
A Shared-Memory Multiprocessor
Scheduling Algorithm

Irene Zuccar', Mauricio Solar', Fernanda Kri', Victor Parada'
1 Departamento de Ingenieria Informatica, Universidad de Santiago de

Chile. http;//www.diinf.usach.cl

Abstract. This paper presents an extension of the Latency Time (LT)
scheduling algorithm for assigning tasks with arbitrary execution times on a
multiprocessor with shared memory. The Extended Latency Time (ELT)
algorithm adds to the priority function the synchronization associated with
access to the shared memory. The assignment is carried out associating with
each task a time window of the same size as its duration, which decreases for
every time unit that goes by. The proposed algorithm is compared with the
Insertion Scheduling Heuristic (ISH). Analysis of the results established that
ELT has better performance with fine granularity tasks (computing time
comparable to synchronization time), and also, when the number of processors
available to carry out the assignment increases.

1 Introduction

Real-world applications of scheduling is a complex problem in which a large
quantity of research have been done in the fields of computer science, artificial
intelligence and operational research. Some recently examples are a real application
in a piinting company shown in [1] and a solution to the Single-Track Railway
Scheduling Problem presented in [2]. On the other hand, a comparison of parallel
models of genetic algorithm and tabu search to schedule concuixent processes into a
parallel machine with homogeneous processors is shown in [3].

In parallel computing there is the problem of finding the best use of the available
computer resources of the objective machine with which one is working. After a
literature review we could not find any work related that presents a solution that
takes into consideration the synchronization time, which is a characteristic of
systems with shared memory, in the execution of applications. These applications are
usually divided into tasks of different duration that are executed in the available
processors. The Latency Time (LT) algorithm [4] approaches this reality, but it has
the restriction that the tasks must be of unit duration. This paper presents the

Please use the foUowing format when citing this chapter:

Zuccar, I , Solar, M., Kri, K, Parada, V, 2006, in IFIP International Federation for Information Processing, Volume 218,
Professional Practice in Artificial Intelligence, eds. J. Debenham, (Boston: Springer), pp. 313-321.

314 Zuccar, Solar, Rri, Parada

extension of the LT algorithm removing this restriction, allowing tasks with arbitraiy
duration to be assigned efficiently.

The paper is organized as follows: section 2 introduces the theoretical
background of the scheduling problem. Section 3 details the LT algorithm and the
extension proposed. Section 4 shows the analysis of the results. Finally, section 5
presents the conclusions.

2 Theoretical Framework

It is always possible to represent a parallel computer application as a task graph. A
task graph is a DAG (Directed Acyclic Graph) defined by a tuple (K, E, C, T), where
V= {«,, i £ [1, n]} (n = I V\) is the set of nodes that represent the tasks that must be
itinerated; E = {ey, i,y e [1, «]} (e = I £ I) is the set of directed edges that indicated
the precedence between tasks / andy; C={cjj, i,j e [1, «]} is the cost associated with
each edge of the DAG, and !'={?,•, / e [1, n]} is the computing time for each task. The
granularity of a graph is the ratio of the average duration of the tasks and the average
of the communications within the DAG (Equation 1).

Ê . / Ẑ .
n / e

Communication is considered when it takes at least 20% of the time occupied in
computing. If it is less than that value, it is considered negligible. Therefore, if (0 <
Gr < 5), the granularity is said to be fine, and if Or > 5, the granularity is said to be
coarse [4].

2.1 Scheduling Algorithms

Normally, the inputs to the scheduling algorithms are a task graphs (representing an
applications), and the number of processors p of the system. The output is a Gantt
chart of the assignment found. The algorithms can consider or not consider the cost
of communication between the tasks, and in that way it is determined whether they
work on machines with shared or distributed memory. Those algorithms that
consider arbitrary communication between the tasks are oriented to the exchange of
messages. Those that do not consider communication have in general been proposed
for machines with shared memory. This is because it is considered that the time
necessary for synchronization between the tasks. At, is negligible compared to the
duration, 4 of the tasks (therefore, c,j is ignored). It can even be applied to machines
with distributed memory, but with the concept of coarse granularity. There are
different approaches to solve the scheduling problem; Meta-Heuristic algorithms [5],
Clustering algorithms [6], Lists algorithms [7].

Meta-heuristic algorithms [5] are defined in a general way and must be modeled
according to the nature of the problem to be solved. Their main advantage is that,

Professional Practice in Artificial Intelligence 315

even though they do not deliver an optimum solution, they provide solutions close to
the optimum.

