
38 
Experience in Software Inspection Techniques 

David A Brunskill and Alan Samuel 

School of Computing, Staffordshire University, P.O. Box 334, Beaconside, Stafford, Staffs 
ST18 ODG, UK. 

Abstract 

It is geoerally accepted that every programmer checks his or her code before submitting it to 
testing. This process has beeo formalised by means of 'reviews', 'walkthroughs' and 
'inspections'. Inspections were used in industry by the author, following Fagan, but were not 
well-metricated: others have shown that the quantifiable beoefits of inspections may be 
considerable. A final-year project at Staffordshire University has produced results for software 
inspection compared both to computer-based testing alone and to computer-based testing 
following inspection in which metrics were collected throughout the process, allowing 
comparisons of effectiveoess and efficieocy. 

Keyword codes: D.2.4, D.2.5, D.2.8 
Keywords: Program verification, Testing and Debugging, Metrics. 

1. INTRODUCTION 

Every programmer checks his or her code before submitting it to testing, and always has 
done. However, it is a well-established psychological fact [1], [2] that the reading of the 
program by a second, indepeodeot person is a useful technique for discovering errors that 
would otherwise go unnoticed. It appears that the indepeodeot checker does not need to be 
more experieoced in the language, or better-informed in terms of likely sources of error; 
simply coming to the program fresh appears to leod a perspective denied the originator. 
Basili [3] showed, in a controlled study, that code reading was more effective than either 

functional testing, or structural testing, although the participants believed the contrary. In 
practice, informal "cross-checking" of each other's work has beeo common in many 
developmeot environmeots, as programmers recognised that a second view of a program could 
quickly highlight errors that would otherwise be missed, or not be discovered until formal 
testing, wheo a considerable amount of rework would result. 
In his seminal work on software testing, Myers [2], following Fagan [4], recognised the 

significance of code inspection in the process of developing correct programs, and gave some 
of the earliest and most practical guidelines for conducting the process. More receotly, Gilb 
and Graham have gathered together the threads of universal best practice in this area [5], and 
proposed a compreheosive methodology for the process of software inspection, including the 
use ofmetrics. 

M. Lee et al. (eds.), Software Quality and Productivity
© Springer Science+Business Media Dordrecht 1995



244 Part Seven Specifications, Metrics, Assessment 

2. METHODS FOR PROGRAM VERIFICATION 

This paper does not discount software testing as a necessary technique in the process of 
producing correct software; however, the role of testing per se is considered separately in 
Section 5. For now, however, we wish to concentrate on methods other than computer-based 
testing techniques. 

2.1 Desk-checking 
The process of program evaluation by means of peer assessment is well-established in general 

The way in which this cross-checking of work is conducted, however, varies from 
estabIishment to estabIishment. 
In some situations, it may be that such verification is never formally stated as a requirement of 

the software development process, but has merely evolved over time. In the author's 
experience, this has tended to arise quite naturally among teams which have worked together 
successfully on a number of projects, with relatively few personnel changes. In such an 
environment, staff tend to be relaxed, confident of their own abilities, and unthreatened by 
criticism. 
Alternatively, program verification by desk-checking may be an institutionaIised, formal 

process, in which programs produced by junior programmers are evaluated by more senior 
personnel- often the designers - and/or by the project leader. Such a process tends to evolve 
quite naturally into one of the methods considered below. 

2.2 Reviews and Walkthroughs 
As noted by Yourdon [6] and others, the distinction between a Formal Technical Review and 

a structured walkthrough is not always clear: the phrases are frequently used interchangeably in 
practice. 
However, current best practice suggests that the word 'Review' should be reserved for a 

consideration of project development at milestone points: statistical data may also be produced 
at such a time for QA purposes (see, for example, [7]). The personnel involved will typically 
be a chairman, the author of the work under review, a QA representative, plus one other 
independent reviewer, who has some expertise in the area under consideration. Reviews may 
apply to any stage of the Iifecycle, and their primary purpose is to provide information to 
management, to answer the question, "Does this product do what it is supposed to do?" [8]. 
A structured walkthrough applies normally to the analysis and/or design stages of software 

development, and records data on issues such as completeness, correctness and integrity of the 
entity-relationship diagrams, data dictionary, and process specifications; and on structure 
charts, module specifications, etc. A code walkthrough is usually equivalent to a code 
inspection, as originally defined by Michael Fagan at mM [4]. 

