
12 

Designing with Non-Functional Requirements 

Colin J Theaker and Jenny Whitworth 

School of Computing, Staffordshire University, 
Beaconside, Stafford STIS OAD, England 

Abstract 

A major class of software and systems engineering projects are critically dependent upon the 
attributes of the final system as much upon its functionality. These attributes reflect the quality of the 
design and implementation of the product, yet in most circumstances, they are treated in a very loose and 
haphazard fashion during the system development. From very poor requirements specifications, the 
successful implementation of a system all too often depends upon the intuitive skills of experienced 
designers. There are many documented examples of systems which have failed as a result. 

This paper examines a framework for systems design and implementation that addresses both the 
problems of correct functionality and also the specification and tracking of non-functional requirements, 
through to an auditable solution. The objective is to provide an environment in which design engineers 
(and project managers) can consider design trade-offs and make informed judgements accordingly. The 
research is ongoing and so the paper outlines some of the longer term aspirations of the project. 

Keyword Codes: D.2.l; D.2.S; 0.2.6; D.2.l0 
Key words: Non-functional requirements, system attributes, process modelling, object orientation, 
CASE and workbench tools, real-time systems. 

1. INTRODUCTION 

The class of computer-based systems which include reactive, real-time and embedded systems 
presents us with some of our greatest challenges when it comes to designing and implementing the 
software. The constraints that are imposed on the final product development may significantly impact 
upon whether the product itself is a success or failure, with factors such as cost, performance and time­
to-market playing a significant role. The nature of reactive systems is also that they are involved in 
control applications, where issues of safety and reliability may play a dominant role. The 'quality' 
aspects of system development are therefore often more important than simply providing the expected 
functionality. 

This paper discusses an approach for systems engineering which addresses the wider issues of 
software development and the quality attributes which are associated with the system. In broad terms we 
shall refer to these as the non-fimctional attributes of a system, to distinguish them from the logical 
behaviour (or functionality) that is embodied in the algorithmic implementation of the software. The 
range of these is very open-ended, but might include performance, reliability, cost, size, etc. 

Once a system has been implemented, it is generally feasible to measure the attributes of the system 
and thereby validate that the requirements have been met. Some may be relatively easy to quantify, for 
example size and cost may be measured directly. Other attributes may take on a stochastic distribution, 
whilst others may only be estimates of future behaviour, such as the prediction of future software 
reliability based on past performance. The situation we would like to achieve is one in which a designer 

M. Lee et al. (eds.), Software Quality and Productivity
© Springer Science+Business Media Dordrecht 1995



Designing with non-functional requirements 85 

can recognise that these non-timctional requirements are present, and that during the desilPl process, they 
are refined in a manner similar to the timction attributes. The refinement process naturally relies upon 
engineering expertise for both the timctional and non-timctional partitioning. In many cases the different 
types of attribute are heavily interrelated. A si~ficant part of the design process, which currently relies 
largely on intuition or 'gut feeling', is to apply design tradt70ffs in a quantifiable way so that desired 
attributes are optimised and that the design is 'safe' 1 with adequate tolerances. 

2. CURRENT PRACTICES 

Although recognised as an important factor in the design and management of systems [2], in most 
cases the non-timctional characteristics are neither (well) specified as a requirement nor measured, and 
the achievement of a satisfactory solution to this nebulous problem too often rests in the skill and 
expertise of experienced practitioners. Even when a well-engineered solution is manifest, with no control 
or measure of the attributes during system development, the final quality may be unrecognised and 
subsequently lost for future developments. This is clearly poor engineering practice and equally poor 
economics. 

