
3 

Progress Towards RACE: a 'Soft-Centred' Requirements Definition Method 

D.W. Bustard 

Department of Computing Science, University of Ulster, Cromore Road, Coleraine, BT52 
ISA, Northern Ireland 

Abstract 
This paper summarises some recent work by the Requirements Definition Group at the 

University of Ulster and other collaborators on developing a better requirements definition 
method for computing systems. The method, RACE (Requirements Acquisition and Controlled 
Evolution), is gradually being shaped through a series of intermediate research studies. In 
essence, the approach has been to establish requirements for RACE, identify individual 
techniques that meet those requirements, experiment with the combined use of the techniques 
and finally build the method. In practice, RACE has been influenced significantly by Checkland 
and Wilson's Soft Systems Methodology (SSM) and this forms the core of the method. The 
paper discusses eight main requirements for RACE and describes four of the intermediate 
studies. Plans for future work are also outlined 

Keyword Codes: D.2.I; D.2.2 
Keywords: Requirements/Specification; Tools and Techniques 

1. INTRODUCTION 

Despite an increasing clarification of what 'good practice' means in software engineering [1, 
2], and a general willingness by industry to follow that practice, the goal of routinely 
completing computing projects to specification, on time, and within budget, remains well out of 
reach [3]. The obvious implication is that some aspects of the software engineering process 
need to be improved and the best place to start is probably right back at the beginning of the 
process, in the requirements definition phase, where the greatest potential benefit can be 
obtained [4, 5]. The purpose of this paper is to describe the rationale for, and basic 
characteristics of the requirements definition method, RACE, Requirements Acquisition and 
Controlled Evolution, currently under development at the University of Ulster in collaboration 
with co-workers in other establishments. The method is being designed from scratch, on the 
assumption that a thorough revision of current thinking is needed to produce significant 
benefits. The RACE method is, however, building on known concepts and techniques that are 
considered valuable, such as the Soft Systems Methodology [6, 7], object-oriented 
development [8], and risk management [9]. 

The development of RACE has, as might be expected, involved a specification of its 
requirements. The specification has been produced as a list of the essential attributes of any 
acceptable method. For example, these include "it must support evolutionary system 
development" and "it must support the use of formal description techniques". None of the 
requirements identified is particularly novel. Consequently for each requirement there is a 
considerable amount of material in the literature describing how to deal with this aspect of 
analysis, and highlighting specific techniques that are applicable. There is, however, no 
existing requirements definition method that comes close to covering all of the requirements 

M. Lee et al. (eds.), Software Quality and Productivity
© Springer Science+Business Media Dordrecht 1995



30 Part Two Requirements, Design and Development Methodologies 

specified. The approach to developing RACE has, therefore, involved selecting from 
appropriate existing support techniques and examining how they might be used in combination. 

The work is currently in this experimental phase and the second section of the paper 
summarises four particular areas of study. This is preceded by a discussion of the eight main 
requirements of RACE that have been identified. 

2. RACE REQUIREMENTS 

When considering the desirable attributes of a requirements definition method, or indeed any 
method, it is perhaps tempting to start by putting down broad general characteristics such 'easy 
to learn', 'easy to apply', and so on. These are obviously important but unfortunately are at 
such a high level that they provide little help in clarifying the method. The initial approach taken 
with RACE has been to set out attributes that are much more specific to requirements definition 
although still general enough to give substantial flexibility in the design of the method. The 
broader quality attributes will be considered later when the method is being assembled. 

So far, eight main attributes of RACE have been isolated. These are: 

1. It must deal with the broad problem situation and not be specific to computing 
Computing systems do not exist in isolation and are rarely a goal in themselves. They are 

developed to support some wider system and are introduced because of a need to make changes 
to that system. This wider system is the problem situation and any useful requirements 
definition technique must address requirements for the wider system before considering 
specific computing needs. Indeed, the analysis technique must be sufficiently neutral to allow 
the conclusion, in some circumstances, that the system change need not include computing 
facilities. 

