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Abst rac t . The Stream Control Transport Protocol (SCTP) is a new 
transport layer protocol that has been designed to provide reliable trans­
port over the Internet. While the Transport Control Protocol (TCP) is 
the most popular transport protocol for the Internet, it falls short with 
regard to security, more specifically resilience to Denial-of-Service (DoS) 
attacks, such as SYN attacks. The need for resilience to DoS attacks is ob­
vious, and SCTP provides for this resilience via its improved handshake 
mechanism and the Cookie feature. This paper discusses the SCTP simu­
lation with particular emphasis on resilience to DoS attacks. As revealed 
by our detailed simulation study, the increased DoS resilience comes with 
increased overheads. While DoS resilience is extremely critical, reducing 
overheads in the resource-constrained wireless environment also assumes 
paramount importance. Hence we propose secure SCTP with an innov­
ative Cookie mechanism using a combination of cache and INIT packet 
repetition to minimize the communication overhead and simultaneously 
to maximize security associated with SCTP's DoS resilience for wireless 
Internet. 

1 INTRODUCTION 

The Stream Control Transport Protocol (SCTP) [7] is a new transport-layer 
protocol that is being designed to provide reliable and secure transport of a 
variety of applications over IP networks. While the Transport Control Protocol 
(TCP) as its counterpart is the most popular and widely used transport protocol 
in the IP networks [3], SCTP not only provides the features offered by TCP but 
also has additional important characteristics. Examples include SCTP's novel 
features such as multi-homing and multi-streaming, built-in "protocol-hooks" to 
provide resistance to DoS (Denial of Service) attacks as well as the capability 
of supporting various ordering types (i.e., strict ordering, partial ordering and 
un-ordered delivery types). 

In this paper, we use simulation techniques to investigate and analyze the 
SCTP's DoS feature in the wireless Internet. To this end, we have constructed 
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detailed simulation models of SCTP to generate DoS-attack scenarios in a wire­
less Internet model consisting of wireless workstations connected by a wireless 
LAN as a preliminary simulation study. Our detailed simulation analysis has 
helped reveal the overheads/bottlenecks associated with SCTP's DoS scenarios 
and to arrive at an innovative Cookie mechanism (via a combination of cache 
and INIT packet repetition) to minimize the overhead and to maximize security 
at the same time. 

The remainder of this paper is organized as follows. Section 2 presents the 
SCTP simulation and resulting scenarios developed using OPNET as well as 
overhead and delay-analysis. Section 3 proposes secure SCTP with an improved 
Cookie mechanism (based on an innovative combination of cache and INIT 
packet repetition) to help reduce the DoS related overheads and thereby render 
SCTP an extremely viable solution in the resource-constrained wireless Internet 
environment. Section 4 concludes the paper. 

2 SCTP SIMULATION 

First, we will compare TCP and SCTP briefly in terras of connection estalish-
ment. In TCP, the 3-way handshake sequence is used to set up TCP connections. 
To open a connection, the TCP client initiates a connection establishment pro­
cedure as an active opener by sending a SYN packet to the TCP server. The 
SYN packet carries connection initialization information like the initial value 
of the sequence number. Then, the TCP server waits for an acknowledgment 
(ACK) from the TCP server, indicating that the SYN packet has been received. 
After receiving the SYN packet, the TCP server sends its SYN packet along with 
the acknowledgment, indicating that it is also ready to accept the connection 
as a passive opener. Finally, the TCP client sends its ACK packet in response 
with the SYN/ACK packet from the TCP server. Once this exchange is com­
plete, the connection is fully estabhshed and data can be transferred through 
this connection. 

In case of TCP, whenever a connection establishment request arrives, the 
TCP server just allocates for each connection all the resources including mem­
ory for the transmission control block (TCB), before it verifies the TCP client. 
Assume that there is an intruder, trying to attack the TCP server by sending a 
bunch of SYN packets. Since TCP implementations limit the number of connec­
tions due to the resource problem, it could cause the server to use up memory 
and resources handling new connection requests. As a result, the TCP server 
reaches its limit so that it cannot accept any new incoming connections, leading 
to the state of the denial of service (DoS). 