List algorithms have a special case of assignment heuristic v/hich consists in
assigning a priority to each task, and creating a priority list. Then, every enabled task
from the list (its predecessors have already been assigned) it is assigned to an
available processor. Among the algorithms that consider communication the
following can be mentioned: ISH {Insertion Scheduling Heuristic) [8], MCP
(Modified Critical Path) [9] and LT [4]. The ISH algorithm operates as a classical list
algorithm, but when choosing the processor for the next assignment it looks if the
processor has empty time spaces. If so it will consider the rest of the enabled tasks on
the list and use, if possible, those spaces.

A clustering algorithm maps the nodes of the DAG into disjoint groups of tasks
called clusters, which correspond to the sets that group tasks. All the tasks of a given
cluster are executed on the same processor. The main difference between these
algorithms is the heuristic that they have to generate the clusters. Examples are DSC
{Dominant Sequence Clustering) [10] ?ind RC {Reverse Clustering) [6].

3 Extended Latency Time Scheduling Algorithm (ELT)

3.1 Latency Time Scheduling Algorithm (LT)

LT is a list algorithm that operates on DAGs with tasks of unit duration. It assumes a
multiprocessor system with identical processing elements where each processor
carries out only one task at a time until it is completed. This algorithm considers
communication in parallel machines with shared memory, using as input parameter
the synchronization time, A?, when accessing the shared memory, which belongs to
the system. That time is considered comparable to the duration of the tasks, /,-, by
means of the proportionality constant k (Equation 2).

At^kti (2)

LT is designed to operate with DAGs of fine granularity, where ?,<A? or r,=A?. It
is a two-step algorithm: first, it calculates the priority of each task, which aims at
maximizing the number of enabled tasks and decreasing the latency time used for
synchronization, and second, it generates the Gantt chart corresponding.

3.2 Priority Function of Extended Latency Time Extended (ELT)

The priority function defined for ELT is based on the one used by LT, but more
information is added. To choose the most adequate priority function, nine
combinations of possible ways of prioritizing the information of each node were
defined. Tests were carried out on the sets of DAGs defined in this paper, and the
best priority function found, for each node, was based on the following calculations:

316 Zuccar, Solar, Rri, Parada

/(/J,): Size of the longest path starting from the input nodes of the DAG, up to node
iij. To this size must be added the duration of the tasks and the system's time At.
L{ni): Size of the longest path from node «, to the output nodes. To this size must be
added the duration of the tasks and the system's time ht.
Lf. Size of the longest path that goes through node «;, (Equation 3).

L, = /(«,.) + L{n-) ~-\-~t; (3)

CP: Set of nodes that make up the critical path.
Lcp. Size of the DAG's longest path, called Critical Path.
Outf. Number of immediate successors of node «;.
Hangf. Number of tasks achievable by node K,-.
Tf. Duration of each node rtj.
SP{. priority of the node «, {Static Priority).

Calculation of the priority is done as follows:

1. Determine Li, V ? e [1, «] (according to equation 3). Group the tasks that have the
same i , and arrange them in decreasing order: every new ordered group is labeled
as i^ with g: 0, 1,2, ...

2. Detemiine Outj, Vie [1, n]. Group the tasks that have the same outt and arrange
them in decreasing order: eveiy new ordered group is labeled as OUT,, with r: 0, 1,
2,...

3. Determine Hang/, V / e [1, «]. Group the tasks that have the same hangi and
arrange them in decreasing order: every new ordered group is labeled as HANG,
with.s:0, 1,2,...

4. Determine T,-, V i e [1, «]. Group the tasks that have the same 7} and arrange them
in decreasing order: every new ordered group is labeled as T,, with ir. 0, 1,2,...

5. Determine/)r!on7>',-, V i e [1, n]. To do this, add the subscripts of the subsets (I,,
OUT,., HANGs, T„) to which each task belongs. Group the tasks that have the same
priority I and arrange them in decreasing order: every new ordered group is labeled
asPG, conv:0, 1,2, ...

6. Determine 5P, = {v / n, e PG,} , V i e [1, n].

3.3 Assignment's Extended Latency Time (ELT)

ELT [11] is capable of operating with tasks of arbitrary duration, using the same
assignment policy as LT. It should be noted that the relation shown in Equation 2
does not represent this new instance. However, At remains constant and is an input
parameter to the algorithm. Every task has a time window of a size corresponding to
its duration. For every time unit that goes by, the window of the task at the moment
processed, are reduced by one unit until they reach zero, at which time the tasks that
are enabled can be updated, and the coiiesponding assignments can be made on the
processors that are no longer busy.