2. It must support both goal driven and problem-driven approaches to analysis 
There are two broad approaches to solving any problem: goal-driven and problem-driven 

and it is unsatisfactory for a requirements definition method to support one to the exclusion of 
the other. In essence, the goal-driven approach means identifying some desirable position and 
then deciding how best to reach that position; the problem-driven approach means investigating 
the current position and then deciding how to best to improve it. Both approaches have their 
uses. For example, if no documented goals exist or if a major change to a system is envisaged, 
then the goal-driven approach is desirable. Alternatively, if a system is largely satisfactory and 
only needs minor enhancement then the problem-driven approach is preferred. 

3. It must allow for multiple perspectives 
Most systems defy precise definition. In general, a system exists for multiple purposes and 

individuals construct personal viewpoints of the system using various combinations of these 
purposes. For example, a restaurant may exist to supply sustenance, to provide entertainment, 
to facilitate business discussions, and so on. The actual nature of the restaurant will depend on 
the precise emphasis placed on each of these purposes by the proprietor. Allowance must be 
made for supporting such multiple perspectives in managing requirements. More precisely, this 
means enabling multiple system perspectives to be identified and explored, and having some 
way of combining the perspectives in one system in a balanced way. It must be appreciated, 
however, that there is therefore no notion of identifying the 'right' system, only of composing 
a system that is effective given the preferences of the client and others in the problem situation. 
In many circumstances opinions will differ so some means of resolving conflict is also 
required. 

4. It must support collaborative requirements definition 
There are several different ways to view the role of an analyst in the requirements definition 

process. At one extreme the analyst can be seen as a passive gatherer of requirements, 
responsible for documenting the needs of those in the problem situation, the problem-owners. 
and identifying any conflicts. At the other extreme, the analyst has the role of 'expert problem­
solver', responsible for clarifying the problem and developing possible solutions. Neither of 
these extremes is satisfactory. Certainly the analyst must be a good listener but it is equally 



Progress towards RACE 31 

important that the analyst contributes to the solution of the problem to take advantage of his or 
her own expertise. Similarly, although the analyst can help to solve the problem, ownership of 
the final solution must lie with the problem-owners, making it essential that they be directly 
involved in problem solving. The conclusion, therefore, is that the process of defining 
requirements is best treated as a collaborativc problem-solving activity with the analyst and 
problem-owners having similar status. The requirements definition method must therefore 
support such a collaborative approach. 

5. It must address risk issues 
Requirements definition, like any creative process, is a cycle in which proposals are made, 

evaluated, and then revised and refined as necessary. Developing an initial proposal for change 
is largely a positive activity concerned with identifying what a system is required to do. 
Evaluation is much more negative, tending to focus on ways in which the proposed system or 
change process may fail. These opportunities for failure are risks. The requirements definition 
method must provide a mechanism for identifying such risks and for managing them 
appropriately. In some cases the identified risks can be avoided; in others it is necessary to 
develop contingency plans to deal with the associated failures should they occur. 

6. It must support evolutionary system development 
All useful systems evolve, meaning that they go through a sequence of development 

changes. This evolution can be forced by need or be part of a planned programme of change. 
The latter approach allows for the possibility of making the initial change through a sequence of 
intermediate steps [10, II]. This has the benefit of simplifying each change step and thereby 
reducing the risk of failure. Gilb [10] states that each phase should make a change that is of 
measurable benefit to those in the problem situation. The intention is that once a particular 
phase is complete the benefit of the change is assessed and the planned programme revised 
accordingly. The requirements definition method must support such evolutionary development 
in an appropriate way. 