On the other hand, SCTP relies on the 4-way handshake sequence instead of 
the 3-way handshake of TCP, where a cookie mechanism is incorporated into the 
sequence to guard against some types of DoS attacks. To start an association (or 
connection in the TCP terminology), the SCTP client initiates the 4-way hand­
shake by sending an INIT packet to the SCTP server. The INIT packet carries 
association initialization information including the initial sequence number and 
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receiver window. Likewise, the SCTP client waits for an acknowledgment (ACK) 
from the SCTP server, indicating that the INIT packet has been received. After 
receiving the INIT packet, the SCTP server sends its INIT-ACK packet along 
with the Cookie as a variable parameter in it. The Cookie parameter contains 
the minimal TCB information required to create the association and a message 
authentication code (MAC). The MAC code is generated using a hash algorithm 
(e.g., MD5 or SHA-1 algorithms) with the input of the TCB information and a 
secret key. 

When the SCTP client receives the INIT-ACK packet from the SCTP server, 
it puts the servers Cookie into a COOKIE-ECHO packet as it is and returns to 
the server. At the same time, if there is any data to send, it can be included in 
this packet for transmission efficiency. Upon reception of the COOKIE-ECHO 
packet, the SCTP server can vahdate the Cookie by checking the MAC code 
and uses it to rebuild the TCB. Since the SCTP client has been verified through 
the cookie mechanism at this point, the server allocates all the resources and 
memory right away. Then, the server sends a COOKIE-ACK packet to the SCTP 
client (optionally bundling any data with this packet for transmission efficiency). 
Once this last exchange is done, the association is fully established and data can 
be transferred through this Eissociation. 

This section presents SCTP simulation using OPNET to demonstrate how 
SCTP performs in response to DoS attacks and also in normal situation com­
pared to TCP, focusing on the connection establishment phase. As shown in 
Fig. 1, our network model is built on one wireless LAN (IEEE 802.11) as our 
preliminary study for a wireless Internet model, which contains 20 wireless work­
stations and one of them is an intruder. The Access Point (AP) in the wireless 
LAN is connected to the IP router and the File Server on the 100Base-T wire­
line LAN operating at 100 Mbps. The wireless workstations in the wireless LAN 
communicate with the File Server through the AP and the IP router. 

To compare the security feature between TCP and SCTP in the scenario of 
DoS attacks, we develop two types of node models for the wireless workstation. 
The two node models differ in the transport protocol, namely one employs TCP 
and the other SCTP. The node model represents a wireless workstation with file 
transfer apphcations running as a client over T C P / I P or S C T P / I P according to 
the type of the node model. The wireless workstation supports one underlying 
wireless LAN connection at 1 Mbps. Likewise, we also develop two types of 
node models for the File Server, which represents a server node with file server 
applications running over T C P / I P or SCTP/IP . 

The scenario is that the Intruder in the wireless LAN attacks the File Server 
by sending a large number of association or connection establishment requests 
(i.e., INIT packets for SCTP and SYN packets for TCP, respectively) with the 
forged IP source address, until the File Server has reached its limit on the number 
of connections (due to resource problems). In case of TCP, since the TCP server 
(File Server) allocates all the resources right away before it verifies the TCP 
client, it causes the server to very rapidly become unable to accept any new 
incoming connections, declaring itself as the DoS state. Even if this situation 
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Fig. 1. Simulation Network Model 

is cleared out after a period of time, the Intruder can send SYN packets fast 
enough so that it ensures to make the situation recur. The time period can be 
obtained using the current values of the TCP simulation parameters in OPNET, 
as shown in Fig. 2. 
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Fig. 2. Time Sequence Diagram for SYN Retransmission in TCP 

When a SYN packet arrives from the Intruder, the File Server allocates all 
the resources right away and then sends to the Intruder its SYN packet with the 
acknowledgment, indicating that the SYN packet has been received successfully. 
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At the same time, the File Server starts a retransmission (RTO) timer whose 
value is set initially to 1 second in the TCP parameters with OPNET simulation. 
Since the Intruder uses a forged source IP address, the SYN/ACK packet from 
the File Server gets nowhere and therefore, there is no ACK -for this packet. As 
a result, the retransmission timer on the File Server expires, and then it triggers 
a retransmission of the SYN/ACK packet to the Intruder using the same forged 
source IP address. At this time, the value of the retransmission timer is doubled 
to 2 seconds based on the TCP protocol. 

Since the maximum number of retransmission attempts on connection estab­
lishment is restricted to 3 in the TCP parameters, the File Server gives up after 
3 times of retransmission. At this point, it releases all the resources allocated 
before and reports an error to the upper layer. The value of the retransmission 
timer is doubled every time it expires, because there is no ACK packet received 
from the other side (Intruder). In summary, with the current values of the TCP 
simulation parameters in OPNET, it takes 15 seconds to clear out the whole sit­
uation once it starts from the time when the resources are allocated first. Also, 
there is a limit on the number of connections, which is 200 as a configurable 
system parameter. Therefore, if the Intruder sends more than 200 SYN packets 
within 15 seconds, then it causes the File Server to reach the limit, rendering it 
unable to accept any new incoming connections as the DoS state. 

