
the protocol operational semantics viewpoint. To the best of our knowledge, this condition is
the first necessary and sufficient condition for a cyclic protocol to have a finite fair reachability
graph. However, as expected, the decidability aspect of this condition is negative, as is stated
in the following theorem. The proof of the theorem is based on showing it is true for n = 2, an
easy reduction by using the decidability result of boundedness detection established in [10].

Theorem 5.8 Given a cyclic protocol P = (Pb P2, ... , Pn), it is undecidable whether P
has a finite fair reachability graph.

6 Applying Fair Reachability Analysis
To demonstrate the power of our generalized fair reachability analysis technique, we show in this
section that both deadlock detection and livelock detection are decidable for cyclic protocols
with finite reachability graphs. The decidability of deadlock detection is a direct result from the
theory of generalized fair reachability presented in section 5, while the decidability of livelock
detection is an easy extension ton > 2 from the one established in [8].

6.1 Deadlock Detection
Let P = (P1, P2, ... , Pn) be a cyclic protocol. From the discussion in section 5, we know that
the fair reachable state space F for P is exactly the set of reachable states with equal channel
length. Hence, the set of deadlock states is included in Fo. IfF is finite, then deadlocks in
P are detectable by constructing the finite fair reachability graph FRG for P. In addition,
we know that the class of cyclic protocols that are not simultaneously unbounded is exactly
the class of cyclic protocols whose FRG's are finite. As a result, we obtain the decidability of
deadlock detection for this class of cyclic protocols, as stated in the following theorem.

Theorem 6.1 Given a cyclic protocol P whose fair reachability graph is FRG, P has a
deadlock state if and only if there is a deadlock node in FRG. Hence, deadlock detection is
decidable for the class of cyclic protocols whose fair reachability graphs are finite.

6.2 Livelock Detection
A livelock occurs in a protocol when each communicating entity is busy exchanging messages
but doing nothing "useful". In [8, 9], livelock is modeled by introducing a marking function into
the communicating finite state machine model. For n = 2, they showed that livelock detection
is undecidable for general protocols [9], but is decidable for protocols with finite fair reachability
graphs [8].

284 Session Six : Verification Methods

In this subsection, we are going to generalize these results to cyclic protocols. In modeling
livelock within the communicating finite state machine model, we adopt and generalize the
definitions in [8].

A marked cyclic protocol is a tuple (P, <p), where P = (Pt. P2, ... , Pn) is a cyclic protocol,
and <p is a function, called the marking of the protocol, that assigns to each edge in P; a value
in {0, 1}. Let c; be an edge in P;, if <p(c:) = 1, it is called a progress edge; if <p(c:) = 0, it is called
a nonprogress edge.

Definition 6.1 Let (P, <p) be a marked cyclic protocol, and let C;, 1 ~ i ~ n, be a cycle
in P;. The tuple (C1.C2, ... ,Cn) is called a livelock in (P, <p) if and only if the following three

conditions are satisfied: (1) Each cycle C; has at least one edge (transition), denoted as cs? .:.\.
e' e~.

cs} 4 · · · -+ csr•, where cs? = cs!' and q; > 0. (2) All edges of cycle C; are non progress. (3)

There exists an infinite execution sequence e ~ { e1, e2, ... , en}, where

and n; ~ 0. In other words, P has a livelock if and only if P can read a state from which P
can loop indefinitely through a nonprogress cycle whose local execution cycles correspond to
(C1,C2, ... ,Cn)-

By the undecidability of livelock detection for n = 2 machines shown in [9], we have the
following:

Theorem 6.2 Livelock detection is undecidable for cyclic protocols.

Next, we show that livelock detection can be solved for cyclic protocols with finite fair
reachability graphs [6]. The proof is a straightforward generalization from the one in [8].

Theorem 6.3 Given a marked cyclic protocol P whose fair reachability graph FRG is
finite, P has a livelock if and only if there is a fair execution cycle in FRG such that each of its
corresponding local execution cycle is nonempty and is marked non progress. Therefore, livelock
detection is decidable for the class of cyclic protocols with finite fair reachability graphs.