Within specific design methods, temporal aspects are probably the one area in which non-timctional 
attributes have been most widely addressed. In considering temporal behaviour, some methods have 
incorporated stochastic techniques. For example, Stochastic Petri nets [5] support the modelling of a 
system using Petri nets and at the same time use random variables to specify the time behaviour of the 
system. These nets are obtained by associating an exponentially distributed random variable with each 
transition of the net. The variable defines the delay from the enabling to the firing of the transition. An 
alternative approach that has been adopted is to attach an interval of time [tmin,tmax] to each transition. 
This interval represents the minimum and maximum time that may elapse between the enabling and the 
firing of a transition. PRM-Nets [4] have been used to develop performance models of parallel 
programs at the implementation stage. These nets support the modelling of both the software and 
hardware structures as well as the mapping of software process to physical processors. Other models 
have adopted a deterministic approach. In CSP [3], the process a-->P models a system which first 
engages in the event a and then behaves as P. In timed CSP [11, the process a-t..>p will behave as P 
precisely t time units after the event a has occurred. These various methods highlight the different 
approaches to incorporating time within the various development methods. 

Apart from these, where any mechanisms are used, they tend to be of a very ad-hoc nature and are 
ancillary to the main development process rather than being an integral part of it. They mainly take the 
form of simulation systems, such as [7], which can be used very effectively in determining overall 
system architectures and configurations, particularly for hardware/software systems in which the 
hardware structure may be one of the biggest issues. However unless they become part of the main 
development process, the use of such techniques will only be viable on those systems (and parts of 
systems) for which the parallel effort in developing a simulation model will be worthwhile. 

3. MOOSE 

The work described in this paper is part of a much larger collaborative project concerned with the 
tools and techniques to support systems engineering, entitled MOOSE, or Model-based Object Oriented 
System Engineering [6]. The focus of the work is on the tools and techniques for the development of 

I 'Safe' in this context applies as much to the development process and the likelihood of achieving a successful 
product as to any issues of safety criticality. 



86 Part Two Requirements, Design and Development Methodologies 

executable models of systems, through which their functionality can be explored along with the design 
issues which result by considering the non-functional requirements. 

The models we are concerned with here are generated at the very early stages of the liflXYcle. The 
models are executable and this distinguishes the work from other forms of design notation, such as 
DFDs and ERMs. By using these models from the start, the look and feel of a potential product can be 
demonstrated, the functionality refined, and an evaluation of its technical feasibility explored. 

An object oriented approach has been adopted in which a system is represented as a network of 
collaborating objects. A system may be refined hierarchically to allow the elaboration of systems of 
objects into further subsystems. Initially the objects are considered to be uncommitted as no assumption 
is made as to how they will be implemented. The system allows systematic consideration of the design 
options available for each object, and through the interactions between objects, allows for a dynamic 
view of the system behaviour. In considering performance requirements (processors, stores Etc.) to 
support an implementation, we could use the system as a vehicle for hardware/software co-design to 
obtain optimum design trade-offs. In this respect, consideration of the non-functional requirements 
becomes even more important. 

Support for the modelling process is based upon a standard CASE tool, namely Select Yourdon. 
Diagrams are captured and edited using the standard system, but to overcome limitations in the graphical 
notation, specific naming conventions have been adopted for the textual annotations to allow the 
distinctive nature of each object to be identified. The captured database can be interrogated by other 
software packages to provide additional functionality over and above the standard tool. This mechanism 
also allows us to enhance the model with a variety of different textual notations to support different 
aspects of the design process. For example, a language has been defined which allows the model to be 
'exercised' to examine the dynamic behaviour of a system. Its functionality can be reviewed and in 
particular, the interactions between objects closely scrutinised. Similarly the different non-functional 
requirements of each object can be represented and refined. 

The consideration of non-functional requirements starts with the initial specification of the product. 
Although current practice in generating such specifications is very poor, good guidance on how this may 
be addressed may be found, for example, in [2]. We have chosen to restrict our activity principally to 
perfonnance (and other temporal aspects) and reliability. These have interesting differences, not least in 
the state of the art for their specification and analysis, but they also exhibit many similarities. 