In the OPNET simulation, the Intruder is designed to generate SYN packets 
at the rate of 15 packets/s, which is faster than the rate of 200/15 packets/s 
above. The simulation results show that the File Server has entered the DoS 
state after it receives 200 SYN packets from the Intruder. On the other hand, 
since SCTP unlike its counterpart TCP allocates the resources only after the 
SCTP client is confirmed with the Cookie mechanism, the Intruder is prevented 
from "hogging" up system resources. Our simulation studies create the above 
scenario for the SCTP case and we validate via the OPNET-based simulation 
models developed in this work that SCTP indeed avoids this situation. Fur­
thermore, unlike the TCP case, the SCTP system continues to accept new and 
valid incoming association requests. Finally, after a certain maximum number of 
retransmission attempts, the File Server gives up and reports an error to the up­
per layer. No resource-release phase is entered now since there were no resources 
allocated to begin with (to the intruding end station). 

In fact, more increased security comes at the cost of more increased overhead 
in the transport layer, as shown in Table 1. In terms of the number of packets, 
T C P and SCTP have the same overhead based on the protocol behavior. How­
ever, if the packet size is considered in the overhead comparison, SCTP causes 
more overhead than TCP. To make the equal conditions, it is assumed that only 
mandatory parameters are used for both cases. Since there is no data carried in 
this connection setup phase, the TCP packet contains only the packet header of 
20 bytes. In SCTP, the packet size is different according to the packet type. The 
INIT packet is 32 bytes and the INIT-ACK packet is 32 bytes plus a variable 
Cookie parameter, which is up to 156 bytes depending on the implementation. 
Since the bandwidth is a scarce resource in the wireless environment, the Cookie 
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parameter should be minimized. In the next section, we present a novel efficient 
and secure Cookie mechanism for wireless Internet. 

Table 1. Overhead Table for TCP vs. SCTP in DoS'Attack 

Number of Packets 
Packet Size 

TCP SYN 
1 

20 bytes 

SCTP INIT 
1 

32 bytes 

TCP SYN/ACK 
4 

20 bytes 

SCTP INIT-ACK 
4 

32 bytes + Cookie 

Even in normal situation, SCTP causes more overhead at the connection 
setup phase because of the 4-way handshake and Cookie mechanisms. To es­
tablish a connection, SCTP consumes 4 packets instead of 3 packets of TCP in 
terms of the number of packets. For the packet size, the total overhead is 60 bytes 
in case of TCP, because each TCP packet is 20 bytes and the 3-way handshake 
sequence is used. On the other hand, the total overhead in SCTP comes to 96 
bytes plus twice the Cookie parameter, because the 4-way handshake sequence 
is used instead with the INIT packet of 32 bytes, the INIT-ACK packet of 32 
bytes plus Cookie, the COOKIE-ECHO packet of 16 bytes plus Cookie, and the 
COOKIE-ACK packet of 16 bytes. Therefore, SCTP has 36 bytes plus twice the 
Cookie more overhead than TCP in terms of the packet size. 
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Fig. 3. Connection Setup Delay for SCTP vs. TCP in Normal Situation 

We also measure connection setup delays for SCTP versus TCP as a function 
of offered load in normal situation over the simulated wireless network. The 
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connection setup delay denotes the entire duration measured from the time a 
connection setup request packet is sent to the time the transport connection is 
established successfully. The offered load is defined as data traffic offered to the 
transport layer by the file transfer application on the client* side by changing 
the mean value of the IRT (Inter-Request Time) according to the exponential 
distribution. In SCTP, it is assumed that the Cookie parameter is fixed as 32 
bytes. In Fig. 3, the simulation results exhibit the exponentially increasing delay 
behavior on connection setup with the higher load for both SCTP and TCP, 
where the shorter IRT interval means the higher load. Since SCTP uses the 4-way 
handshake sequence, it causes more queuing delay at the higher load, compared 
to the 3-way handshake TCP. Under light load conditions, SCTP takes about 1 
msec more delay than TCP and the simulation results approach the theoretical 
minimum delay values, which can be obtained by computing transmission times 
only (packet size/bit rate). Those minimum values are 1.5 msecs for TCP and 
2.56 msecs for SCTP, respectively. 