The ELT algorithm, whose computing complexity is 0(«^), is shown below.

Professional Practice in Artificial Intelligence 317

ELT Algorithm
t=o
Calculate priority for each node n̂ ;.

For each node, define a Time Window equal to the size of the task.

Put into Unsched all DAG nodes.

Put into Enable all nodes with entry level tlevel " 1 .

Put into groupp+i all Enable nodes.

EnabledTasks := TRUE

WHILE Unsched is not empty DO

IP EnabledTasks THEN Schedule(t)

Update Enable with recently assigned nodes.

Displace the Time Window for each task in Schedj(t)

IF any task assigned completed its Time Window THEN

EnabledTasks:= TRUE

ELSE EnabledTasks:= FALSE

UpdateOldTasks{), UpdateGroupTasks()

IP EnabledTasks THEN

Update Unsched removing recently assigned nodes.

Update-Enable(t)

t := t + 1

ENDWHILE

Return Sched

4 Tests and Results

A comparison was made with seven scheduling algorithms obtained from the
literature. To save space, the only comparison shown is that with the ISH algorithm,
which is the algorithm that gave the best results with respect to ELT. The
performance of the ELT algorithm was compared with the ISH algorithm by means
of the average of the percentage difference between the results obtained by both
algorithms for sets of test DAGs. If the value is positive, it means that the ELT
algorithm delivers a best solution in its total parallel time (PT), and therefore it is
better.

The set of tests used consists of 226 DAGs which are divided into three
categories: 180 "random structure" DAGs, 60 of which have tasks with random
duration (CR), 60 have tasks with duration between 1 and 2 time units (CRu), and
60 have tasks with duration between 1 and 5 time units (CR1.5); and 46 DAGs of
"known structure" (obtained from the literature for comparison purposes), of which
23 have tasks with arbitrary duration (CC) and 23 have the same structure of the
previous ones, but the tasks have durations between 1 and 2 time units (CCu), All
the results obtained are found in [11].

Figures 1, 2 and 3 show the comparison between ELT and ISH for differents
values of At and of p. Figure 1 shows the result of the average of the percentages of

* Nodes without predecessors.

318 Zuccar, Solar, ICri, Parada

the PT when both algorithms, were applied to the CR]_5 set. The graph of Figure 2
shows the result of the average of the percentages in the PT when ELT and ISH were
applied on the CR1.2 set. And finally, that of Figure 3, the same result obtained on
the CC set.

The best results of the ELT algorithm were obtained, in general, for granularity
less than 3 (Figures 1-3). On the other hand, increasing the number of processors
available to carry out the assignment of the DAG improves the results obtained by
the ELT algorithm in relation to the ISH algorithm. This is explained because the
ELT algorithm has a priority function whose purpose is, among other things, to
maximize the number of enabled tasks, so having more processors means executing
these tasks and decreasing the total parallel time. However, as the number of
processors increases, the performance of the ELT improves, but more slowly because
ELT is in charge of executing the enabled tasks, and not of balancing the load among
the processors. Therefore, as more processing elements appear, there is a point at
which some of them are not being occupied, making it possible to minimize the
number of processors required for the solution.

S-Dt=1" WCUT •••Dt=3" D"Dt=5"

Fig. 1. Comparison of the average percentage in the PT" between ELT and ISH for
CR,.5 (Dt = M).

Professional Practice in Artificial Intelligence 319

8,00%

6,00%-

4,00%-

2.00%-

•2 ,00%-

-4 ,00%-

-6,0Q%-

/

.^^'^

- - 0 , 5 6 % -

0,20%

'

^/-

^ :
^ .̂ L'

-1,34%

1,36%

I.'
,

g.

'

'

5 ,92%- -

f '
]

, 1 ~

r-:
n

' ''J
_ . . . p"

'

0"Dt=1" 0"Dt=2"

Fig.
Af).

2. Comparison of the average percentage in the PT between ELT and ISH for CRu (Dt =

|B-Dt.1-B-D1.2-O.D1.3-0-DI.5-|

Fig. 3. Comparison of the average difference in TP between ELT and ISH for CC (Dt = AO-

320 Zuccar, Solar, ICri, Parada

4.1 Optimums Achieved by ELT

In the results obteined by ELT, optimum assignments were found in agreement with
the theoretical optimum parallel time (PTop,) value indicated in equation (4), which
represents the ideal optimum considering that maximum use is made of all the
processors.

"^opt SV w

Table 1 indicates the number of optimum assignments found for the different sets
and test cases performed. The shadowed cells correspond to tests not carried out and
cells with "-" indicate that an optimum assignments was not found. The number in
parentheses next to each set name is the number of DAGs that it has.