7. It must address the needs of subsequent system development 
Any requirements definition method must be well integrated with the larger software 

development process to which it belongs. It is clearly impractical to link up to all, or even a 
substantial majority of existing development methods but there is a need to demonstrate such 
integration. The link must consider how the specified requirements will be used in subsequent 
development. For example, this would include the use of the requirements specification in 
software design and acceptance testing. The change control mechanism for requirements must 
also be considered, covering both initial development and system maintenance. 

8. It must support the use offormal description techniques 
The use of formal description techniques in specifying requirements offers several potential 

benefits including (i) the development of a deeper understanding of both the problem situation 
and the changes proposed to alleviate that situation; (ii) the avoidance of misunderstandings in 
subsequent system development based on the requirements; and (iii) having a precise statement 
of needs against which to evaluate the final system. Traditionally, formal techniques have been 
more associated with proving the correctness of a final implementation and of supporting a 
refinement approach to program development in which an initial formal specification is 
successively transformed into a coded implementation. While this is possible, in principle, the 
effort involved means that it can only be attempted for critical parts of large systems, or where 
safety concerns are paramount, or where formal proof is mandated. This paper takes the view 
that formal descriptions are of benefit in general software development but that their use should 
be optional. Like the previous requirement, there is then a need to demonstrate how this can be 
achieved in at least one case. 

The next section considers four intermediate studies that are contributing to the definition of 
RACE by examining the use of techniques that go part of the way towards meeting the stated 
requirements. 



32 Part Two Requirements, Design and Development Methodologies 

3. INTERMEDIATE STUDIES 

The discussion so far has been slightly misleading in implying that the requirements for 
RACE were developed before identifying relevant support techniques. In practice, the two 
evolved together through an investigation of existing analysis methods in search of worthwhile 
ideas. In all of this work, the most significant 'discovery' was Checkland and Wilson's Soft 
Systems Methodology (SSM) [6, 7], which now forms the core of the RACE method. This 
section describes four RACE studies, all of which involve SSM. The first examines the value 
of SSM as the development base for RACE. SSM meets several of the stated requirements but 
its most attractive characteristic is that it is a 'lean' technique, meaning that all of its individual 
elements having a clear purpose. The requirements that SSM does not meet can be handled by 
introducing other techniques. The second study, for example, considers how risk management 
and SSM can be combined. The third study examines the integration of SSM with traditional 
computing analysis techniques. This covers both structured analysis [12] and object-oriented 
development. Finally the fourth study looks at the use of formal description techniques as a 
means of strengthening the SSM process and assisting with the link to computing analysis 
techniques. 

3.1 The Use of Soft Systems Methodology for Requirements Definition 
Soft Systems Methodology (SSM) has emerged as the core of the RACE method. It meets 

two of the listed requirements in full and one in part: 

1. It must deal with the broad problem situation and not be specific to computing 
SSM is a general problem-solving technique. It is not specific to any problem area although 

recently it has been promoted extensively as an aid to the development of information systems 
[7]. Its areas of application have included public utilities, health, agriculture, industry, law, 
defence and scientific systems [13, 14]. SSM is a very well established technique. It was first 
conceived in the early 1970s and then refined by use in real problem situations, mostly in 
industry. It is now relatively stable. Overall then, SSM is a good match for the requirement for 
a technique that deals with the broad problem situation; it is particularly attractive because it has 
proven its value over many years. 

2. It must support both goal-driven and problem-driven approaches to analysis 
SSM is a strongly goal-driven technique. It focuses on the basic purposes of a system and 

on the behaviour necessary to achieve those purposes. Its particular strength is in dealing with 
'messy' situations where there is uncertainty about the nature of the problem and/or 
disagreement about the options for its solution. In principle, all problems can be approached in 
this way and this provides a good counter to the common tendency to underestimate the extent 
of problems initially. However, although such a general approach can always be used 
effectively for any new problem situation, thereafter, it should only be used again when a major 
review is required. Thus, while SSM can provide a goal-driven technique for RACE, a 
problem-driven technique must also be found and integrated appropriately. 

