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Abstract 
The reliability of elastic beams under a Poissonian stream of moving random loads is 
still a subject of intensive research. In particular, the assumption of Gaussianity of the 
responses is highly questionable for short beams and/or low arrival intensities. As a 
consequence reliability predictions with respect to extreme value or fatigue failure are 
inaccurate. In the paper analytical results for the response moments up to fourth order 
will be derived for different types of motion of the stream of moving loads. The results are 
then used in studies for extreme and fatigue failure employing Winterstein's expansion of 
non-Gaussian processes in terms of higher moments. The effect of important parameters, 
i.e., arrival intensity, velocity, damping ratio is investigated 

1. Introduction 
The reliability of a simply supported linear elastic beam subjected to a Poissonian stream 
of moving mutually independent and identically distributed loads still attracts the atten­
tion of many investigators because various aspects are still not fully clarified. In particular 
the assumption of Gaussianity of the response is highly questionable especially for short 
beam and/or low arrival rates. Already Tung [1-3] studied the response of highway bridges 
to random loads moving with the same constant speed. Based on numerica! procedures, 
he obtained the density function of the response and its excursion rate, and he estimated 
the fatigue life of highway bridges. Sieniawska and Sniady [4] studied the dynamic respon­
se of a finite beam to the passage of train of concentrated random forces moving with the 
same constant speed. They obtained the excursion rate for a given threshold by finding 
some form for the joint density function of defiection and speed of the response. They 
also estimated the life of the structure by finding the joint probability density function 
of the displacement, velocity, and acceleration of the vibrating beam [5]. Fryba [6] esti­
mated the fatigue life of railway bridges where he assumed that the loading is either due 
to the movement of a random force along the beam or due to an infinite strip of moving 
continuous random load. Based on the results presented in [7], this pa per investigates the 
excursion rates and fatigue lives of the beam using an analytical model of Winterstein 
[10]. This model utilizes the higher order moments of the response quantities to account 
for the non-Gaussian characteristics of the response. 
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2. Theoretical Formulation 
A simply supported beam, originally at rest, is loaded by a stream of loads moving in 
the same direction all with the same type of motion as shown in Fig. 1. The loads arrive 
at the left end of the beam at random times t; which constitute a stationary random 
procesa of filtered Poissonian type. This problem is described by the following differential 
equation 

!l4 2 ) 82 ( ) N(t) 
EI0 -~~~· t) - N 8 ~~~· t + M ~~· t + 2Mwb av ~· t) = L P; 6(z- f(t- t;)) (1) 
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with appropriate boundary and initial conditiona where EI, N, M, wb, l, and v(x,t) 
denote, respectively, the fiexural rigidity of the beam, the axial force applied at the end of 
the beam, the mass per unit length, the circular frequency of damping, the span length, 
and the vertical defiection of the beam at point x and time t. 

--x------.i 
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Figure 1. Beam Model 

The right hand side of Eq. (1) represents the loading process where 8(.) denotes 
the Dirac delta function, j(t) denotes a function describing the motion of the load at 
time t, P; are the force amplitudes which are independent, identically distributed random 
variables independent of their times of arrival t;, and N(t) is a Poisson counting procesa 
with parameter .\. In modal form, the vertical defiection of the beam can be written as 

v(:c, t) = :E Wm(:c)Ym(t) (2) 
m=l 

where Wm(x) are the normal modes of free vibration, and Ym(t) are the generalized 
defiections or the modal responses. For a simply supported beam there is Wm(x) = 

sin ( m;x). Carrying out the familiar operations, the differential equation of the m th 
mode of the generalized defiection or the modal response is written as 

(3) 

The natural frequency of the undamped beam Wm is defined as w! = w?,0m2(m2 ± "P) 
with w~.o = ~ ( T )\ 'ljJ = ~. and Ner = "21~1 . w1,o is the first natural frequency of the 
beam without axial force, Ner is the Euler buckling force, and f is the axial force ratio. 
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The coefficient of damping ~ is defined as~= wb/w1. Considering the physical nature of 

the right hand side of Eq. (3) and using the principle of superposition, the solution for 
the moda! response of Eq. (3) is written as (8] 