7 Conclusion
In this paper, we generalized the fair reachability analysis tecllnique to cyclic protocols with
n ~ 2 communicating finite state machines. We established an equivalence between the set of all
fair reachable states and the set of all reachable states with equal channel length, and discovered
a necessary and sufficient condition for the class of cyclic protocols whose fair reachability graph
are finite. The effectiveness of generalized fair reachability analysis is demonstrated by showing
both deadlock detection and livelock detection are decidable for the class of cyclic protocols with
finite fair reachability graphs. The strength of our approaclllies in the natural generalization
of existing fair reachability technique and its simple, straightforward, and efficient decision
procedure, which were missing in both [16, 17] and (13, 14].

Fair reachability analysis was originally proposed as a technique to reduce state explosion
during reachability analysis [18]. The same argument also applies to our work reported in
this paper. By forcing the system to progress through a fair execution sequence, we have
cut down the redundancy of state exploration due to equivalent execution sequences. Thus,
our generalized fair reachability technique also significantly reduces the complexity of protocol
verification.

In [7], we study the detection of other logical errors for the class of cyclic protocols whose
fair reachability graphs are finite. Therefore, for the class of cyclic protocols that are not simul-

Generalized fair reachability analysis for cyclic protocols: part I 285

ta.neously unbounded, logical correctness can be validated algorithmically using our generalized
fair reachability analysis technique. However, finite extensions of a. fair reacha.bility graph are
needed in order to detect logical errors other than deadlocks, as was the case for boundedness
detection for n = 2 in [10]. This phenomenon shows that pure fair reachability analysis is not
sufficient to handle all the logical errors for the class of cyclic protocols with finite fair reach­
ability graphs. However, for this class of cyclic protocols, the finite fair reachable state space
does serve well a.s a. basis from which other logical errors can be detected.

It is possible to incorporate internal transitions into our fair progress vector formulation
to allow our generalized fair rea.cha.bility technique to handle cyclic protocols with internal
transitions and still achieve good state reduction in the analysis. We are currently working on
this issue.

During the write-up of this paper, we were informed of the independent work by Peng on
extending fair reacha.bility to a model called "single-link communicating finite state machines"
[15]. In this model, each process can have multiple output channels but has only one common
input channel to store messages from other processes. Although cyclic protocols are included
in this model, the notion of fair reachability in this model is quite different from ours in that
only two machines are allowed to make progress at one time restricted by the so-called "weight­
balance" constraint in [15]. It is not clear, however, what class of protocols in his model is
amendable for his analysis technique. For cyclic protocols, our fair reachability formulation
has the following advantages: (1) Our fair reachability state space maintains the same nice
equal channel length property as for n = 2 [18, 10]. (2) Both concurrency and synchronization
vectors in our fair rea.chability notion allow more than two machines to progress at the time. As
a result, for most cyclic protocols, our analysis achieves greater reduction in state generation
than the one in [15]. (3) Aside from.deadlock, our approach can also detect livelocks and other
logical errors, which are not covered in [15].

Many open problems remain concerning our approach. First, although we have found a.
necessary and sufficient condition for the class of cyclic protocols whose logical correctness
is decidable, we are not sure how general it is in terms of tightening the boundary of cyclic
protocols whose logical correctness is decidable. Further investigation of this aspect is necessary
in order to fully evaluate its role in the decidability hierarchy. Second, a cyclic protocol is still
simple in topology. It would be beneficial to look into the possibility of generalizing our work
to protocols with more complicated and yet regular network topologies. Third, fair reachability
analysis is only one type of improved reachability analysis techniques studied in the two machine
case. The result of our work here should encourage more research on extending other techniques
to the analysis of protocols with more than two machines. In [7], the collective power of both
fair progress and maximal progress [11, 13] state exploration is illustrated in the finite extension
process, and has produced encouraging results. But more work along this line is necessary.
Finally, it would be interesting to investigate the possibility of carrying the fair reachability
analysis technique over to other specification models, such as the extended finite state machine
model.

References

[1] D. Brand and P. Zafiropulo, "On Communicating Finite-State Machines," Journal of ACM, Vol. 30,
No. 2, April 1983, pp. 323-342.

[2] L. Cacciari and 0. Rafiq, "On Improving Reduced Reachability Analysis,'' Proc. Fifth International
Conference on Formal Description Techniques for Distributed Systems and Communications Proto-

286 Session Six : Verification Methods

cols- FORTE'92, Perros-Guirec, France, October 13-16, 1992, M. Daiz and R. Groz (Ed.), Elsevier
Science Publishers B.V. (North-Holland), 1992, pp. 137-152.

