
Building a 3D Meshing Framework Using Good
Software Engineering Practices*

N. Hitschfeld, C. Lillo, A. Caceres, M. C. Bastarrica, and M. C. Rivara

Computer Science Department, FCFM, Universidad de Chile
{nancy Icli l loIacaceresIcecil iaImcrivarajOdcc.uchile.cl

Abstract . 3D meshing tools are complex pieces of software involving
varied algorithms generally with high computing demands. New require­
ments and techniques appear continuously and being able to incorporate
them into existing tools helps keep them up to date. Modifying complex
software is generally a complex task and software engineering strategies
such as object-orientation and design patterns promote modifiability
and flexibility. We present the design of a 3D meshing framework based
on these concepts that yields a software that is both flexible at runtime
and easy to modify, while not sacriflcing performance severely. We also
present an evaluation of the framework design quality and performance.

1 Introduction

A mesh is a discretization of a domain geometry. It may be composed of tri­
angles or quadrilaterals in 2D, or tetrahedra or hexahedra in 3D. Building 3D
meshing tools is a challenging task involving diverse issues: (a) depending on
the application field where the tools are used, different algorithms are more
appropriate than others, so there is the option of having either a multiplicity
of different tools or a flexible software that adapts to different contexts; (b)
3D meshing is a very active research area, where new approaches, criteria, and
algorithms are proposed continuously; if a tool is to have a long life, it should
be able to incorporate these changes without much effort; and (c) tools should
be able to manage big meshes, so performance issues such as efficient processing
and storage usage are relevant and should be taken into account.

Mesh generation tools have usually been developed by their final users, i.e.
mathematicians, physicists or engineers. This caused that not always the best
methods for software development have been applied. We believe that there is
an opportunity to improve the quality of meshing tools by applying the best
software engineering practices known.

*The work of N. Hitschfeld, A. Caceres and C. Lillo was supported by Fondecyt
N° 1030672. The work of M. C. Rivara was supported by Fondecyt N° 1040713.

Please use the following format when citing this chapter:

Hitschfeld, N., Lillo, C, Caceres, A., Bastarrica, M.C., Rivara, M.C., 2006, in IFIP International Federa­
tion for Information Processing, Volume 219, Advanced Software Engineering: Expanding the Frontiers of
Software Technology, eds. Ochoa, S., Roman, G.-C, (Boston: Springer), pp. 162-170.

Building a 3D Meshing Framework 163

1.1 Good Practices in Software Engineering

The main goal of software engineering is to develop good practices so that to
obtain good software. The are qualities related to software execution such as cor­
rectness and performance, that are well understood. However, there is another
set of qualities that have been gaining relevance lately: flexibility, reusability or
modifiability. These qualities are relevant because the cost of modifying soft­
ware is high. Algorithms and data structures have a determinant influence over
performance. Similarly, software design techniques such as object-orientation,
design patterns or software architecture have more influence over the attributes
not related to execution. Reaching the desired software quality depends on the
requirements at hand. Generally optimizing some attributes can only be done
at the expense of other qualities. Sophisticated meshing tools implementing
high performing algorithms and data structures are usually less reusable, and
certainly less maintainable. So a compromise among the required attributes is
generally the best solution.

Software reuse promotes productivity and high quality. Software already de­
veloped can be incorporated in new systems saving development time and costs,
and also counting on the properties of the reused parts. One of the known efforts
to make available robust, efficient, flexible and easy to use implementations of
geometric algorithms and data structures is the reusable library CGAL [5]. Soft­
ware families is a modern approach based on planned massive reuse. A product
family is a set of products that are built from a collection of reused assets in
a planned manner. There have been some attempts in using software product
family concepts for building meshing tools [2, 4].

1.2 3 D Tetrahedral Meshing Tools

Meshing tools allow us to solve partial differential equations numerically or to
visualize objects. In 3D, different meshing tools vary in the type of the elements
they manage; the most widely used are tetrahedral and hexahedral meshes.
There are several 3D tetrahedral meshing tools currently available but not all
of them provide the same functionality [9] varying depending on the application
for which they were designed.

