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Improved versions of two optimization algorithms commmonly used in first-order 
reliability analysis are developed. One is for determining the first-order reliability index 
(3. The other is for inverse reliability analysis, i.e., determining the value of a determin­
istic parameter such that the reliability index equals a target value f3t· Besides being 
mathematically more rigorous, these new versions are much simpler than earlier versions 
of these algorithms. 

1. Introduction 

Let G( u) denote the limit-state function for a reliability problem defined in terms of a 
vector of standard normal variates, u, obtained by a sui table transformation of the basic 
random variables of the problem. An important quantity of interest is the reliability 
index defined by 

ţ-i= min{ llulll G(u) =O} (1} 

The above is a constrained optimization problem that can be solved by any of a large 
number of general-purpose algorithms (Liu and Der Kiureghian 1991). However, there 
is merit in developing a customized algorithm that takes advantage of the special form 
of the objective function of this problem. One such algorithm is ',he so called HL-RF 
algorithm (Hasofer and Lind 1974, R.ackwitz and Fiessler 1978, Liu and Der Kiureghian 
1991). This algorithm has found wide popularity owing to its simplicity and efficiency. 
However, there is no proof that for a given problem the algorithm will actually con­
verge. In this paper, an improved version of this algorithm is developed that, under the 
assumption of differentiability of G(u), is globally convergent. 

Now suppose the limit-state function includes a deterministic parameter (), i.e., 
G( u, B). This could be a parameter of the limit-state function in the original space, 
or it could be a probability distribution parameter that appears in G( u, B) due to the 
transformation of random variables to the standard normal space. The inverse reliability 
problem is defined as follows: Find B such that the reliability index associated with 
G( u, B) equals a target value ţ-i~, i.e., 

B: min{lluiiiG(u,B}=O}=f-it (2) 

An algorithm for solution of this problem was recently developed by Der Kiureghian 
et al. (1993). Here, we develop a simpler version of this algorithm that has superior 
convergence properties. 
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The two algorithms developed in this paper have the same format. One generates 
a sequence of points according to the rule 

:Ci+l =:Ci+ Aidi, (3) 

where :ci = u; for the ordinary reliability problem, :Ci = ( u;, 8;) for the inverse reliability 
problem, d; denotes a search direction vector, and Ai is the step size. A; is determined 
by assuring a reduction in a merit function m( a-;) at each step. Most commonly, the 
Armijo rule (Luenberger 1986) is used. For the present application, this rule can be 
written as 

where a, b E (0, 1) are pre-selected parameters and k is an integer. Global convergence of 
the sequence in (3) is assured if the merit function attains its minimum at the solution 
point of the problem and if d; is a descent direction of m(:c;) at every point of the 
sequence (Luenberger 1986). The main issue is the selection of d; and m(:c;) that 
satisfy these conditions for each problem. 

2. An lmproved HL-RF Algorithm 

The solution of the optimization problem in (1) is characterized by the following opti­
mality conditions: 

llull 
u + IIVuG(u)ll VuG(u) =O, (5a) 

G(u) =O, (5b) 

where Vu denotes the gradient operator with respect to u. In the following, the subscript 
on the gradient operator is dropped unless it is necessary to avoid ambiguity. The HL-RF 
search direction is obtained by solving the above equations for the linearized constraint 

Lu; (u) = G(ui) + (VG(ui), u- u;) (6) 

at each step, where (., .) denotes the inner product of two vectors. The result, dropping 
the subscript i for simplicity, is 

d = (u, VG(u))- G(u)VG( ) _ 
IIVG(u)ll2 u u. (7) 

The original HL-RF algorithm (Hasofer and Lind 1974, Rackwitz and Fiessler 1978) 
used a unit step size, i.e., Ai= 1. Liu and Der Kiureghian (1991) introduced a modified 
version that has step size control by using the merit function 

1 (u, VG(u)) 2 1 2 
m(u) = zllu- IIVG(u)l12 VG(uJII + 2cG(u) , (8) 
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where c >O is a constant. This merit function has its minimum at the solution of {1). 
However, there is no proof that din {7) is a descent direction of this merit function. 

Here, we introduce the simpler merit function 

1 
m(u) = 211u11 + ciG(u)l, {9} 

where c > O is a penalty parameter. This merit function also attains its minimum at 
the solution of {1). Furthermore, as shown by the following theorem, the merit function 
in {9) is compatible with the search direction in (7). 

Theorem: The HL-RF search direction d in (7) at any point u is a descent direction 
of the merit function m(u) in {9), provided 

llull 
c > IIVG(u)ll. 

(10) 

Proof: To prove that d is a descent direction of m(u), we need to show that 
(V m( u), d) :::; O and that the equality holds only if u is a solution to ( 1). 

