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The growing interest in the specification and development of user friendly and 
easy to maintain design tools has urged engineers to develop and use design 
knowledge acquisition and modelisation methodologies. In this chapter, we present 
a comparative study of the application of two knowledge modelisation 
methodologies in the field of mechanical design. The modelisation capabilities 
offered by these methodologies are presented, illustrated, and discussed referring 
to their application to the development of a car engine cylinder head design and 
optimisation system at PSA. This study takes place in a global project for the 
creation of a generic development tool for design applications. This project 
includes three phases: the development and use of a design knowledge 
modelisation methodology, the specification and development of a Design 
Description Language, and the specification, development and use of a system 
allowing the execution of the modelised problem, linked with traditional 
CAD/CAM systems. 
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14.1. INTRODUCfiON 

This chapter presents a comparative study of the application of two knowledge 
modelisation methodologies to a mechanical design problem: the design of a car 
engine cylinder head. 

The cylinder head problem presents a good amount of the difficulties a 
designer can encounter, including complex product structure, non monotonous 
design process, sub problems linked to each other and constrained. It should 
therefore be a good test case for the methodologies. 

KADS (Knowledge Analysis and Documentation System) has been developed 
in the KADS 1 and KADS 2 projects. 

DDAM (Deklare Design Analysis Methodology) has been developed within the 
Deklare project to specifically handle design problems (and particularly 
mechanical design problems). 

The partners of the Deklare project are the Computer Science Department of 
the University of Aberdeen (UK), the ll..OG (F), IKERLAN (S), COPRECI (S) and 
PSA (F) companies. 

The quality of the models obtained with the method (completeness, precision, 
etc.) will allow us to evaluate the methodologies. 

We will also consider the reusability of these models as data structures in the 
development of a knowledge based system able to solve the cylinder head design 
problem. 

14.2. THE CYLINDER HEAD DESIGN PROBLEM 

14.2.1. How does a cylinder head work? 

The cylinder head is one of the most important parts in the engine. It participates 
in several functions, including induction, compression, combustion of the 
air/gasoline mix and ejection of exhaust gas. 
These functions are supported by several parts of the cylinder head: 
1 the air/gasoline mix comes from the intake manifold into the induction duct, 
2 the mix goes into the combustion chamber through holes opened by the 

valve mechanism, 
3 the closing of the valve allows the compression of the mix, 
4 the explosion is obtained by the spark produced by the spark plug, 
5 once the exhaust valves are opened, the exhaust gas are rejected into the 

exhaust ducts, 
6 the cooling and lubrication of the cylinder head are made by water and oil 

passages in the cylinder head body. 

14.2.2. Description of the problem 

The problem can be divided into two main sub-problems: 
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1 the design of the valve opening and closing mechanism (valve lifters, 
springs, .. ), 

2 the design of the cylinder head body, including the induction and exhaust 
ducts, the combustion chamber, the water and oil passages. 

The design of the body and the mechanism can be divided into several tasks. These 
tasks are strongly linked to each other and constrained. 

As a consequence, the sub problems have to be solved simultaneously, that 
explains why the development of a system is needed. 

Two kinds of improvements are expected: 
1 the shortening of the design cycle time, 
2 the improvement of the design process, and of the quality of the product. 

The cylinder head used as a test case for the application is a 16 valve, cross 
flow, with direct valve gear cylinder head. 

14.3. THE DDAM AND COMMONKADS® METHODOLOGIES 

14.3.1. Knowledge acquisition and modelisatlon methodologies 

The survey of available acquisition and modelisation methodologies [Dek 93c] has 
showed that two types could be distinguished: 
1 the general purpose methodologies, 
2 the dedicated methodologies. 

Among the available general purpose methodologies, (KADS, KOD, 
MERISE, ... ), we have selected CommonKADS. Indeed KADS offers an open 
representation formalism, works on a computerised tool, and results of eight years 
of European project work. 

Among the mechanical design dedicated methodologies, [Pah 88], [Fin 89a], 
[Fin 89b], we have applied DDAM [Dek 93a]. This method has been developed 
within the Deklare project. 