Three examples of known meshing tools are TetGen, TetMesh and QMG.
TetGen [13] is a very efficient and robust open source tool for the generation
of quality Delaunay meshes for solving partial differential equations using finite
element and finite volume methods. TetGen has been developed using C++,
but not necessarily object-oriented concepts, since it is implemented using a
few classes and without using inheritance, polymorphism, information hiding
or encapsulation. TetMesh [7] is a commercial product for the generation of
quality tetrahedral meshes for finite element methods. It was originally devel­
oped in FORTRAN 77 and afterwards migrated to C. QMG [8] is an open
source octree based mesh generator for automatic unstructured finite element
mesh generation. It was developed in C + + and Tcl/tk using object-orientation

164 Hitschfeld et al.

concepts, but since it uses octrees as the main data structure, all algorithms
should conform to this structure, yielding an efficient yet highly coupled tool.
In general, all the mesh generation tools are focused on reaching efficiency and
robustness and not extensibility and modifiability.

1.3 Our Meshing Framework

The motivation of our work is to design and develop a framework that allows
us the construction of new 3D meshing tools with little effort. We would like
to have the flexibility of easily interchanging or adding new input/output data
formats, mesh generation algorithms for each step, quality criteria and refine­
ment/improvement region shapes. We have already designed the architecture of
a family of 2D meshing tools [2] and now we have extended it for the generation
of 3D mesh generators. The framework is implemented in C + + and currently
includes Delaunay and Lepp-based algorithms, among others.

In this paper we propose a 3D tetrahedral meshing framework whose de­
sign is based on object-orientation and design patterns in order to achieve the
flexibility and evolvability required, without sensibly sacrificing performance.

2 Framework Analysis, Design and Implementation

The framework has been developed using object-orientation and design pat­
terns. Functional requirements were specified using UML use-case diagrams
and described with sequence diagrams. Software structure was specified using
class diagrams ^.

2.1 Requirements and Analysis

A flexible and complete 3D mesh generation framework should implement each
one of the following processes:

- input geometry in different formats;
- generation of an initial volume mesh that fits the domain geometry;
- refinement/improvement of a mesh in order to satisfy the quality criteria;
- smoothing of the mesh according to a certain smoothing parameter;
- derefinement of a mesh according to density requirements;
- quality evaluation of the generated mesh;
- visualization of the mesh.

The specification of the input geometry and physical values can be gener­
ated by CAD programs or by other mesh generation tools. We have already

Part of the framework design documentation can be found
h.ttp: //www. dec. uchi le . c l / " nancy/framework/diagrams. html.

Building a 3D Meshing Framework 165

implemented the Off and Mesh formats. The algorithms that generate the ini­
tial volume mesh can receive as input the domain geometry described as a
triangulated surface mesh or as a general polyhedron. We have implemented an
initial volume mesh that fulfills the Delaunay condition and an initial volume
tetrahedralization that may not satisfy it.

The initial volume mesh is the input of the refinement step that divides
coarse tetrahedra into smaller ones until the refinement criteria are fulfilled in
the indicated region. Either the initial volume mesh or the refined mesh can be
the input of the improvement process. The user must specify an improvement
criterion and a region where the improvement is to be applied. At the moment,
we have implemented the refinement and improvement strategies based on the
Lepp-concept [10] but it is possible to add other strategies, such as the Delaunay
refinement [11], without much effort. The smoothing and derefinement processes
are also applied according to a criterion and over a region of the domain.

Once a mesh has been processed, the user has the possibility of evaluating
its quality according to different criteria. This is useful if the user wants to see
the distribution and percentage of good and bad elements in the mesh. The vi­
sualization process is currently done using Geomview [1]. Each mesh generation
process can also be skiped by representing it with a dummy algorithm.

2.2 Des ign and Implementat ion

Figure 1 shows the most important part of the meshing framework class di­
agram. We represent each mesh generation process as an abstract class and
each different strategy implementing each process as a concrete subclass. For
example, the Refine abstract class is realized by subclasses LeppAlgorithms
and VoronoiRef inement, as shown in Fig. 2. We also represent aU the crite­
ria with the Criterion abstract class and all the region shapes with the Region
abstract class in Fig. 1. This allows a programmer to add a new criterion, re­
gion shape or strategy by adding just a concrete class that inherits from the
respective abstract class and without modifying the source code. The code of
a particular mesh generator uses the abstract classes code, and the user must
select which concrete algorithms he/she wants to use for each mesh generation
process, criteria and region shapes. For example, GenerateVolumeMesh can be
realized with GMVDelaunay to generate a Delaunay volume mesh. Similarly, the
abstract class Refine can be realized with LeppAlgorithms receiving a Region
and a Criterion as parameters realized as WholeGeometry and LongestEdge,
respectively (see Fig. 2).

