
20 
Construction of a WYSIWYG UTEX Typesetting System 
using Object-oriented Design* 

J.H.M. Lee, J.C.K. Leung and C.C.K. Wong 
Department of Computer Science 
The Chinese University of Hong Kong 
Shatin, Hong Kong 

Abstract 

This paper reports the design of a sophisticated WYSIWYG UTEX-like typesetting sys­
tem VIEwTEX, Our approach is based on the Model-View-Controller (MVC) user-interface 
paradigm, as originated from the Small talk community. According to the paradigm, the 
VIEwTEYC system is decomposed into the sub-editor (model) module, the redisplay (view) 
module, and the user-commands (controller) module. Each module is responsible for a 
different aspect of VIEwTEX, Represented as separate objects, these modules co-operate 
by communicating via a controlled and structured pattern. Such decomposition facilitates 
encapsulation and code reuse. To demonstrate the feasibility of our approach, a proto­
type implementation of VIEwTEX is constructed according to the design using C and Motif. 

Keyword Codes: D.1.5; D.2.10; 1.7.2 
Keywords: Object-oriented Programming; Design; Document Preparation 

1 INTRODUCTION 

1l\TEX [6], a macros layer built on top of 1FX [3], is a sophisticated typesetting system 
producing high quality mathematical manuscripts and monographs. 1l\TEYC is command­
based. Typesetting using 1l\TEX is no simpler than writing a computer program. This 
user-unfriendliness sets 1l\TEX back from gaining the acceptance of many potential users. 
On the other end of the spectrum, there are popular WYSIWYG word processors, such as 
WordPerfect and Microsoft Word, widely available on personal computers. Output from 
these word processors is not as aesthetic as that of 1l\TEX, both in terms of word and line 
spacing, but they are interactive in nature. Users can view and modify the layout of a 
document in real-time as it evolves. Wordprocessing is also no longer "programming." 

To capture the best of both worlds, we propose VrEwTEX, an interactive WYSIWYG 
UTEX wordprocessor. Its design is based on the Model-View-Controller (MVC) user­
interface paradigm [5], which originates from the Smalltalk [2] community. According to 
the MVC paradigm, a user-interface application should be decomposed into a model, a 
view, and a controller. The model is the sub-part containing all of the non-visual non­
interactive computer semantic information. The view contains all of the visual computer 

"This project is supported by a UK/HK Joint Research Scheme grant (A/C 242700500) and a RGC 
Earmarked grant (A/C 221500260). 

M. Lee et al. (eds.), Software Quality and Productivity
© Springer Science+Business Media Dordrecht 1995



136 Part Three Object Oriented Analysis, Design and Development 

semantic information. The controller is responsible for capturing the user's attempts to 
manipulate the object. In this paper, we identify the model, the view, and the controller 
aspects of VIEWTEX, A reliable and efficient communication protocol among the modules 
is also proposed. To demonstrate the feasibility of our design, a prototype of VIEwTEX is 
constructed. 

2 VIE.,VI'EX DESIGN USING MVC 

We adopt the terminology of [1] and call the model, view, and controller respectively 
sub-editor, redisplay, and user-commands. The sub-editor hides the details of how an 
edited text is stored from the rest of VIEwTEX, That includes a basic buffer for storing 
text, the current position of the cursor, and various markers to remember symbols, special 
format, and cross-references. The redisplay is responsible for ensuring that all changes to 
the buffer are promptly reflected on the display. The user-commands captures keystrokes 
and mouse clicks, and interprets these inputs before informing the sub-editor. 

2.1 Overall architecture 
The three modules work cooperatively in maintaining a user-interface application. 

Efficient and reliable communication is essential. A standard communication pattern of 
the MVC paradigm consists of four separate communications. First, the user performs an 
action, which is intercepted by the user-commands. Second, the user-commands interprets 
this action as a request to change the state of the sub-editor, and informs the sub-editor. 
Third, the sub-editor changes its state and then informs its dependent redisplay that it 
has changed. Fourth, the redisplay then asks the sub-editor for its current state and 
updates itself accordingly. 

2.2 Sub-editor 
In VIEWTEX, the text is stored into a one dimensional array of characters. Besides, 

the text buffer must also contain two gap pointers (gap-start and gap-end) in order to 
implement the paged buffer gap technique [1], allowing ease of text insertion. When a 
user prepares a document, we cannot know, in advance, the amount of work the user will 
do. Thus, the text buffer should be allocated dynamically. A doubly linked list for text 
buffers is a suitable choice. Apart from text buffer, mark, symbol and cross-reference 
information is also necessary in the implementation of the sub-editor. 

From time to time, it is useful to be able to remember positions within a text buffer. A 
mark is an object that can remember position. There can be any number of marks within 
a text buffer, and more than one mark can remember the same position. In each mark, it 
contains a mark type (such as begin and end positions of the centering command) and a 
position in the text buffer. Each text buffer is associated with a linked list of mark which 
is maintained into a sorted order of the mark position. 

Symbol mark and cross-reference mark are special kinds of mark, which are used 
to remember positions of mathematical symbols and cross-references. Each text buffer 
maintains also a sorted linked list of symbol marks and a sorted linked list of cross­
reference marks. 