3. It must allow for multiple perspectives 
SSM's support for multiple system perspectives is one of its major strengths. The first stage 

of SSM is to identify as many reasons as possible why a system exists and to express these 
reasons succinctly as system root definitions. Eaeh root definition is expanded into a conceptual 
model, defining the activities necessary for the system to meet its purpose and also indicating 
relationships among the activities. The conceptual models are combined into a single consensus 
model, which when evaluated and refined subsequently becomes the required system model 
[15]. This latter model reveals the desirable system changes when it is compared with the 
problem situation. The SSM approach to multiple perspectives is particularly appealing because 
it concentrates on a small manageable number of identified system purposes, as distinct from 
considering the viewpoints of individuals in the problem situation, which are likely to differ for 
everyone involved. 



Progress towards RACE 33 

In summary, SSM successfully addresses two and a half of the requirements for RACE. Of 
equal importance, is the fact that SSM has no features that are irrelevant to, or conflict with, the 
remaining requirements. Thus, SSM seems an ideal starting point for the development of 
RACE, particularly so because it also covers the very earliest phases of problem investigation 
and is well tried in practice. 

3.2. Enhancing SSM With Risk Management Techniques 
Risk is the possibility of loss or injury and risk management is the process of determining 

risks and responding to them. Risk management can be divided into two main activities [9]: 
risk assessment and risk control. Risk assessment involves (i) identifying the risks concerned; 
(ii) analysing the threat of those risks in terms of their probability of occurrence and the 
magnitude of the resulting loss; and (iii) prioritising the risks accordingly. Risk control covers 
(i) risk management planning, to develop plans for addressing each major risk; (ii) risk 
resolution, to implement the plan that will either eliminate the threats or keeping them at an 
acceptable level; and (iii) risk monitoring, to assess the effectiveness of risk resolution and take 
corrective action as necessary. 

Risk is not addressed explicitly by SSM. Certainly SSM includes recommended practices 
that reduce risk, such as implementing system changes incrementally or having a monitoring 
and control mechanism within a system, but there is no direct, systematic treatment of risk. The 
expected benefits of considering risk explicitly are that (i) the process of system change should 
be smoother; and (ii) the resulting systems should be more robust. Risk management is 
particularly relevant to SSM because of its goal driven approach to analysis, which tends to 
identify substantial system changes, carrying relatively high risk. 

Risk investigation, being a process of critical evaluation, is best considered after a creative 
phase of analysis yielding phase products ready for assessment and refinement. On that basis 
there are four stages of SSM where risk could be addressed: 
I. When the problem situation has been described: this would consider risks in the current 

situation to identify opportunities for improvement and give a base for subsequent 
evaluation of change proposals. 

2. When root definitions of relevant systems have been produced: root definitions contain a 
list of system constraints. Thus, identifying risks at the root definition stage can help to 
determine additional system constraints for inclusion in each root definition. 

3. When conceptual models have been derived from the root definitions: risk can be 
considered (i) after each conceptual model has been constructed, to ensure that it has been 
adequately formed; and (ii) when the consensus model has been developed (by combining 
the individual conceptual models), to ensure that the resulting model deals adequately with 
the separate risks and to examine risks resulting from interaction and conflict among the 
models. 

4. When feasible, desirable system changes have been determined: all proposals at this lower 
level of detail can be examined for risk and refined accordingly. 

In practice, examining risk after the first problem analysis phase is not recommended 
because it requires the analyst to explore the problem situation in more detail than is desirable. 
The analyst must not be overly exposed to the problem situation, initially, to avoid the practical 
difficulty of being lured into modelling what exists rather than what should exist. Risks 
associated with the current system can instead be considered at stage three when conceptual 
models are being evaluated with respect to the problem situation. 

Further details on the proposed risk management additions to SSM, and an example of its 
use, can be found in [16]. Overall the approach is appealing because it strengthens SSM 
without interfering with its basic operation. 