The mesh is modeled as a container object. The Mesh class provides methods
for accessing and modifying its constituent elements (tetrahedra, faces, edges
and points). TetraJiedron, Face, Edge and Vertex are also classes, each of them
providing concrete functionality and also providing access to the neighborhood
information. The mesh quality evaluation is modeled using the Evaluate class.
This class uses a criterion and, according to some user parameters, it classifies
the elements and generates a file with the evaluation results as output.

166 Hitschfeld et al.

fej r Cemr^l/c^m^e^sj? f Refme Smoothj fleQ^fre) i L DeRt!tir& •

5 t = = 3

SiJiTaceM83h , VoiumeMesfH

JijL.

Fig. 1. Framework general class diagram

VolumeEOgeRate . [Ctfct^nradMsEdgeRate UngestEdge

ardh-

jsgTL

znzn

Fig. 2. Partial detailed class diagram

In the framework implementation, we used several design patterns [6]. Each
different mesh generation process and each criterion follows the Strategy pat­
tern. The region shape follows the Composite pattern. The mesh evaluation
class follows the Observer pattern where the observed object is the Mesh. The
interface is organized using the Command pattern. The mesh is a Singleton.

Building a 3D Meshing Framework 167

3 3D Framework Evaluation

Our goals was to achieve flexibility, modifiability and performance. While the
first two depend on a good design, the last can only be evaluated at runtime.

3.1 Design Evaluation

Metrics for object-oriented design provide quantitative mechanisms for estimat­
ing design quality. Good metrics evaluation shows a good design but it does not
guarantee good software. However, bad metrics evaluation almost guarantees
bad software results. In this work, we use the metrics proposed in [3] because
they are widely used for measuring flexibility and extensibility. A brief descrip­
tion of each metric is included in Table 1 and Table 2 shows the results of
applying the metrics to the framework class diagram.

N a m e Descript ion
Sum of all method's complexity within a class. The number of methods and
their complexity indicate the effort required for implementing a class. The
larger the number of methods the more complex the inheritance tree will be,
and also the more specific a class becomes, limiting its reusability.

Weighted Meth­
ods per Class
(WMC)

Depth oT In^
heritance Tree
(DIT

Maximum length between the node and the root irii the inheritance tree. 'Phe
deeper the class, the more probable the class inherits a lot of m,ethods. A deep
class hierarchy may imply a complex design.

umber of chil­
dren (NQC)
Coupling Be-
tween Objects
(CBO)

rnply i
ilaren As the number of children grows, the abstraction represented by a class be­

comes vague, and its reusability decreases.
It is the number of collaborations between a class and the rest of the system.
As this number grows, the class reusability decreases. High values also make
modifications and testing harder
it is the number of metnods that may be potentially executed as a response
to a message received by a class object. As this metric grows, testing the class
becomes harder, and the class complexity also grows.

Response for
Class (RFC)

Lack oT Cohe-
sion in Methods
(LCQM)

A high LCQM indicates that methods can be grouped in disjoin sets with
respect to attributes, and form two or more classes with them.

Table 1. Design metrics

Minimum
Maximum
Medium
St. Deviation

W M C
1

36

7.60
7.11

D I T

0
2

0.60
0.66

N O C

0
8

0.50
1.43

C B O

0
22

3.87
4.18

R F C

1
36

12.67
7.87

L C O M
0

100

30.98
36.73

Table 2. Tool design evaluation

The WMC metric shows a value within the normal scope for this kind of sys­
tem. There are only two classes out of this scope: Predicates and Tetrahedron.
The former reuses a library described in [12]. The latter class contains several
methods required for the Delaunay algorithm, such as the sphere test; thus

168 Hitschfeld et al.

it can be divided into two different classes: one that includes basic concepts
about tetrahedron, and another one extending the first one that contains spe­
cific methods for Delaunay implementation. The DIT metric is always small,
showing a low design complexity. The same occurs with the NOC metric. Both
metrics can grow when extending the design. The CBO metric value is normal
for an application with this size (52 classes). The maximum value is achieved
in the MeshGenerator class that references the classes implementing the main
processes and classes holding the main parameters, such as criteria and regions;
this class is only used when the system is operated using the command line, so
it can be excluded from the analysis. For the RFC metric, the values are within
the normal scope for all classes except for P r e d i c a t e s and Tetrahedron for the
same reasons explained for WMC. Finally, the LCOM metric has high values;
however, the highest values are only found in abstract classes: their methods
have no code, so they do not access instance variables; thus, the metric has no
effect.