14.3.2. DDAM 

14.3.2.1. Origin of the methodology 

DDAM (Deklare Design Analysis Methodology) [Dek 93a] is a knowledge 
acquisition and modelisation methodology dedicated to the mechanical design 
field. The formalism established for the knowledge representation has to be 
sufficiently open to integrate the different levels of design problems, from 
assembly to complex design problems. 

The design problem modelisation with DDAM includes two steps: the product 
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modelisation, and the process modelisation. 
The methodology is composed of a user's manual and a set of format sheets to 

be filled by the user [Dek 93a]. 

14.3.2.2. The product modelisation 

During his speech, the designer uses several complementary points of view on the 
problem (physical , functional, geometrical, etc ... ). To have a model as complete 
as possible, it is necessary to represent all these points of view. 

The product is thus modelised by several models (physical, functional, 
geometrical). The constraints that can be applied on the elements of these models 
are also to be represented. 
The physical model: 

It is composed of "articles", "assemblies", "parts" and "design features". 
An article is a set of assemblies or parts. An assembly is a set of parts. A part is 

composed of one or several design features. Several parts can have some design 
features in common. 

The physical model is obtained by drawings, technical documentation, and 
expertise documents. 
The functional model: 

The functional model is composed of "articles", "thinking blocks", "concepts", 
"technical solutions" and "design features". 

Blocks and concepts represent the functions to be realised by the article (the 
product). Concepts are elementary functions that cannot be divided. Technical 
solutions correspond to the realisation of a concept. Design features give a physical 
representation to technical solutions. 

The functional model is established by the knowledge engineer, based on all 
available documents concerning the design problem. When a new function is 
identified on a document, the Knowledge engineer bas to determine to which level 
this function belongs (concept, thinking block). For each concept, a list of 
technical solutions bas to be made, and their corresponding design features have to 
be parameterised. 

The link between the physical and functional models is made at the top of the 
hierarchy (article), and at the bottom (design feature). Otherwise, both models are 
independent and complementary. Indeed, if the designer works with functions, the 
corresponding parts are progressively defined by the parameterisation of their 
design features. On the contrary, when the designer wishes to reuse existing parts, 
the corresponding functions are automatically instanciated by the corresponding 
design features. 
The geometrical model: 

This model links an object with its geometrical representation through an 
enumeration of geometric basic objects (curves, surfaces, solids) and operations 
(boolean operations). 
The constraints: 

The constraints are used to express particular conditions that need to be 
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verified by the elements of the models. A constraint can link several parameters of 
several parts. Constraints can be of geometric, numeric, or symbolic nature. 

14.3.2.3. Modelisation of the design process 

The formalism used for the representation of the design process in DDAM is 
inspired by the survey of Design Analysis Methodologies [DEK 93c], by the 
expertise model of the CommonKADS methodology [SHR 92], by the control 
model of the Archix system rrno 91], and by the task model of the expert system 
development tool SMECI [ILO 92]. 

The design process in DDAM is composed of several parts: 
1 the elementary tasks, represented as a task tree, 
2 the control structures 
3 the problem solving strategies. 

The task tree is a static representation of the design process and is deducted 
from the product functional model. The task tree is usually different from the 
functional model. The functional model is composed of thinking blocks, concepts, 
technical solutions. It gives the structure of the problem to be solved. The task tree 
is a simplification of this structure. 

We differentiate two types of tasks: 
1 the low level corresponds to elementary calculations (leaves of the task 

tree), 
2 the high level handles the management of sub tasks. These high level tasks 

constitute a control structure and define the strategy to apply in case of 
failure of a sub task. 

Each task is described by the following attributes: 
1 goal of the task, 
2 set of sub tasks, 
3 local strategy (in case of failure of a sub task), 
4 set of methods: list of available methods to reach the goal of the task. 
5 description of the method: how to reach the goal. 