2.3 Software Inspections 
Inspections are now primarily seen as a part of the software quality improvement process, in 

which defect detection occurs routinely, and as a result of which the development process is 
improved. There is, additionally, much evidence in the literature (e.g., [9], [10], [11]) as well 
as anecdotally, of considerable cost-benefit. 



Experience in software inspection techniques 245 

As originally proposed by Fagan, design and code inspections were seen as a formal, efficient 
and economical way of finding errors; an inspection team was assumed to comprise members 
with specific roles to play, viz: 

• moderator: a competent technical member of staff specially trained in inspection techniques 
who should have a galvanising and synergistic effect on the team members; 

• designer: the person who produced the piece of work under inspection; 

• coder/implementer: the person responsible for translating the design into code; 

• tester: the programmer responsible for writing and executing test cases. 

It has been recognised during the intervening years that all personnel involved in inspections 
must be committed to the use of this method. This implies that managers require at least one 
day's training to familiarise them with the technique, moderators require three days' training, 
and participants need at least a half-day introduction. 
The most impressive results, in terms of defect reduction and cost-benefit, have been realised 

where senior management are committed to this method of working, as an integral part of the 
process of quality improvement. 

3. AN INDUSTRIAL PERSPECTIVE 

3.1 Background 
During 1990 and 1991, the author led a software development team whose brief was to 

design an electricity prepayment metering system, making use of contactless smart cards. This 
involved considerations of data security, communications, and the human-computer interface, 
as well as database management, and inspections were introduced at the design stage in order 
to improve the quality of the resulting system 

3.2 Introduction of Inspections 
None of the team members involved in inspections were specially trained in the techniques, 

but all were impressed with the results claimed. A member of the Quality department was 
present at the inspections in addition to the suggested team members, and a senior designer 
from another project was co-opted as moderator. No meeting lasted more than 2 hours. 

As each module was designed, its author made a formal request for inspection, and the 
relevant documents were circulated in advance to all participating staff Subsequently, the 
inspection meeting was convened, and the design checked, under the direction of the 
originator. Errors were categorised as 'Missing', 'Wrong' or 'Extra', ,and were also categorised 
by problem type. The log was then circulated to all participants, and a follow-up meeting 
rechecked the design, after the errors originally identified had been dealt with; if necessary, a 
third iteration of the process occurred. 

3.3 R.esults 
It is clear, with hindsight, that the major weakness in the process as described above was the 

lack of senior management commitment. It was the software developers who initiated the 



246 Part Seven Specifications. Metrics. Assessment 

process, believing it would improve quality and reduce overall development time, and in the 
event the use of inspections was vindicated. The final product was delivered on schedule and 
worked correctly. Errors did occur subsequently in operation, but the delivery of correctly­
working software on the originally-scheduled date was in contrast to experience both with 
projects which had preceded this, and others which were under development at about the same 
time. 
Fagan identifies six operations as essential in the inspection process: Planning, Overview, 

Preparation, Inspection, Rework and Follow-up [9]. In the work as described above, these 
stages were not strictly adhered to: in particular, there were unclear entry and exit criteria; the 
process did not follow best practice; and the preparation was haphazard. Further, no metrics 
were formally collected for the inspections, along the lines ot; for example, defects found/page, 
defects found/hour, time for correction, or even time spent in inspections, and time for 
software testing. Nevertheless, the experience was enough to persuade the personnel involved 
that the process had produced real quality-improvement results, and that it should be retained 
and cultivated for future projects. 

4. AN ACADEMIC PERSPECTIVE 

4.1 Background 
A final-year student at Staffordshire University, Alan SamueL compared human-based testing 

techniques with computer-based testing techniques, on three small program units, written in C, 
COBOL, and FORTRAN. The inspection and testing processes were monitored by collecting 
metrics from start to finish, allowing calculation of effectiveness, efficiency, and cost saving. 
The experiment was prompted in part because, as noted by Bisant and Lyle [12], inspections 

were developed in the industrial sector, rather than in an academic environment, and most of 
the data available to date has been produced in industry. A further motivation was the desire 
to attempt to evalute the extent to which the use of inspections could be incorporated in the 
undergraduate curriculum. 