3.3. Integrating SSM With Computing-Oriented Analysis Techniques 
The possibility of using SSM with a computing-oriented analysis technique was proposed as 

long ago as 1985 [17] and has since been followed up by many related investigations [18, 19]. 
One significant development has been the recent establishment of a link between SSM and the 
government standard analysis and design method, SSADM [20]. This work was commissioned 
by the CCTA in the UK [21]. The link has been facilitated by the fact that there is a strong 



34 Part Two Requirements, Design and Development Methodologies 

resemblance between the conceptual models of SSM and dataflow models of SSADM (similar 
to those found in any Structured Analysis technique): both are concerned with describing 
system behaviour and both are structured in a similar way. This connection has also been 
explored as part of the RACE study [15] and a technique for linking conceptual models and 
dataflow diagrams has been proposed. In summary, the proposal is: 
1. Perform a complete SSM analysis, developing full hierarchical conceptual models and 

validating them to produce required system models. 
2. Construct an interaction table for each model, identifying the interaction of each activity 

with other processes. A process is either an activity or a repository of information. A 
repository may be an individual, a document, a computer disc, or any other form of 
information consumer or producer. 

3. Construct dataflow diagrams from the interaction tables and conceptual models. The 
interaction tables provide the technical content for the dataflow diagrams and the conceptual 
models give layout guidance. This is desirable to help the analyst understand the 
relationship between models. 

This process of converting conceptual models to dataflow models is relatively 
straightforward and can largely be automated. The link between SSM and object-oriented 
analysis (OOA) is also being considered [22]. This is much more problematic, however, 
because SSM produces behaviour oriented conceptual models whereas OOA starts with static 
data oriented object models. Nevertheless, the ever growing popularity of OOA means that 
some satisfactory link must be found. 

For any link it is always possible to take a loosely coupled approach, meaning that the 
knowledge gained in applying the fIrst technique is use in the application of the second without 
any specifIed rules or guidelines. A check is then performed to ensure that the models produced 
in each case are consistent. Such an approach is unsatisfactory in several ways, including: (i) it 
is hard to teach; (ii) it is hard to apply consistently; and (iii) change control is diffIcult. A tightly 
coupled approach, like that suggested for dataflow modelling, is clearly preferable because it 
allows for some automation of consistency checking and can even assist with the initial 
development of the computing-oriented models. 

The link for OOA is currently being investigated. In effect, this means defIning a method of 
transforming SSM models into object models. A starting point has been to investigate existing 
OOA techniques to see to what extent they are compatible with SSM concepts [14]. This work 
has identifIed four techniques that provide a reasonable fIt, namely those due to Jacobsen [23], 
Reenskaug [24], Booch [25] and Gibson [26]. Further research is being undertaken using a 
selection of these techniques. 

3.4. SSM and formal descriptions 
As indicated earlier, SSM conceptual models are imprecise: the meaning of each activity has 

to be deduced from the term used for its name, and the links between activities are really just 
indications of relationships, without any accompanying definitions. Precision can be added in 
the computing-oriented analysis phase but there is benefIt in introducing it at the end of the 
SSM phase. Specifically, it can help to avoid misunderstandings about what exactly is being 
proposed as a result of the SSM analysis and so help identify problems earlier in the process. 
Precision in the SSM analysis can also strengthen the link with the subsequent computing­
oriented analysis. 

Work is currently being done on the particular case of supporting the specification of 
conceptual models using LOTOS, a process algebra-based formal description technique [27], in 
conjunction with developing a link to Structured Analysis. This combination is being 
considered because the underlying notations used by each technique are all based on describing 
behaviour and so are largely compatible. This will allow attention to be concentrated on the 
main issue of how best to manage the combined use of such a collection of techniques. Once 
this relatively homogeneous case has been examined the research will be extended to consider 
the use of less compatible formal descriptive notations and computing-oriented analysis 
techniques. 