The DDAM methodology allows the modelisation of : 
1 the different tasks needed for the design of the product, the control 

structures and strategies associated. 
2 the links between different tasks. 

14.3.3. CommonKADS® 

14.3.3.1. Origin of the methodology 

The first developments related to the CommonKADS methodology began in the 
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early 80's at the University of Amsterdam. They came out of an analysis of the 
current methods used to develop expert systems. At that time, an expert system 
was mainly characterized by the fact that one used Rules in the programming of 
the application. 

Bob Weilinga, from the university of Amsterdam took another promizing way, 
considering that the expert system approach should be characterized by the type of 
the problems (diagnosis, design, planning, etc.) rather than by the technics used to 
implement the system. 

The approach proposed by CommonKADS thus relies on the definition of a 
library of models of problem classes, and on the definition of mappings between 
the abstract description of the problem, and the application domain model. This 
approach has been intensively developed and tested within two Esprit projects. 

These ideas have led to the birth of the CommonKADS methodology, widely 
supported by the European community. Its development followed three axis: 

Research work within European Esprit projects, to establish and consolidate the 
foundations of the methodology. 
1 Industrial work led by European I.T. companies such as Ilog or Boolesian, 

or by U.S. companies such as the Bechtel institute. 
2 Application work by many industrial companies using KADS to implement 

decision support applications. 

14.3.3.2. Principles of CommonKADS 

The main principle behind CommonKADS is genericity. It is based upon the fact 
that there exists application classes, corresponding to problem classes. 

For each problem class that has been sufficiently studied, one can define an 
abstract model of the problem and of the associated problem solving methods. As 
this generic description is independent of any application domain, is may be reused 
for different applications based upon the same problem class. 

The objective of the method is thus to provide: 
1 the formalism allowing the representation of abstract problem, and their 

associated solving methods. 
2 the formalism needed to specify the entities and relations within a specific 

application domain. 
3 a method allowing the description of the mapping between the terms of the 

abstract problem model, and the application domain description. 

Furthermore, CommonKADS comes with libraries that predefine the solutions 
of certain problem classes [Alb 92], [Ilo 92]. 

14.3.3.3. The CommonKADS Models 

The CommonKADS model of application is made of three nested level of 
models. 
1 the Domain layer represents the entities of the application domain, 
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2 the Inference layer represents the operations performed during the reasoning 
process. and the roles played by the domain entities in these operations, 

3 the Task layer defines the precise control structure that links together the 
operations defined at the inference level. 

The links between these three layers are as follow: 
1 the task level controls the inference level, 
2 the inference level is mapped on the domain level. 

14.3.3.4. The domain model 

Within CommonKADS, the domain model descn"bes the entities that are part of the 
application domain of the considered application. The notation used is an 
extension of the notation introduced by the Object Oriented Method O.M.T. It is 
used to define the following entities: 
1 objects model: the data model is object oriented. It is made of classes linked 

by an inheritance relation. Each class defines a set of properties 
characterized by their type. 

2 relations model: the objects may be linked together by binary relations. A 
binary relation defines two roles which are the projection of the relation on 
each of the linked classes. The composition relation receives a special 
support. Views can be defined, that group together a set of objects and 
relations. 

3 dynamic model: this model is composed of expressions and of relations 
between expressions. The expressions may be formulae, predicates or rules. 
They are used to define the computations or the states associated to the 
objects. 

14.3.3.5. Inference structures 

The inference structures are the backbone of CommonKADS. They specify the 
operations (or inference steps) used to solve the problem, as well as the 
information used or produced during the reasoning process. 

The formalism derives from the data-flow notation, which it extends. An 
inference structure represents the organisation of a set of inference steps linked by 
roles. Two types of roles are distinguished : 
1 the dynamic roles that represent the information flow (i.e. the input and the 

output of the inference steps). 
2 the static roles that represent the domain dependent information used by the 

inference steps to realise their functions. A static role may for example be 
associated to a set of rules. 