4.2 Methods Used 
The software inspection technique was the process as originally defined, and as developed 

and amplified by Jones and others [13], [5]. The computer-based testing required some 
consideration: since all the programs were small (about 300 lines of code) and of only 
moderate complexity, it was decided to use structural testing based on loop-modified path 
coverage. Thus, a set of test inputs was generated whose number was quite manageable, but 
which were sufficient to provide test effectiveness at the TER3 = I level. 

The participants in the inspection process were also students, many of whom were reading for 
higher degrees following a period of industrial experience. In all, 12 different personnel were 
involved in the code inspections, their backgrounds ranging from system administration to 
mechanical engineering. None of these volunteers had any prior experience of software 
inspection, and so had to be introduced to the method, its aims, techniques, and outcomes. The 
testing was performed by SamueL who proceeded in each case by drawing the program 
flowgraph, determining the McCabe complexity of the program, and then deriving the basis 
test cases. The overall strategy involved each program being first inspected, as desribed above, 
and metrics noted for time taken, number of majorslhour etc. The program was also compiled, 
debugged, and tested independently, and metrics noted for this process. Finally, each program 



Experience in software inspection techniques 247 

was tested after corrections due to inspection, and similar data collected for this combined 
process. 
The C and Fortran programs were specifically written for this experiment, making use of 

standard programming methods and techniques as taught at Staffordshire University. They 
were not evaluated in any other way prior to the experiment taking place, and so represented 
typical 'first-cut' programs. The COBOL program was a module taken from a much larger 
order-processing system which was running live at that time in business, but which suffered 
extremely high maintenance costs, and typical downtime of 3 - 5 hours per week. This module 
was of particular interest for these reasons: however, because the 'copy' and data files were 
unavailable, it was not possible to compile the module, and so for testing, only static analysis 
was possible, and resuhs for effectiveness and time saved may be estimated only by inference. 

4.3 Resuhs 
The resuhs may be summarised as shown in Tables 1, 2 and 3 below. 

Table 1: Time taken for code verification. 

C Program (brs) Fortran Program COBOL Program 
(brs) (brs) 

inspection alone 13.6 10.9 10.4 
test alone 16.5 9.5 nla 
inspection + test 5.5 14.9 nla 

Table 2: C program Statistics. 

Efficiency Effectiveness* Time saved (hrs) 
(Majorslhr) (Majors) 

inspection alone 0.73 60% 2.9 
test alone 0.34 35% 
inspection + test 0.54 60% 11.0 

Table 3: Fortran program statistics. 

Efficiency Effectiveness* Time saved (hrs) 
(Majorslhr) (Majors) 

inspection alone 0.55 60% 4.0 
test alone 0.63 30% 5.4 
inspection + test 0.40 60% 

*Effectiveness calculated as follows: assume inspection discovers 60% of all errors 
{historically acceptable). Then testing effectiveness is determined as the proportion of known 
and assumed errors discovered by this method. 



248 Part Seven Specifications, Metrics, Assessment 

For the COBOL program, a total of 24 issues were raised during inspection, at a rate of 0.5 
issues/minute. A total of 5 majors was discovered. The total time taken to correct the major 
defectives was lOA hours, i.e., an average rate of 2.1 per major. If the assumption is made 
that the time to fix a typical error on the live system is 5 hours (representing a single corrective 
maintenance effort), then the total maintenance time required to correct the faults will be 25 
hours, representing a notional time saving due to code inspection ofl4.6 hours. 

5 SUMMARY AND CONCLUSIONS 

Clearly, this experiment is limited in its scope and no very general conclusions may be drawn 
from such an exercise. A number of points are relevant, however, in the context of the 
activity. 

5.1 Some Metrics for this Experiment 
Inspection proceeded at a rate of approximately 1 page per hour; this compares favourably 

with Fagan's recommended rates of 90 noncommentary source code statements per hour as a 
rule-of-thumb, and 125 noncommentary source code statements per hour at a maximum. The 
errors uncovered implied an error rate immediately after coding of 1 per 8 lines for Fortran, I 
per 30 lines for C, and I per 40 lines for COBOL. These figures are higher than one would 
expect for the Fortran program, but not untypical for the others (e.g., I error per 18 lines of C 
code is not uncommon [14]). 
It should also be noted that 

• the participants were untrained in software inspection 
• the programs considered were small 
• it was not possible to compile and dynamically test the COBOL module. 