Using (7) together with Vm(u) = u + csgn( G(u))VG(u), where sgn( G(u)) is the 
sign of G(u), we have 

( 2 (u, VG(u))2) 
(Vm(u),d) =- 11 u 11 - IIVG(u)ll2 

( (u, VG(u))) 
-IG{u)l c + sgn(G(u)) IIVG(u)ll2 . 

Using the Schwartz inequality 1 (u, VG(u)) I:S lluiiiiVG(u)[l, 

2 (u, VG(u))2 > 
llull - IIVG(u)ll2 -O. 

Using Schwartz inequality again and (10}, 

) (u, VG(u)) > 1 (u, VG(u)) 1 
c + sgn{G(u) IIVG{u)ll2 - c- IIVG(u)ll2 

llull 
?:: c- IIVG(u)ll 

>o. 

{11) 

(12} 

{13) 

Using (12) and {13) in {11), it follows that (Vm{u),d):::;O. If (Vm(u),d) =O, we have 

from (11)-(13) that G(u) =O and llull2 - \i.:c?r~)]i22 =O, which are equivalent to the 
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optimality conditions (5). Hence, in this case u is a solution to {1), which completes 
the proof. 

The above theorem is an essential element for establishing the global convergence 
theorem. The mathematical analysis and poof of the global convergence of the sequence 
along with a proper line search scheme, can be found in standard texts on optimization 
theory (Luenberger 1986). In implementing this algorithm, it is suggested to gradually 
increase the value of the penalty parameter c while satisfying (10). 

The proposed algorithm is superior to the modified HL-R.F algorithm of Liu and 
Der Kiureghian (1991) in at least two ways: (a) there is a mathematical proof that the 
merit function is compatible with the search direction, and (b) the algorithm usually 
requires less computation since the merit function in {9) does not involve the gradient 
of the constraint function as does the merit function in (8). 

Below, we present two examples comparing the performance of the modified HL-R.F 
algorithm of Liu and Der Kiureghian (1991) with the proposed algorithm. 

Example 1 Consider the original-space, limit-state function 

g(z) = 1.1 - 0.00115zl z2 + 0.00157z~ + 0.00117zi + 0.0135z2z3 - 0.0705z2 
- 0.00534zl - 0.0149zl z3 - 0.061lz2 Z4 + 0.0717zlz4 - 0.226z3 

+ 0.0333z~ - 0.558z3 Z4 + 0.998z4 - 1.339z~, (14) 

where z1 , z2 , z3 and Z4 are statistically independent random variables: z1 has a type-II 
largest value distribution with mean 10 and standard deviation 5; z2 and z3 are both 
normal with means 25 and 0.8 and standard deviations 5 and 0.2, respectively, and z4 

has the lognormal distribution with mean 0.0625 and standard deviation 0.0625. The 
original HL-R.F algorithm with Ai = 1 fails to converge for this problem. 

Example 2 This example concerns the deformation of an elastic plate subjected to 
a uniformly distributed edge load of intensity p = l.OGPa, as shown in Fig. 1. The 
plate is in a state of plane stress condition. The Poisson's ratio is 7/ = 0.3. However. the 
Young's modulus, E. is a Gaussian random field with mean 200 GPa, standard deviation 
50 GPa, and auto-correlation coefficient function PEE = exp( -( %- )2), where ~ is the 
distance between any two points on the plate and b = 2crn is the correlation length. 
The random field is discretized by using the finite element mesh shown in Fig. 1 and is 
represented by 20 random variables. Further details can be found in Zhang (1994). 

The original-space limit-state function for this example is defined by 

{15) 

where z denotes the vector of random variables representing the random field of E, 
(} = 0.19 crn is the displacement threshold, and U A ( z) denotes the displacement at 
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p = l.OGPa 

5cm 

Figure 3.1 Finite element mesh for elastic plate 

point A in the horizontal direction. The finite element method is used to compute the 
limit-state function and its gradient. 

Table 1 compares the performance of the two algorithms for the above two exam­
ples. The algorithms are initiated at the mean point and tolerances are set at 0.001. 
Specification of other parameters is described in Zhang (1994). The two algorithms 
converge to identica! solutions with reliability indices (3 = 1.35 and {3 = 3.27 for the 
two problems, respectively. The required number of steps as well as the number of 
times each algorithm computed the limit-state function and its gradient are listed in 
Table 1. For both examples, the proposed algorithm performs significantly better than 
the modified HL-RF algorithm of Lin and Der Kiureghian (1991). 