Ym(t) = L P;H{,.(t,t;,T)+ L P;H[f(t,t;,T) ( 4) 

w here H!,. ( t, t;, T) and H?,! ( t, i;, T) are the m th mod al response at time t to a single pul se 

having the shape sin ( ~" f( T - t;)) and duration T. These functions give the effect of the 
pulse when it is on the beam, i.e. for t- t; :":: T, and when it leaves the beam, i.e. for 
t- t; > T, respectively. These functions are 

where 

hm(t) = { 
o 

t~O 

t <o 

(5) 

(6) 

(7) 

and w~2 = w! -wţ .Assuming a quadratic form for the motion of the force along the beam, 
yields 

t2 
f(t) = xo + ct + a 2 (8) 

where x 0 is the point of application of the force, c is the initial speed, and a is the constant 
acceleration. The relation f(t) = ct describes motion with uniform speed. Substituting 
Eq. (7) into Eqs.(5) and (6) and into Eq. (3) yields the deflection v(x, t) as 

v(x,t) = L P, L sin (m;x) H~(t,t.,T)+ L P; f sin c;x) H[f(t,t;,T) (9) 
t-T$;tl$;t m=l 0$;t-:~t-T m=l 

The first term of Eq. (9) gives the total response of the beam to all forces that are on 
the beam at time t. The second term gives the total response of all forces that have left 
the beam up to timei. The integrations required in Eqs. (5) and (6) are analytic. The 
final expression for the case of the time varying velocity, for example, is a function of the 
error function of complex arguments (7,8]. Similarly, the velocity and acceleration of the 

modal response can be obtained 

v(x,t)= L P;fsin(m;x)ii[,.(t,t;,T)+ L P,L:sin(m;x)iiff(t,t,,T) (10) 
t-T$ti$t m=l D$ti$t-T m=l 

ii(x,t)= L P,Lsin(m;x)k[,.(t,t,,T)+ L P;fsin(m;x)kf!(t,t;,T) (11) 
t-T$t.$t m=l 0$;t;$;t-T m=l 
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The semi-invariants of the distributions of the response and its derivatives can be 
determined from [9] 

'1n(x, t) = >.E [Pt] [[ [f
1 
sin (m;x) H~(s;, T)r ds;+ [ [~sin (m;x) H~(s;, rf ds;] (12) 

!Jn(x,t) = >.E[Pt] [1T [fl sin c;x) H~(s;,Tr ds;+ [[~sin (m;x) H~(s;,Tr ds;] (13) 

ijn(x,t) = >.E[Pt] [1T [fl sin c;x) H~(s;,Tf ds; + [[~sin c;x) H~(s;, rf ds;] (14) 

where s; = t- t; and E [.] denotes expectation. All semi-invariants are analytical but the 
corresponding formulae become lengthy and are not given in this paper. From the semi­
invariants the central moments of the responses can be obtained as well as the coefficient 

of skewness '"'!'l(x, t) = 1J3(x, t)!TJi1\x, t) related to the asymmetry of the density of the 
distribution and the coefficient of kurtosis 12(x, t) = 1)4(x, t)/TJ~(x, t) + 3 related to the 
flattening of the density of the distribution near its center. Using these expressions a 
measure of the bandwidth of the response may be obtained as 

( ) o-~(x, t) 
f x, t = ( ) O"v(x, t)o-;; x, t 

(15) 

where a;,(x, t) and a;;(x, t) are the standard deviations of the first- and second order de­
rivative processes of the response. The limiting values of E(x, t) = O, or 1 mean that the 
response is ideally wide hand or ideally narrow hand, respectively. The moments of the 
response and its derivatives can be used in different models to estimate the reliability 
measures of the beam under the specified loading conditions. Results are presented here 
only for the first fundamental mode with m=l. The models sought must utilize higher or­
der moments to account for the non-Gaussian behaviour of the response. In Winterstein's 
model [10] the marginal distribution of the response v(x, t) can be matched by applying 
an appropriate functional transformation g(U(x, t)) for a Gaussian process U(x, t). The 
Gaussian response process U(x, t) has the value u(x, t) when the actual non-Gaussian 
response process V(x, t) = g(U(x, t)) is equal to v(x, t). Dropping the arguments x and 
t, the mean excursion rate is approximated as [10] 

where !96 is the zero up crossing rate written as 

t9+- ~ "" 
O - 271' O"v 

(16) 