Progress towards RACE 35 

The research started by looking at the broad issue of the role of formal descriptions in the 
software development process [28]. In this field, much work has been done on the 
development of formal notations, rather less on the development of formal techniques and very 
little on the production of formal software development methods. The expression 'formal 
methods' perhaps needs some clarification. It is often used as a blanket term to cover the related 
activities of constructing, analysing, transforming, and verifying formal descriptions. The 
word 'formal' is used here in the sense that all of the activities have a sound mathematical 
basis. It does not mean, however, that there are step-by-step procedures identifying the precise 
way to perform the activities, either singly or in combination [29]. In that sense the word 
'method' is misleading and 'technique' would give a rather clearer picture of what is intended. 

Defining a relationship between SSM conceptual models and LOTOS processes gives a 
formal semantics to this currently informal notation. It also provides a means of saying more 
about the relationship between activities. Through LOTOS, the conceptual model activities can 
be treated a set of communicating processes and the order and effect of communication 
specified. The meaning of the resulting description can be portrayed as an action tree showing 
all possible behaviours as event sequences [30]. Also these permitted behaviours can be 
projected on to the conceptual models to provide a simulation that may facilitate communication 
with the client. 

Another advantage of this work is that it gives a good starting point for computing-oriented 
analysis. The formal description provides a precise specification on which the subsequent 
development can be based andlor assessed. Also, since dataflow diagrams can be derived from 
SSM conceptual models in a largely automated way, the formal description provides a means of 
portraying system behaviour through an simulation of the dataflow representation. Again this 
may facilitate communication with the client. 

4. CONCLUSION 

This paper has summarised the current position of some research directed towards the 
identification of RACE, a better requirements definition method for computing systems. The 
main desirable attributes of RACE have been identified and explained, followed by a brief 
outline of four studies concerned with investigating techniques that are likely to form part of the 
method. SSM has emerged as the core of the method and the studies have all built around it. 
The influence of SSM has even permeated the language used in this paper (e.g. 'problem 
situation' and 'problem-owner'). This research is, however, at a relatively early stage. The 
implications of several of the requirements have still to be explored in detail and there are many 
remaining inter-connections between techniques to examine. Nevertheless, the results so far 
have confirmed the initial belief in SSM [32] and its combination with other techniques seems 
to be giving additional value without having any detrimental effect. 

Acknowledgements 
This research is being undertaken as part of the RUNES project (Requirements 

Understanding, Negotiation, Expression and Scrutiny), funded by the University of Ulster. 
RUNES, is broadly concerned with investigating techniques for improving the requirements 
definition process, and the development of tools to support that process. 

I am very grateful to the many people who have contributed to and influenced this work in 
various ways, including Raymond Oakes, Des Vincent, Mark Norris, Dave Horncastle, Brian 
Carey, John Wright, Anthony Alston, Adam Winstanley, Sally McClean, Philip Morrow, Pat 
Lundy, Des Greer, Trevor Dobbin and Eoin Heslin. 

REFERENCES 

1. Humphrey W: Managing the Software Process, Addison Wesley, 1989 
2. DTI: TicklT, Guide to Software Quality Management System Construction and 

Certification, Issue 2.0, Febuary 1992 



36 Part Two Requirements, Design and Development Methodologies 

3. Norris M, Rigby P, and Payne M: The Healthy Software Project, Wiley, 1993 
4. Boehm BW: Software Engineering Economics, Prentice Hall, 1981 
5. Davis AM: Software Requirements, Object, Functions and States, Prentice Hall, 1993 
6. Checkland PB and Scholes J: Soft Systems Methodology in Action, Wiley, 1990 
7. Wilson B: Systems: Concepts, Methodologies and Applications, 2nd Edition, Wiley, 1990 
8. Wilkie G: Object Oriented Software Engineering: The Professional Developer's Guide, 