Construction of a WYSIWYG LaTeX typesetting system 137 

2.3 Redisplay 
The job of redisplay is to ensure that (1) the state of the sub-editor is displayed on the 

screen faithfully and (2) the amount of clock time required to make the updates visible 
is minimized. When the sub-editor has performed a function (e.g. insert character), the 
redisplay module is required to reflect the changes on the screen in a timely fashion. The 
redisplay module is also responsible for determining the layout of the text and diagrams 
on the screen. 

The last responsibility is directly related to the line-breaking problem: how to divide 
long paragraphs into individual lines. Traditional algorithms, as adopted by popular 
wordprocessors such as Microsoft Word, WordPerfect and WordStar, use "justification," 
which considers only the current line and decides how best to finish off that line. The 
lack of line lookahead often results in awkward word spacing and hyphenation. UTEX 
and TEX, using the optimum line-breaking algorithm by Knuth and Plass [4], consider a 
paragraph as a whole, so that the final appearance of a given line might be influenced by 
the text on succeeding lines. 

The core of the redisplay module is Knuth and Plass's algorithm, the function of which 
is to find the sequence of breakpoints for the current paragraph. The result is stored in 
a linked-list. The redisplay will then display the content of buffer on screen according to 
the information stored in the linked-list. The problem of page-breaking is handled by the 
same algorithm. 

2.4 User-commands 
The job of the user-commands module is to capture user input, which can be text 

and commands. While text input must come from key presses, command input can be 
issued via hot keys, hot buttons, pull-down menus, and mouse maneuver. Thus the core 
of user-commands is a command loop that intercepts user input (via the keyboard and 
mouse), interprets the input, and informs the sub-editor of users' intention. 

3 PROTOTYPE IMPLEMENTATION 

The VIEwTEX prototype is realized on a DECstation using the C language, OSF /Motif, 
Xt Intrinsics, and the Xlib library. The system consists of around 20,000 lines of C code. 
Features of VIEwTEX can be classified into UTEX functions and word processor functions. 

The main purpose of the current implementation is to verify the feasibility of the MVC 
design approach. Most but not all UTEX functions are implemented. In particular, we 
have left out citation (a La BIBJEX), floating bodies (a la tables and figures), mathemat­
ical formulas, and drawing commands, but they can be integrated into VIEwTEX easily. 
Implemented command categories include sectioning, various symbols, cross-referencing, 
itemization and enumeration, document style, displayed material, etc. Worth mention­
ing is that sectioning numbers and reference numbers in cross-referencing are generated 
automatically by the system. 

Word processor functions of VrEwTEX include file commands, copy/cut / paste, and help 
tools. The most common way to invoke wordprocessor functions is by means of pull­
down menus controlled by mouse (or equivalent point-and-click devices). Hot buttons 
are provided for quick access to some most frequently used functions (both Jb.TEX and 
wordprocessor functions). Advanced users or fast typists, who despise the use of mouse, 
can make use of hot keys. Every function in VIEWIEX has an associated hot key. 



138 Part Three Object Oriented Analysis, Design and Development 

Edited documents can be saved in VIEWTEX format for future retrieval or exported 
to the UTEJX source file format. The latter option provides flexibilities for users to fine 
tune the edited documents where necessary, such as inserting 'I)i}X commands into the 
documents. VIEwTEX also supports auto-saving function to secure the integrity of an 
edited document. In case of a system crash, the edited document can be recovered from 
the incremental log saved periodically during the editing process. 

4 CONCLUDING REMARKS 

When designing a complex software system, it is essential to decompose it into small 
parts, each of which we may comprehend and refine independently. Design of a word­
processor is no exception. In the current project, we have adopted the object-oriented 
decomposition approach, in which the world is viewed as a set of autonomous agents that 
collaborate to perform some high level behaviour. In a user-interface application, the 
collaborating agents are respectively the model, the view, and the controller. The con­
tribution of this paper is three-fold. First, to the best of our knowledge, our work is the 
first to apply the MVC paradigm outside the Smalltalk-80 environment (which has many 
MVC required classes pre-defined) and find it practical to do so. The conscious choice of 
the C language, the most common language in the industry, is a further evidence of the 
feasibility of our approach. The MVC paradigm, and object-oriented design in general, 
facilitates encapsulation and code reuse. These properties are proved to be valuable dur­
ing our implementation process. Second, our design is general enough to be guidelines for 
the design of other wordprocessors. Third, we have constructed a reliable and practical 
implementation of a WYSIWYG U-TEX wordprocessor, not yet available in the commercial 
market. While preparing a document using VIEwTEX, users can concentrate on designing 
the layout of the document instead of worrying about "programming" Jb.TEX commands 
correctly. Most parts of this manuscript were prepared using VIEw-TEX. 

REFERENCES 

1. Finseth C.A., The Craft of Text Editing: Emacs for the Modem World. Springer­
Verlag, 1991. 

2. Goldberg A., Smalltalk-80: The Interactive Programming Environment. Addison­
Wesley, 1984. 

3. Knuth D.E., The 1F;Xbook. Addison-Wesley, 1984. 

4. Knuth D.E., Plass M.F., Breaking paragraphs into lines. Software-Practice and Ex­
perience, 11:1119-1184, 1981. 

5. Krasner G.E., Pope S.T., A cookbook for using the Model-View-Controller user inter­
face paradigm in Smalltalk-80. Journal of Object-Oriented Programming, 1(3):26-49, 
1988. 

6. Lamport L., U-TEX: A Document Preparation System. Addison-Wesley, 1986. 