The operations as well as the roles may be described at different levels of 
abstraction. An inference step may be "primitive". In this case, it models a terminal 
operation which is not further described. 
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It may also be "decomposed". In this case, it represents an abstract operation 
which is further specified by the inference structures that represent its 
decomposition. The roles associated to an inference step may also be decomposed. 
We defme below the meaning of the graphical notations. 

~ 
L!!..J 

Figure 1. Inference structure example 

The figure above contains the set of notations used to define an inference 
structure. An inference structure represents the organisation of a set of operations: 
the inference steps represented by ellipsis. 

These operations consume and produce data. These information named 
"dynamic roles" are represented by simple rectangles attached to the ellipsis by 
links that may be oriented. 

If the connection mode between a role and an inference step is not known, the 
rectangle is attached to the ellipsis by a non-oriented link. In this case it is the 
control of the reasoning that determines dynamically the nature (input/output) of 
the role. 

The inference steps may need domain dependent knowledge to be 
implemented. These information, named "static roles", are represented by bold 
rectangles. 

An inference step may also be primitive or decomposed. In this later case, it is 
represented by a double ellipsis. The decomposition of the inference step will be 
made of one or many inference strucrures. 

Finally, within an inference structure that represents the decomposition of an 
inference step, the inherited roles defined at the upper level of the decomposition 
are represented by bashed rectangles. 

The binding of the inference structure, that describes the problem 
independently of the domain, to the domain model is specified on the roles. For 
each role, one describes the domain elements that it represents. 

14.3.3.6. The task structures 

The task level describes the precise algorithmic control applied to the inference 
structures. As well as the data-flow model they originated from, the inference 
structures do not bare any control information, which makes them more reusable. 
They only describe the operations and the associated data-flows. These are the 
tasks that describe the control. 

The task structure represents a tree of goals and methods. A goal corresponds 
to an inference step, and a method corresponds to a specific control applied to an 



248 Part Five Validation Aspects 

inference structure. 

14.4. APPLICATION OF THE METIIOOOLOGIES TO THE DESIGN 
AND OPTIMISATION OF A CYLINDER HEAD 

14.4.1. Results of the modellsation with DDAM 

14.4.1.1 The product structure 

The structure of the cylinder head is represented by the physical and functional 
models. 
The physical model: 

The physical model describes the set of parts of the cylinder head and the 
associated mechanisms. 

The cylinder head model is composed of parts (cylinder head body, valve 
guide, valve seat, valve seal) and an assembly: the timing mechanism (spring, seat, 
double cone, valve, valve lifter, spring retainer). 

The physical model of the cylinder head is rather simple. Indeed, many 
functions are supported by the cylinder head body: the gas ducts, the water and oil 
passages, the guiding of the valve lifters and camshafts, the fastening of guides, 
intake and exhaust manifolds. The physical model is not precise enough to define 
the cylinder head body, but it is sufficient to define parts like valve lifters, springs. 
The functional model: 

1 

' I f J I 

Figure 2. Functional model of the Cylinder Head 

The figure 2 presents the functional model of the cylinder head. It contains the 
thinking blocks and concepts needed for the description of the problem: that is all 
the functions to be realised. 
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For instance: the "induction" thinking block is divided into several concepts 
like "induction valve opening". The technical solution associated to this concept is 
the induction valve gear. 

The corresponding design features determine completely the valve opening 
mechanism, i.e. the spring, the spring retainer, the double cone, the valve lifter, 
etc. 

In our case, the functional model is much more detailed than the physical one. 
This decomposition allows a progressive design in terms of functions rather than 
parts. 

14.4.1.2 The design process 

The design of a cylinder head is a complex design problem. Indeed the designer 
has to deal with a good number of sub problems and constraints. 

The task tree gives a global view of the static description of the process. 

On behalf of this tree, each task is described independently. We can distinguish 
two sorts of tasks (fig 3): 
1 On the one hand, tasks that participate in the definition of the parts of the 

physical model (calculations of the dimensions and positions of the 
objects). 

2 On the other hand, higher level tasks control their sub . tasks and manage 
potential failures. 

Part of the information contained in these higher level tasks refer also to 
problem solving strategies , and how to apply them depending on the state of the 
design process. 