3.2 Performance Evaluation

Performance evaluation in 3D meshing tools is mainly related to the time it
takes to execute typical mesh processes. Figure 3 shows an example of a volume
before and after applying the refinement process and Fig. 4 shows the time as
a function of the number of refined tetrahedra.

Pig. 3. Refinement process example: 170 points and 441 tetrahedra (left), and 8,823
points and 45,518 tetrahedra (right)

In general terms, a generated meshing tool with the same functionality as
TetGen is around two times slower with respect to refinement and improvement.
This difference may be due to the fact that in TetGen all data structures are
accessed directly, not using information hiding or encapsulation, and there is
no dynamic binding. On the other hand, the mesh generated mesh tool uses all
these concepts.

Building a 3D Meshing Framework 169

Pig. 4. Refinement framework time performance (executed in a Pentium IV processor
with 2.6 GHZ and 1 GB RAM)

4 Conclusion

3D meshing tools are extremely complex software that apply resource consum­
ing algorithms to big meshes. This is why performance has been the main focus
of research around implementing this kind of software. However, since comput­
ers tend to have more and cheaper memory and CPU capacity, some of the
burden has shifted towards the development process of the tools. In this con­
text, we proposed an object-oriented design based on design patterns that has
proved to yield a flexible and modifiable framework, without severely sacrificing
performance.

References

1. Geometry Center at the University of Minnesota. Geomview, 1996.
http://www.geomview.org.

2. M. C. Bastarrica and N. Hitschfeld-Kahler. Designing a Product Family of Mesh­
ing Tools. Advances in Engineering Software, 37(1):1-10, Jan 2006.

3. Shyan R. Chidamber and Chris F. Kemerer. A Metrics Suite for Object-Oriented
Design. IEEE Transactions on Software Engineering, 20(6):476-493, June 1994.

4. A. H. ElSheikh, W. S. Smith, and S. E. Chidiac. Semi-formal design of reliable
mesh generation systems. Advances in Engineering Software, 35(12):827-841,
2004.

5. Andrea Fabri. CGAL- the computational geometry algorithm library. In Proceed­
ings of the 10th Annual International Meshing Roundtable, 2001.

6. Erich Gamma, Richard Helm, Ralph Hohnson, and Hohn Vlissides. Design Pat­
terns: Elements of Reusable Object Oriented Software. Addison-Wesley, 1995.

7. Paul-Louis George, Frederic Hecht, and Eric Saltel. TetMesh-GHS3D V3.1, the
fast, reliable, high quality tetrahedral mesh generator and optimiser, 1986. White
paper, http://www.simulog.fr/mesh/geuer2.htm.

170 Hitschfeld et al.

8. Scott A. Mitchell and Stephen A. Vavasls. Quality mesh generation in three
dimensions. In Proceedings of the Eighth Annual Symposium on Computational
Geometry, pages 212-221, Berlin, Germany, 1992. ACM.

9. Steve Owen. Meshing software survey, 1998. h t tp : / /www.andrew.cinu.edu/-
u s e r / s o w e n / s o f t s u r v . h t m l .

10. Maria Cecilia Rivara. New Longest-Edge Algorithms for the Refinement and/or
Improvement of Unstructured Triangulations. International Journal for Numeri­
cal Methods in Engineering, 40:3313-3324, 1997.

11. Jim Ruppert . A Delaunay Refinement Algorithm for Quality 2-Dimensional Mesh
Generation. Journal of Algorithms, 18(3):548-585, May 1995.

12. J. Shewchuk. Adaptive Precision Floating-Point Arithmetic and Fast Robust
Geometric Predicates. Discrete & Comp. Geometry, 18(3):305-363, 1997.

13. H. Si and K. Gartner. Meshing Piecewise Linear Complexes by Constrained De­
launay Tetrahedralizations. In Proc of the 14* International Meshing Roundtable,
2005.