[3] L. Cacciari and 0. Rafiq, "Decidability Issues in Reduced Reachability Analysis," Proc. 1993 Inter­
national Conference on Network Protocols, San Francisco, C4-, October 19-22, 1993, pp. 158-165.

[4] T.Y. Choi and R.E. Miller, "Protocol Analysis and Synthesis by Structured Partitions," Computer
Networks and ISDN Systems, Vol. 11, 1986, pp. 367-381.

[5] H. Liu and R.E. Miller, "Deadlock Detection for Cyclic Protocols Using Generalized Fair Reachability
Analysis,'' Technical Report CS-TR-3135, Dept. of Computer Science, Univ. of Maryland at College
Park, September 1993.

[6] H. Liu and R.E. Miller, "Generalized Fair Reachability Analysis for Cyclic Protocols: Part 1,''
Technical Report CS-TR-3204, Dept. of Computer Science, Univ. of Maryland at College Park,
January 1994.

[7] H. Liu and R.E. Miller, "Generalized Fair Reachability Analysis for Cyclic Protocols: Decidability
for Logical Correctness Problems," March 1994, submitted for publication.

[8] M.G. Gouda, C.H. Chow, and S.S. Lam, "Livelock Detection in Networks of Communicating Finite
State Machines,'' Technical Report, TR-84-10, Dept. of Computer Science, Univ. of Texas at Austin,
April1984.

[9] M.G. Gouda, C.H. Chow, and S.S. Lam, "On the Decidability of Livelock Detection in Networks of
Communicating Finite State Machines," Proc. Protocol Specification, Testing and Verification, IV,
Y. Yemini, R. Strom, and S. Yemini (Ed.), Elsevier Science Publishers B.V. (North-Holland), 1985,
pp. 47-56.

[10] M.G. Gouda and J.Y. Han, "Protocol Validation by Fair Progress State Exploration,'' Computer
Networks and ISDN Systems, Vol. 9, 1985, pp. 353-361.

[11] M.G. Gouda and Y.T. Yu, "Protocol Validation by Maximal Progress State Exploration,'' IEEE
Transactions on Communications, Vol. COM-32, No. 1, 1984, pp. 94-97.

[12] K. Okumura, "Protocol Analysis from Language Structure," Proc. Protocol Specification, Testing
and Verification, VIII, S. Aggarwal and K. Sabnani (Ed.), Elsevier Science Publishers B.V. (North­
Holland), 1988, pp. 113-124.

[13] J. Pachl, "Reachability Problems for Communicating Finite State Machines," Research Report,
CS-82-12, Dept. of Computer Science, Univ. of Waterloo, May, 1982

[14] J. Pachl, "Protocol Description and Analysis Based on a State Transition Model with Channel
Expressions," Proc. Protocol Specification, Testing and Verification, VII, J. Rubin and C.H. West
(Ed.), Elsevier Science Publishers B.V. (North-Holland), 1987, pp. 207-219.

[15] W. Peng, "Single-Link Communicating Finite State Machines,'' Dept. of Computer Science, South­
west Texas State Univ., October, 1993, private communication.

[16] W. Peng and S. Purushothaman, "A Unified Approach to the Deadlock Detection Problem in
Networks of Communicating Finite State Machines," Proc. of 2nd International Conference, CAV'90,
New Brunswick, N.J., June, 1990, E.M. Clarke and R.P.Kurshan (Ed.), Lecture Notes in Computer
Science, Vol. 531, pp. 243-252.

[17] W. Peng and S. Purushothaman,' "Data Flow Analysis of Communicating Finite State Machines,"
ACM Transactions on Programming Languages and Systems, Vol. 13, No.3, 1991, pp. 399-442.

[18] J. Rubin and C.H. West, "An Improved Protocol Validation Technique,'' Computer Networks and
ISDN Systems, Vol. 6, 1982, pp. 65-73.

[19] D. Sidhu, A. Chung, and T.P. Blumer, "Experience with Formal Methods in Protocol Development,"
ACM SIGCOMM, Computer Communication Review, Vol. 21, No.2, April, 1991, pp. 81-101.