Table 1. Optimums obtained by ELT for the test sets used.

CR (60) CRi_5(60) CR|.2(60) CC (23) CC,.; (23)
At=l At=2 At=l At=2 At=3 At=5 At=l At=2 At=l At=2 At=l At=2 At=3 At=5

p=2
p=4

p=6

p=8

p=10

p=16

8

4

-
-
-
-

8
4

6

-
-
-

36
22

10
6

42

21

6
2

40

19

6
1

36

13

1

-

46

21

14
2

38
23

8

-

2

-

-

2

-

-

1

1

-
-

The largest number of optimum assignments was obtained with DAGs from tasks
with average duration close to the value of At, showing that for fine granularity the
ELT algorithm is capable of generating optimum assignments. It should be noted that
in all the sets of tests performed optimum solutions were obtained, but they are not
reflected in the graphs because these consider only the average percentage in units of
time from the ISH result. Of the 2334 tests performed, 455 correspond to optimum
assignments. The C R u and CR1.5 sets had the largest number of optimums found,
152 and 261, respectively. This result is attributed to the fact that the durations of the
tasks are comparable to synchronization time, to their random structures, and to their
having more tasks than CC. It is likely that there are more optimum assignments, but
another method would need to be defined to show it, since the optimums are not
known.

5 Conclusions

The LT algorithm is based on the idea of working using DAGs with fine granularity.
The ELT algorithm keeps this characteristic: its results are improved under two
conditions, when the average computing time of the DAG decreases, and when the
time required for synchronization increases. The best results are achieved when the

Professional Practice in Artificial Intelligence 321

synchronization time takes the value of the greatest duration of the tasks (granularity
less than 3).

Like ELT aims at maximizing the number of enabled tasks, when number of
processors for carrying out the assignment increases, the performance of the ELT
algorithm improves. However, if exist more processors than enabled tasks, the rest of
the processors are ignored.

Acknowledgements

This research was partially supported by CONICYT Grant FONDECYT 1030775,
Chile.

Bibliographical References

1. M.J. Geiger and S. Petrovic, An Interactive Multicriteria Optimisation Approach to
Scheduling In M. Bramer and V. Devedzic (Eds.), Artificial Intelligence Applications and
Innovations. Kluwer Academic PubHshers, 475-484, (2004).

2. L. Ingolotti, P. Tormos, A. Lova, F. Barber, M. A. Salido, and M. Abril, A Decision
Support System (DSS) for the Railway Scheduling Problem. Artificial Intelligence
Applications and Innovations. Kluwer Academic Publishers, pp. 465-474, (2004).

3. P. Pinacho, M. Solar, M. Inostroza, and R. Mufioz, Using Genetic Algorithms and Tabu
Search Parallel Models to Solve the Scheduling Problem. In M. Bramer and V. Devedzic
(Eds.). Artificial Intelligence Applications and Innovations. Kluwer Academic Publishers,
343-358, (2004).

4. M. Solar and M. Feeley, A Scheduling Algorithm considering Latency Time on a shared
Memory Machine, 16th IFIP World Computer Congress 2000, Beijing, China (Aug.,
2000).

5. Y. Kwok and I. Ahmad, Benchmarking and Comparison of the Task Graph Scheduling
Algorithms, Journal of Parallel and Distributed Processing, 381- 422 (Dec, 1999).

6. H. Zhou, Scheduling DAGs on a Bounded Number of Processors. Int. Conf. on Parallel
and Distributed Processing, Techniques and Applications, Sunnyvale (Aug. 1996).

7. T. Yang and A. Gerasoulis, List Scheduling with and without Communication Delays,
Parallel Computing, vol. 19 (1993).

8. B. Kruatrachue and T. Lewis, Duplication Scheduling Heuristics: A New Precedence
Task Scheduler for Parallel Processor Systems, Technical Report, Oregon State
University (1987).

9. M. Wu and D. Gajski, Hypertool: A Programming Aid for Message-Passing Systems,
IEEE Trans. Parallel and Distributed Systems, vol. 1, no. 3 (July, 1990).

10. T. Yang and A. Gerasoulis, DSC: Scheduling Parallel Tasks on an Unbounded Number
of Processors, IEEE Trans. Parallel and Distributed Systems, vol. 5, no. 9 (Sept. 1994).

11. 1., Zuccar; M, Solar, V. Parada, A scheduling algorithm for arbitrary graphs on a shared
memory machine, Chilean Computing Week, Punta Arenas, Chile, November, (2001).