(17) 

and u(v) is given by u(v) = (vo/K)- c3(v0/K)2 -1)- c4(v0/K) 3 - 3(v0/K)) for /2 < 3 and 

]1/3 [ ]1/3 u(v) = [J(2(v) + k + ((v) - J(2(v) + k- ((v) for 12 2 3, v0 = (v- P,v)/avand 

<;( v) = 1.5,8 [e + ( v0 / K )]- e3 . The constants h3 , h4 , c3 , c4 , K, e, ,B, and k are defined in [10]. 
Similarly, a four-moment Gram-Charlier series expansion of the density function of the 
response can be defined. 



Reliability considerations of beams subjected to random moving loads 309 

For a narrow hand stress response S(x, t) with a stress range R, the increase in fatigue 
damage D(t) is written according to Miner's rule as 

(18) 

where C and b are material constants. In the case of a non-Gaussian stress response 
S(x, t), a monotonie function g can be used to relate S(x, t) to a standard Gaussian 
process U(x, t) as 

S(x, t) = g(U(x, t)) (19) 

Winterstein then showed that the mean damage rate is [10] 

E[D(t)] 1 u~; ( rn )b (b) 
Xn=--t-=C 211'Us 2v2us z ![1+b(b-1)h4) (20) 

where as and as are the standard deviations of the stress response process and its velocity 
process. The first term in Eq. (20) is the damage rate of a narrow band Gaussian stress 
response and the second term is the correction factor for the non-Gaussian behavior of 
the response. The mean fatigue life of the beam then is inversely proportional to XD. If 
necessary adjustments for broad hand processes can be made. 

3. Some Numerica! Results and Discussion 

Three types of motion are considered: the load may start from a low speed eo and uni­
formly accelerate to a certain speed c, it may start from a specific speed c and uniformly 
decelerate to a low speed eo, or it may move with a constant speed c. The speed c is de­
fined in terms of a dimensionless speed parameter a which is defined as a = c/ Cer where 

Cer is the critical speed Cer = (w1l)(rr as defined in [11]. Results are obtained using the 
following data: .\ = 2 [1/ sec], l = 30 [m], P= 60 [kN], M = 2600 [kgjm], E = 2 x 108 

[kN/m2 ], e = O.Dl, or 0.05, w = 25 [rad/ sec], b = 4, and c = 7.8 X 106 [kNjm 2]. Stresses 
are determined at the mid-span of a beam with height equal to 2 m. Figure 2 (i-iv) shows 
the response moments for damping coefficient e = 0.01 reproduced from [7]. Figure 3 (i-v) 
shows the bandwidth measure and excursion rates versus the speed parameter a for the 
same damping coefficient and the three acceleration regimes. As anticipated, the response 
process approaches a narrow hand process as a increases (Figure 3(i)). The zero excur­
sion rate is shown in Figure 3 (ii). Figure 3 (iii-v) shows the Gaussian, Gram-Charlier, 
and Winterstein excursion rates. The level of excursion is taken as vz = 3av + JLv· The 
Gaussian excursion rate is unconservative in comparison with the Charlier and Winter­

stein excursion rate models. The last two models yield almost the same excursion rate for 
this level of excursion. As the level of excursion increases the differences among the three 
models are more apparent than the case of lower level of excursion because the tail regions 
of the distribution of the response become more crucial and Winterstein's model is found 
tobe more conservative than the other two models. Figure 4 (i-iv) shows the fatigue life 

versus a for the beam under consideration. In here results are presented for the Gaussian 
and Winterstein models only. Two values of damping coefficients are used. Variations in 
the fatigue life of the beam due to the use of different models is not as important as in 
the case of extreme value calculations. 
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Figure 2. i) Mean value ii) Variance iii) Skewness iv) Kurtosis of the response at midspan of the beam 
versus the speed parameter 
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Figure 3. i) Band width parameter ii) Zero excursion rate iii-v) Excursion rates; v, = 30'v + 1-'v a: 
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