3 SECURE SCTP FOR WIRELESS INTERNET 

Here, we propose secure SCTP with an efficient and secure Cookie mechanism 
using an innovative combination of cache and INIT packet repetition to minimize 
the communication overhead and simultaneously to maximize security for wire­
less Internet. In essence, since the transmission control block (TCB) information 
consumes a large bandwidth and contains sensitive connection information, the 
Cookie parameter is modified to exclude any TCB information inside for trans­
mission efficiency and security purposes. Instead, the INIT packet is repeated 
to recreate the TCB information later just in case of the DOS attacks, and also 
the TCB cache is used to significantly reduce the connection set-up delays in 
normal situation. First, we will describe briefly how TCP and SCTP estabhsh 
connections, before we get into the details of our proposed Cookie mechanism. 

In TCP, the 3-way handshake sequence is used to set up TCP connections. To 
open a connection, the TCP client initiates a connection establishment procedure 
as an active opener by sending a SYN packet to the TCP server. The SYN 
packet carries connection initialization information like the initial value of the 
sequence number. Then, the TCP cUent waits for an acknowledgment (ACK) 
from the TCP server, indicating that the SYN packet has been received. After 
receiving the SYN packet, the TCP server sends its SYN packet along with the 
acknowledgment, indicating that it is also ready to accept the connection as a 
passive opener. Finally, the TCP client sends its ACK packet in response with 
the SYN/ACK packet from the TCP server. Once this exchange is complete, 
the connection is fully established and data can be transferred through this 
connection. 

In case of TCP, whenever a connection establishment request arrives in the 
form of SYN packet, the TCP server just allocates for each connection all the 
resources including memory for the TCB without verifying the T C P client. As­
sume that there is an intruder, trying to attack the TCP server by sending a 
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bunch of SYN packets (so called SYN attack). Since TCP implementations limit 
the number of connections due to the resource problem, eventually it could cause 
the server to use up all the resources. As a result, the TCP server cannot ac­
cept any new incoming connections, leading to the state of the denial of service 
(DoS). 

On the other hand, SCTP relies on the 4-way handshake sequence instead of 
the 3-way handshake of TCP, where a "Cookie" mechanism is incorporated into 
the sequence to guard against some types of DoS attacks. To start an associa­
tion (or connection in the TCP terminology), the SCTP client initiates the 4-way 
handshake by sending an INIT packet to the SCTP server. The INIT packet car­
ries association initialization information including the initial sequence number 
and receiver window. Likewise, the SCTP client waits for an acknowledgment 
(ACK) from the SCTP server, indicating that the INIT packet has been received. 
After receiving the INIT packet, the SCTP server responds with its INIT-ACK 
packet along with the Cookie as a variable parameter in it. The Cookie para­
meter contains the minimal TCB information required to create the association 
and a message authentication code (MAC). The MAC code is generated using a 
hash algorithm (e.g., MD5 or SHA-1 algorithms) with the input of the minimal 
TCB information and a secret key [4]. 

When the SCTP chent receives the INIT-ACK packet from the SCTP server, 
it puts the received Cookie into a COOKIE-ECHO packet as it is and sends 
the packet to the server. At the same time, if there is any data to send, it 
can be included in this packet for transmission efficiency. Upon reception of the 
COOKIE-ECHO packet, the SCTP server first vafidates the Cookie by the MAC 
code and its lifespan, and then uses it to rebuild the TCB information only if 
the Cookie is valid. Since the SCTP client has been verified through the Cookie 
mechanism at this point, the server can allocate all the resources and memory 
right away. Then, the server sends a COOKIE-ACK packet to the SCTP chent 
(optionally bundling any data with this packet for transmission efficiency). Once 
this last exchange is done, the association is fully established and data can be 
transferred through this association. 

The Cookie mechanism is employed to guard specifically against the DoS 
attacks flooding with INIT packets. Rather than allocating resources for the 
INIT packet, the server instead creates a Cookie parameter with the TCB subset 
in it and sends it back in the INIT-ACK packet. Since this packet goes back to 
the source address of the INIT packet, the Intruder with a forged IP address will 
not get the Cookie. Only a valid SCTP client will get the Cookie and return it 
in the COOKIE-ECHO packet. In this case, the SCTP server checks its integrity 
by the MAC code and its validity by the lifespan. If it is good, the server uses 
it to rebuild the TCB for this connection by allocating all the resources at this 
time, avoiding the DoS attacks as a result. 