I; ,. 
I 'I 1: I 
j: !I 
ii I 

nt n1 Tll n4 n2 nu nt:z 'Rt "R2 nJ ru nt n2 '1'53 1'54 Tit n1 m i I I i I 
Figure 3. Task tree 
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Example of part of a low level task: 

"T 11 Induction duct definition": 
Method 1 (programme): 

II Induction duct definition 
to calculate (diameter, I..) ; 
to define neutral fibre 
method 2 (programme) 
II Induction duct position 
give geometric position of induction duct 

The task 11 defines the induction duct of the cylinder head. 
The method 1 contains a set of calculations for the definition of the 

characteristics of the duct.( for instance, the diameter, the shape of the neutral 
fibre, etc.). 

The method 2 defines the position of the duct depending on the constraints (for 
instance: to avoid interferences with other parts) and predefined characteristics (the 
duct should be as vertical as possible). 

The following task 10 presents a high level task 

"T 10 Induction definition": 
I.ask (goal): TlO to define cylinder head induction 
Sub tasks (sub goals): 

{ Ttl induction duct; T12 valve opening; 
T13 injector; T14 venturi effect} 

Local Strate&Y (program): 
II What method to choose 
method = designer -choose-the-method, 
or method = method 1 

Methods: {method 1; method 2; method 3; 
method 4; method 5 } 

method 1 (program): 
II Execute all tasks, deterministic or not function 
execute Ttl, after T12, after T13, after T14 

method 2 (program): 
II To define only induction duct 
To execute Ttl 

The task 10 controls the low level task 11 that corresponds to calculations of 
dimensions and positions. 
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14A.2. Results of the modellsatlon with CommonKADS 

14.4.2.1. Introduction 

The CommonKADS model allows the representation of two types of knowledge 
1 knowledge concerning the design domain (domain level) 
2 knowledge concerning the problem solving mechanism tasks and inferences 

(task and inference levels) 

14.4.2.2. Product structure 

The following CommonKADS objects have been used: 
1 concepts: physical or logical object of the application field. 

For instance: 

Camshaft 
Eal.b.l:r. valve movement mechanism 
Reference.~; Cylinder Head [73] 

camshaft 

Introduction duct 
Ea.tlwl: Cylinder Head body 
References Cylinder Head [58] 

induction ducts 

2 Relation: types of relations between concepts: for instance: "is 
characterised by" 

3 Expression: formula used for calculation or any other type of information. 
Example: 

Compression rate calculation 
~ 

rate= (volume + cubicCapacity) I volume. 
4 Hierarchies of the domain 

Exam le: 

Cylinder Head 
Relation : subtype 
References: Cylinder Head [38] 

The cylinder head is subdivided into two 
parts, the cylinder head body and the valve 
gear mechanism. 

A physical model of the cylinder head and the expression of the different 
relations that exist between the concepts of this model have been established. 
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14.4.2.3. The design process 

The model of the design process can be decomposed in two levels: 
1 The task level gives a general view of the different problems to solve (see 

fig.4). 

T20 
Combustion chamber T30 

Valves Definition 
T40 

Definition 

Figure 4. Task tree 

2 The inference level gives a global view of the reasoning during the design 
process. 

In our case the inferences obtained are not significant abstractions of the 
problem, as shown in fig. 5. 

I Cylinder Headl 

.I. _ I cylinder Headj 

'V - 'll I Constraints~~~~ - ~ r::==::::::l 
. -~'\ ~ 

w \ '+' I Sub system I 
w 
~ 

t 

\ 
\ 

\ 
\ 

..------'-----, 

Figure 5. Example of an inference structure 
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The inference structure can be interesting if the structure of the design process 
is to be reused in several applications (For instance in another cylinder head design 
problem i.e. diesel engine or 2 valves I cylinder). 

In such a case, it is important to structure the design process to allow the 
reusability of modules without remodelising the complete problem. 