3. Inverse Reliability Algorithm 

The inverse reliability problem in (2) is defined by the set of equations 

llull - f3t =O, 

llull 
u + IIVuG(u, {1)11 VuG(u,{l) =O, 

(16a) 

(16b) 
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Table 1. Comparison between two algorithms 

Example Algorithm No. steps No. g(z) No. Vg(y) 

proposed 6 17 7 
1 

modified HL-RF 8 15 15 

proposed 3 8 4 
2 

modified HL-RF 16 21 21 

G(u,B)=O, (16c) 

The last two equations are the optimality conditions of (1), whereas the first equation 
describes the constraint on the reliability index. A search direction di for this problem 
can be derived from the solution of the linearized equations 

where 

llull - f3t =O, 

llull 
u + IIVuLu;,ll;(u, B)ll VuLu;,ll;(u, e) =o, 

Lu;,ll;(u,B) =O, 

( ) ( ( ) ) 8G(ui,ei)( 
Lu;,ll;(u,B)=Gui,ei + VuGUi,ei ,U-Ui + ae 6-Bi). 

The solution of ( 17) is 

Using this result, the search direction is obtained as 

(17a) 

(17b) 

(17c) 

(18) 

(19a) 

(19b) 

{20) 

With the above direction vector, a full step size (i.e., with Ai= 1) entirely satisfies 
(16a). Hence, any step size O < Ai ::; 1 along di would be favorable to {16a). We need 
to selecta step size such that the move is also favorable to {16b) and {16c). Since for 
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a fixed O these equations are identica! to (5a) and (5b), we consider a merit function 
similar to that used for the previous algorithm, i.e., 

(21) 

This merit function is compatible with the search direction in (20) for IG(u,O)I >O 
(points not on the limit-state surface) and c > fJtlluii/IG( u, 0)1. To see this, we examine 
(Vm(u,O),d) <O by using (20) and 

(u) (VuG(u,O)) Vm(u,O)= 0 +csgn(G(u,O)) aah:,o) . (22) 

We have 

(Vm( u, 0), d) = - 11 u 11 2 li Vu~~' O) li (u, VuG( u, O)) - c IG( u, 0)1 

< - 11 u 11 2 -,Bt 11 u 11 ( 1 + ( 11 : 11, 11 ~=~~ :: :~ 11)) 

< - 11 u 11 2 • (23) 

Unfortunately, we cannot ascertain that the minimum of m( u, O) in (21) coincides with 
the solution of (16). Hence, global convergence of the algorithm cannot be proven. Nev­
ertheless, based on the above analysis and extensive numerical testing, we find that the 
merit function in (21) is effective in stabilizing the algorithm. In actual implementation, 
it is necessary to set c > fJtllull/8, where 8 denotes the tolerance in satisfying {16c). 

The above algorithm for inverse reliability analysis is superior to the earlier algo­
rithm by Der Kiureghian et al. (1993) for two reasons: (a) it is computationally simpler 
as the merit function does not involve the gradient, (b) the search direction is a descent 
direction of the merit function under the conditions specified earlier. Below, we present 
two examples to demonstrate the proposed inverse reliability algorithm. 

Example 3 ·- The example is defined by the limit-state function in the standard normal 
space 

G(u, O) = exp( -O(u1 + 2u2 + 3u3))- u4 + 1.5. (24) 

For fJt = 2, and starting from the initial point (u0 ,00 ) = (0.2,0.2,0.2,0.2,0.1), the 
proposed algorithm converges in 4 steps as shown in Table 2. 

Example 4 ·· Reconsider Example 2 defined by the limit-state function (15). Assuming 
a target reliability index fJt = 3.0, we wish to determine the corresponding threshold 
for the displacement at point A. Starting from 00 = 0.1cm and z0 at the mean point, 
the algorithm converges in 5 steps yielding the solution 8 = 0.172cm. 



304 Part Two Technical Contributions 

Table 2. Convergence of the inverse reliability algorithm 

Step u (} 11 u 11 

o (0.200, 0.200, 0.200, 0.200} 0.100 0.400 

1 (0.168, 0.337, 0.505, 1.898} 0.463 2.000 

2 (0.219, 0.437, 0.656, 1.813} 0.392 1.989 

3 (0.216, 0.432, 0.648, 1.829} 0.366 2.000 

4 (0.220, 0.441, 0.661, 1.822} 0.367 2.000 

4. Conclusion 

Improved versions of two popular algorithms for first-order reliability analysis are pre­
sented. One is an improved version of the HL-RF algorithm for determining the relia­
bility index defined as the nearest point from the origin to the limit-state surface in the 
standard normal space. A proof of global convergence for this algorithm is provided. 
The other is an inverse reliability algorithm used for determining a deterministic pa­
rameter in the limit-state function such that the reliability index equals a target value. 
Although proof of global convergence for this algorithm is not presented, the algorithm 
possesses superior convergence properties than previously available. Both proposed al­
gorithms are mathematically more rigorous, yet simpler and more efficient than existing 
similar algorithms. 
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