The Cookie parameter is defined in a Type-Length-Value format, because it 
is variable. The first two fields of Type and Length take 4 bytes, and the Value 
field of Cookie consists of 4 parts: TCB subset, MAC, Timestamp, and Life span. 
The TCB subset represents the minimal subset of TCB information necessary 
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to recreate the TCB. Its size is variable up to 140 bytes, which is the entire TCB 
data. The remaining three parts of the Cookie parameter are fixed: 4 bytes of 
MAC, 4 bytes of Timestamp, and 4 bytes of Lifespan as typical size values. The 
Cookie creation timestamp and the lifespan are used together to check whether 
the received Cookie is stale or not, while the MAC code is used to check the 
Cookie integrity. 

According to the 4-way handshake sequence of SCTP, the Cookie parame­
ter is echoed between client and server in the INIT-ACK and COOKIE-ECHO 
packets. Since the Cookie parameter includes the large TCB data up to 140 
bytes, such round trip causes a large overhead especially for wireless networks, 
where the bandwidth is a scarce resource. The proposed Cookie mechanism is 
to exclude the TCB data from the Cookie parameter to substantially reduce the 
communication overhead. At the same time, since the TCB information carries 
sensitive connection information like source identity and initial sequence number, 
the best way for security is to get rid of it completely so that this information 
may not be exposed at all to outside. Another point of our mechanism is to use 
a TCB cache in order to speed up the connection setup operation. That is, if 
there is a cache hit, there is no need to recreate the TCB in this case. Most 
of time, cache hits are expected in normal situation except for the DoS attacks 
or near-capacity situation. The TCB cache is implemented in S/W just hke the 
buffer cache concept and the total number of TCB cache is the same as the limit 
on the number of connections. 

To begin with, the TCB cache is initialized as an empty list. If the INIT 
packet is received, the SCTP server allocates a cache entry to create a new TCB 
based on the connection information from this packet. The source IP address 
and port can be used as an index key to the TCB cache in the cache pool. 
In response, the INIT-ACK packet is sent along with the Cookie parameter in 
it without the variable TCB part, as mentioned above. After that , the client 
sends the COOKIE-ECHO packet with the Cookie parameter as it is and the 
repeated INIT packet as well. Actually, the entire INIT packet does not have to 
be repeated and instead the client sends only a part of the INIT packet (e.g., 
receiver window, initial sequence number) required to recreate the TCB data 
on the server side just in case there is a cache miss. Later, when the COOKIE-
ECHO packet arrives, first the SCTP server uses the index key to look up the 
corresponding TCB in the cache pool. If there is a cache hit, this TCB can be 
used directly as long as the Cookie is vahd. Otherwise, a new TCB is created 
again using the repeated INIT information from the received COOKIE-ECHO 
packet. 

To compare the overhead between the existing and the proposed Cookie 
mechanisms, the worst case scenario is assumed where the entire TCB data of 
140 bytes is carried in the Cookie parameter for the existing case. The rest of 
the Cookie is the same for both cases and it takes up 16 bytes, because there 
are 4 bytes of the Type/Length fields plus 12 bytes of the Value field without 
the TCB part. In the existing mechanism, since the INIT-ACK and COOKIE-
ECHO packets are exchanged along with the Cookie between client and server. 
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the total overhead comes to 360 bytes for the Cookie mechanism. On the other 
hand, our new mechanism does not send any TCB data in the Cookie parameter 
and only a part of the INIT packet is repeated in the COOKIE-ECHO packet. 
Because the repeated portion of the INIT packet is 16 bytes without the first 
Type/Length fields, the total overhead in this case comes to 96 bytes for the 
Cookie mechanism, which means about 73% reduction of overhead compared to 
the existing scheme, resulting in a significant improvement. Moreover, since cache 
hits are expected most of time, the setup delay can also be reduced substantially. 

4 CONCLUSIONS 

In this paper, we have presented simulation studies of SCTP in wireless Inter­
net, with particular emphasis on the DoS resistance feature. Observe that SCTP 
achieves DoS resilience via its improved handshake mechanism and Cookie fea­
ture. We also have discussed the overhead issue in return of more security and 
proposed one possible approach to minimize it. We have performed detailed 
simulations to not only demonstrate the network's resilience to intruder attacks 
while using SCTP, but to also provide a detailed analysis of the associated over­
heads and delays with regard to SCTP's DoS resilience feature, and comparisons 
with TCP. Additionally our detailed simulation study has furnished invaluable 
insights into the feature and helped in the derivation of a novel Cookie mech­
anism that judiciously combines cache and INIT packet repetition to minimize 
the overhead and to maximize security at the same time associated with SCTP's 
DoS resilience over wireless Internet. 
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