In reality, most non-functional attributes would exhibit a stochastic distribution in their behaviour. 
Such distributions are difficult to apportion during the design refinement and add complexity to the 
analysis process. Current engineering practice (if done at all) might be to consider single values such as 
typical or worst cases. The notations we are currently considering therefore lie between these extremes, 
representing ranges of values and probabilities of falling outside the ranges. Notations of this form are 
capable of providing very powerful analysis information. For example, with temporal behaviour we 
could obviously identify logical inconsistencies such as race conditions or incorrect sequencing of events. 
We could also quantify the performance behaviour, such as typical (mean), best case and worst case 
responses and also the likelihood of the behaviour falling outside acceptable criteria. This would allow 
us to identify appropriate levels of hardware performance (in a cost effective way) or to design 
appropriate recovery mechanisms into the system. 

Starting at an initial context diagram with its overall requirements specification, the design refinement 
progresses. At each refinement, the requi rements, both functional and non-functional, are further 
apportioned to the constituent objects. 'This is naturally where the skill of the designer is used to derive 
an appropriate partitioning. The interaction between the objects is important, for example, objects 
interacting sequentially or in parallel would obviously produce different timing behaviour. With 'rules' 
in place, it is possible to validate at each stage of the refinement if the partitioning is acceptable in 
meeting the higher level requirements and to assess the tolerances which ensue. 



Designing with non-functional requirements 87 

A verification against the requirements will take place once an actual implementation has been 
derived (or once we are sufficiently sure of its implementation). In the case of functionality, this may be 
a simple check list to identify whether the function is present or not. With non-functional requirements, 
we need to measure the values of the actual attributes of the system. It is worth noting that the overall 
system may still meet its requirements even though individual sub-systems fall outside the tolerances 
apportioned to them. However, an awareness of the 'hot spots' is still useful for the management of 
subsequent developments. 

4. FUTURE DEVELOPMENTS 

This project is still in a comparatively early stage, particularly for the inclusion of non-functional 
requirements in the design process. Some tool support has been developed, a number of models have 
been captured of actual and potential systems, and routes to synthesis are being explored. Issues 
relating to non-functional requirements are still a subject for debate, particularly with respect to the 
notational aspects. 

The refinement of requiremmts is one of the more challenging areas, particularly if one considers the 
support that could be given to the designer at that stage. Whilst certain techniques, such as complexity 
analysis or function point analysis could help in certain areas, we must still recognise that some of the 
attributes are unmeasurable even when the system has been implemented, and we are forced to predict 
future behaviour based on the past. Building up an historical perspective through the collection of 
metrics is obviously a desirable form of support. 

There are issues relating to the refmement which will be addressed as part of this project. For 
example, as an executable model of the system exists, there is naturally data available relating to the 
dynamic behaviour. It is proposed to make use of this in connection with the performance analyses. 
The identification of how objects interact and how the inverse can be utilised in the design process is the 
subject of further work. 

ACKNO~DGEMENTS 

The work described in this paper has been partially funded by the SERC (project number 
GR/J09840). The authors would like to acknowledge the help provided by the collaborators on this 
project, including Professor D Morris at UMIST, Professor R Phillips at the University of Hull, and 
their respective colleagues. We would also like to thank the companies who have provided support in 
terms of tools and applications to model, in particular to Select Software Tools Ltd and to ICL. 

REFERENCES 
1. Davies 1., Jackson D.M., Reed G.M., "Timed CSP -Theory and Practice", LNCS Vol. 600, 

pp640-675. 

2. Gilb T., "Principles of Software Engineering Management", Addison-Wesley. 

3. Hoare C.A.R., • Communicating Processes", Prentice Hall. 

4. Hull M.E.C., O'Donoghue P.G., "Timed Petri net Approach to Performance Modelling with the 
MOON Method", Software EnginccringJoumai, Vol 9, No 3, pp 95-106. 

5. Marsan A., Balbo G., Conte G., "Performnce Models of Multi Processor Systems", MIT Press. 

6. Morris D., Evans D.G., Schofield S., "Model-based Object Oriented System Engineering 
(MOOSE) - A Design Method and Notation", To be published. 

7. SES Workbench, Software Engineering Software Inc., Austin Texax. 