In CommonKADS, some generic inferences already exist but non of them was 
applicable in our case. 

14A.3. Synthesk of the application of DDAM and KADS 

Both methodologies make clear a differentiation between the product and the 
process. The application has conftrmed the interest of this difference. 

In DDAM, the product structure description is based on the physical and 
functional model, these are the ones used in the mechanical design fteld. These 
models do not exist in CommonKADS unless they are created. 

The functional model obtained with DDAM is the most precise and complete 
decomposition problem. 

This model can be the starting point of the design process description and can 
result in substantial differences between the process used by the designer and the 
system. 

The "expressions" representation in CommonKADS needs to be specialised for 
the design fteld (constraints). 

The structure given by CommonKADS for the representation of the design 
process is more complete than the one offered by DDAM. 

Indeed, the inference level allows the modelisation of general reasoning 
processes to be reused in several applications. 

However, in our case, the inference structures obtained are not significantly 
superior compared to the DDAM modelisation. 

The different problems modelised with KADS are very close to the designer's 
process. Thus they do not allow a new decomposition and structuration of the 
problem as DDAM does. 

Some tasks identifted with KADS do not appear in the DDAM process model 
and vice versa. The design of some parts of the product is dispatched in several 
tasks in DDAM, whereas it is grouped in one task in CommonKADS. 

14.5. RITURE EXPECTATIONS FOR THE DEVELOPMENT OF 
DESIGN AID TOOLS 

14.5.1. A tool box for the development of new applications 

The DDAM is the ftrst part of a bigger project the purpose of which is to offer a 
complete design aid application development environment. 

Indeed the model of the problem represents a great improvement in terms of 
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diffusion and capitalisation of the know-how of a company. 
Nevertheless, the final aim is very often to develop and use a computerised 

application using the modelisation of the problem (obtained with the method). 
[THO 90]; [YV A 92]; [COU 93]. 

To do that, apart from the methodologies, the followings are required: 
1 a modelisation language: DDL (Design Description Language). 

This language is used to write a computer program based on the results of 
the DDAM application to the given design problem. 

2 a development tool: DAS (Design Advisory System) 
This tool allows the user to produce a runable application based on the DDL 
code. 

14.5.2. The knowledge representation language: DDL 

In DDL, we find the set of models used in DDAM in our operational form. Each 
element of the model is represented by an object Class with its associated methods. 
1 Product model 

1.1 Functional model (concept, technical solution classes) 
1.2 Physical model (assembly, parts classes) 
1.3 Geometrical model object classes with their methods. 

These allow the connection to traditional CAD system. 

2 Design process model 
2.1 hierarchy of task objects 
2.2 description of the solving methods as objects 
2.3 expression of basic problem solving mechanisms (heuristics, 

backtrack, etc .. ) 

14.5.3. Implementation 

The implementation of DDL as a knowledge description language implies that the 
host language has the following capacities: 
1 object oriented hierarchy with classes and methods 
2 constraints expression 
3 usual control structure (loops, task) 
4 dynamic memory management 
5 possibility of integration within CAD systems 

For the technical implementation choices, the C++ language has been selected. 
It offers the object oriented capacities as well as the classical programming 
language facilities. 

We have also selected a constraint programming library called Solver. This 
library offers a set of predefined constraints (on variables, objects, classes, sets, 
... ), as well as extension possibilities (specific constraints programming). The 
system is being specified. 
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14.6. CONCLUSION 

We have seen how the DDAM and KADS methodologies answer the design 
problem of the cylinder head. 

The DDAM method allows the designer to decompose in detail the product and 
the process . 

The process can be different from the one usually used by the designer. 
Improvements are expected from this reorganisation of the product structure and 
process. 

The DDAM development is to be continued during the other phases of the 
project. Indeed, the structures of the models described in DDAM are to be reused 
as data structures in the DDL. 

Furthermore, the specifications of the data required for the implementation of a 
design problem in DDL enable the identification of missing though necessary 
information. 

The development of the cylinder Head design application will validate the 
works led within the Deklare project. 
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