Additionally, the time taken for structural testing assumed that the whole process was being 
done by hand. This perhaps gives a fairer comparison ofthe efficacy and efficiency of the two 
methods, but clearly, static and dynamic analysis tools have much to offer in this area: the best 
of the currently-available tools are capable of discovering quite subtle errors. Additionally, of 
course, inspection cannot do many of the things that testing alone can do: for example, give a 
measure of performance or reliability. 

5.2 Pedagogical Issues 
A subsidiary reason for conducting the project was to establish the extent to which software 

inspection would be useful as a technique by means of which undergraduate students could 
improve both their productivity and the quality of their programs. It is clear that inspections 
would be of real value in this sense, as well as having a bonus effect in preparing students for 
current best practice in software development when they graduate. There are some 
administrative and pedagogical issues to be considered, however, in that for the most part, 
university students are expected to produce individual pieces of work, and collaboration is 
discouraged. Nevertheless, group projects are undertaken at various stages in the course of a 
degree, at Staffordshire and other universities, and it would seem appropriate to introduce this 
method in that area. This would allow the students to apply the techniques of software 
inspection in accordance with the latest thinking, and in an environment which would allow 
them to develop the skill without the constraints of commercial practice. As well as the 



Experience in software inspection techniques 249 

introduction of software inspections in this way, it is intended to develop the work described in 
this paper with a future final-year or Mastet's student: ideally, a metric relating correctness of 
code prior to testing as a function of (among other things) effort devoted to software 
inspection would be the result of such work. 
As software systems develop in size and complexity, and the number of systems which are in 

some sense mission-critical increases, the question of software quality assumes an increasing 
importance, and defect prevention becomes more of an issue than defect detection. The 
relevance and effectiveness of software inspection in achieving higher-quality software is 
probably no longer debatable, but difficulties still exist in persuading industry at large of this. 
The terms 'walkthrough', 'inspection' and 'review' are also widely misused, or misinterpreted, in 
the commercial environment. However, the data in this paper suggests strongly that a 
properly-managed combination of inspection and computer-testing offers the most effective 
and efficient way to produce reliable software. Additionally, the adoption of inspections, as 
currently formulated, as an integral part of software engineering undergratuate education, 
would playa useful role in disseminating this expertise more widely in practice, and in altering 
the perception of the activity of producing high-quality software, as a quantifiable, cost­
effective process resulting in continuous improvement. 

REFERENCES: 

1. WEINBERG, G M, 'The Psychology of Computer Programming', (Van Nostrand 
Reinhold, 1971). 

2. MYERS, G J, 'The Art of Software Testing', (Wiley-Interscience, 1979). 
3. BASn..L V, 'Software Metrics', Programme for the Open University, u.K., 1987. 
4. FAGAN, M E, 'Design and code inspections to reduce errors in program development', 

IBMSystems/oumal, 1976, Vol 3. 
5. GILB, T and GRAHAM, G, 'Software Inspection', (Addison-Wesley, 1993). 
6. YOURDON, E, 'Structured Walkthroughs', (Prentice-Hall, 1977). 
7. ARTHUR, L J, 'Improving Software Quality: An Insidet's Guide to TQM', (Wiley, 1993). 
8. WEINBERG, G M, and FREEDMAN, D P, 'Reviews, Walkthroughs, and Inspections', 

IEEE Transactions on Software Engineering, Jan 1984, 10-1. 
9. FAGAN, M E, 'Advances in Software Inspections', IEEE Transactions on Software 

Engineering, July 1986, 12-7. 
10. ACKERMAN, A F, BUCHWALD, L S, and LEWSKI, F H, 'Software Inspections: An 

Effective Verification Process', IEEE Software, May 1989. 
11. CHRISTENSON, D A, HUANG, S T, and LAMPEREZ, A J, 'Statistical Quality Control 

Applied to Code Inspections', IEEE Jnl Selected Areas in Communications, Feb 1990,8-
2. 

12. BISANT, D B, and LYLE, J R, 'A Two-Person Method to Improve Programming 
Productivity', IEEE Transactions on Software Engineering, Oct 1989, 15-10. 

13. JONES, C L, 'A Process-Integrated Approach to Defect Prevention', IBM Systems 
Joumal, 1985, 24-2. 

14. HATTON, L, 'Automated Incremental Improvement of Software Product Quality: A Case 
History',?roc. Software Testing. Analysis and Review Conference (STAR '93), London. 
Oct 1993. 