Addison-Wesley, 1993 
9. Boehm BW: Software Risk Management, IEEE Computer Society Press, 1989 
10. Gilb T: Principles of Software Engineering Management, Addison-Wesley, 1988 
11. Cobb RH and Mills HD: Engineering Software Under Statistical Quality Control, IEEE 

Software, 7 (6), November 1990, pp 44-54 
12. Yourdon, E.: Modern Structured Analysis, Prentice Hall, 1989 
13. Mingers J and Taylor S: The Use of Soft Systems Methodology in Practice, Journal of the 

Operational Research Society, 43(4), 1992, pp. 321-332 
14. Dobbin TJ and Bustard DW: Combining Soft Systems Methodology and Object-Oriented 

Analysis: The Search for a Good Fit, Proceedings of the 2nd Information Systems 
Methodologies Conference, Edinburgh, August 1994 

15. Bustard DW, Oakes R and Heslin E, Support for the Integrated Use of Conceptual and 
Dataflow Models in Requirements Specification, Colloquium on Requirements for 
Software Intensive Systems, DRA Malvern, May 1993, pp. 37-44 

16. Bustard DW and Greer D: Enhancing Soft Systems Methodology with Risk Management 
Techniques, Proceedings of 2nd International Conference on Software Quality 
Management, Edinburgh, July 1994 

17. Stowell F: Experience with Soft Systems Methodology and Data Analysis, Information 
Technology Training, May 1985, pp. 48-50 

18. Mingers, J.: Comparing Conceptual Models and Data Flow Diagrams, Computer Journal, 
31(4), pp. 376-378, 1988 

19. Stowell F (Ed.): Soft Systems Methodology and Information Systems, Systernist, 14 (3), 
August 1992 

20. SSADM Version 4 Reference Manual, NCClBlackwell, Oxford, 1990 
21. CCTA: Using Soft Systems Methodology for SSADM Feasibility Study, 1994 
22. Alston AJ, Wright PJ and Bustard DW: COBRA: A Methodology for CIS Object-Oriented 

Business and Requirements Analysis, Proceedings of the 1st Information Systems 
Methodologies Conference, Edinburgh, September 1993, pp. 99-112 

23. Jacobsen I, Christerson M, Jonsson P and Overgaard F, Object-Oriented Software 
Engineering -A Use Case Driven Approach, Addison-Wesley, 1993 

24. Reenskaug T, Andersen EP, Berre AJ, Hurlen N, Landmark A, Lehne OA, Nordhagen E, 
Ness-Ulseth E, Oftedal G, Skaar AL and Stenslet P, OORAA: Seamless Support for the 
Creation and Maintenance of Object-Oriented Systems, Journal of Object-Oriented 
Programming, October 1992, pp. 27-41 

25. Booch G, Object-Oriented Analysis and Design with Applications, Benjamin-Cummings, 
1994 

26. Gibson E, Objects - Born and Bred, Byte, October 1990, pp. 245-254 
27. ISO - Information Processing Systems - Open Systems Interconnection - LOTOS - A 

Formal Description Technique Based on the Temporal Ordering of Observational 
Behaviour, ISO 8807, 1989. 

28. Lundy P and Bustard DW: Making Formal Methods Work: What's being Done and What 
Can be Done, Proceedings of 2nd International Conference on Software Quality 
Management, Edinburgh, July 1994 

29. Woodcock J and Loomes M, Software Engineering Mathematics, Pitman, London, 1988 
30. Winstanley A and Bustard DW: EXPOSE: An Animation Tool for Process-Oriented 

Specifications, Software Engineering Journal, 6 (6), November 1991, pp. 463-475 
31. Bustard DW and Winstanley AC: Making Changes to Formal Specifications: Requirements 

and an Example, IEEE Transactions on Software Engineering, Vol. 20, No.8, August 
1994 

32. SSM in Computing, Workshop Notes, University of Ulster, April 1994 


