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Abstract. This paper presents an extension of the Latency Time (LT) 
scheduling algorithm for assigning tasks with arbitrary execution times on a 
multiprocessor with shared memory. The Extended Latency Time (ELT) 
algorithm adds to the priority function the synchronization associated with 
access to the shared memory. The assignment is carried out associating with 
each task a time window of the same size as its duration, which decreases for 
every time unit that goes by. The proposed algorithm is compared with the 
Insertion Scheduling Heuristic (ISH). Analysis of the results established that 
ELT has better performance with fine granularity tasks (computing time 
comparable to synchronization time), and also, when the number of processors 
available to carry out the assignment increases. 

1 Introduction 

Real-world applications of scheduling is a complex problem in which a large 
quantity of research have been done in the fields of computer science, artificial 
intelligence and operational research. Some recently examples are a real application 
in a piinting company shown in [1] and a solution to the Single-Track Railway 
Scheduling Problem presented in [2]. On the other hand, a comparison of parallel 
models of genetic algorithm and tabu search to schedule concuixent processes into a 
parallel machine with homogeneous processors is shown in [3]. 

In parallel computing there is the problem of finding the best use of the available 
computer resources of the objective machine with which one is working. After a 
literature review we could not find any work related that presents a solution that 
takes into consideration the synchronization time, which is a characteristic of 
systems with shared memory, in the execution of applications. These applications are 
usually divided into tasks of different duration that are executed in the available 
processors. The Latency Time (LT) algorithm [4] approaches this reality, but it has 
the restriction that the tasks must be of unit duration. This paper presents the 
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extension of the LT algorithm removing this restriction, allowing tasks with arbitraiy 
duration to be assigned efficiently. 

The paper is organized as follows: section 2 introduces the theoretical 
background of the scheduling problem. Section 3 details the LT algorithm and the 
extension proposed. Section 4 shows the analysis of the results. Finally, section 5 
presents the conclusions. 

2 Theoretical Framework 

It is always possible to represent a parallel computer application as a task graph. A 
task graph is a DAG (Directed Acyclic Graph) defined by a tuple (K, E, C, T), where 
V= {«,, i £ [1, n]} (n = I V\) is the set of nodes that represent the tasks that must be 
itinerated; E = {ey, i,y e [1, «]} (e = I £ I) is the set of directed edges that indicated 
the precedence between tasks / andy; C={cjj, i,j e [1, «]} is the cost associated with 
each edge of the DAG, and !'={?,•, / e [1, n]} is the computing time for each task. The 
granularity of a graph is the ratio of the average duration of the tasks and the average 
of the communications within the DAG (Equation 1). 

Ê . / Ẑ . 
n / e 

Communication is considered when it takes at least 20% of the time occupied in 
computing. If it is less than that value, it is considered negligible. Therefore, if (0 < 
Gr < 5), the granularity is said to be fine, and if Or > 5, the granularity is said to be 
coarse [4]. 

2.1 Scheduling Algorithms 

Normally, the inputs to the scheduling algorithms are a task graphs (representing an 
applications), and the number of processors p of the system. The output is a Gantt 
chart of the assignment found. The algorithms can consider or not consider the cost 
of communication between the tasks, and in that way it is determined whether they 
work on machines with shared or distributed memory. Those algorithms that 
consider arbitrary communication between the tasks are oriented to the exchange of 
messages. Those that do not consider communication have in general been proposed 
for machines with shared memory. This is because it is considered that the time 
necessary for synchronization between the tasks. At, is negligible compared to the 
duration, 4 of the tasks (therefore, c,j is ignored). It can even be applied to machines 
with distributed memory, but with the concept of coarse granularity. There are 
different approaches to solve the scheduling problem; Meta-Heuristic algorithms [5], 
Clustering algorithms [6], Lists algorithms [7]. 

Meta-heuristic algorithms [5] are defined in a general way and must be modeled 
according to the nature of the problem to be solved. Their main advantage is that, 
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even though they do not deliver an optimum solution, they provide solutions close to 
the optimum. 

List algorithms have a special case of assignment heuristic v/hich consists in 
assigning a priority to each task, and creating a priority list. Then, every enabled task 
from the list (its predecessors have already been assigned) it is assigned to an 
available processor. Among the algorithms that consider communication the 
following can be mentioned: ISH {Insertion Scheduling Heuristic) [8], MCP 
(Modified Critical Path) [9] and LT [4]. The ISH algorithm operates as a classical list 
algorithm, but when choosing the processor for the next assignment it looks if the 
processor has empty time spaces. If so it will consider the rest of the enabled tasks on 
the list and use, if possible, those spaces. 

A clustering algorithm maps the nodes of the DAG into disjoint groups of tasks 
called clusters, which correspond to the sets that group tasks. All the tasks of a given 
cluster are executed on the same processor. The main difference between these 
algorithms is the heuristic that they have to generate the clusters. Examples are DSC 
{Dominant Sequence Clustering) [10] ?ind RC {Reverse Clustering) [6]. 

3 Extended Latency Time Scheduling Algorithm (ELT) 

3.1 Latency Time Scheduling Algorithm (LT) 

LT is a list algorithm that operates on DAGs with tasks of unit duration. It assumes a 
multiprocessor system with identical processing elements where each processor 
carries out only one task at a time until it is completed. This algorithm considers 
communication in parallel machines with shared memory, using as input parameter 
the synchronization time, A?, when accessing the shared memory, which belongs to 
the system. That time is considered comparable to the duration of the tasks, /,-, by 
means of the proportionality constant k (Equation 2). 

At^kti (2) 

LT is designed to operate with DAGs of fine granularity, where ?,<A? or r,=A?. It 
is a two-step algorithm: first, it calculates the priority of each task, which aims at 
maximizing the number of enabled tasks and decreasing the latency time used for 
synchronization, and second, it generates the Gantt chart corresponding. 

3.2 Priority Function of Extended Latency Time Extended (ELT) 

The priority function defined for ELT is based on the one used by LT, but more 
information is added. To choose the most adequate priority function, nine 
combinations of possible ways of prioritizing the information of each node were 
defined. Tests were carried out on the sets of DAGs defined in this paper, and the 
best priority function found, for each node, was based on the following calculations: 
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/(/J,): Size of the longest path starting from the input nodes of the DAG, up to node 
iij. To this size must be added the duration of the tasks and the system's time At. 
L{ni): Size of the longest path from node «, to the output nodes. To this size must be 
added the duration of the tasks and the system's time ht. 
Lf. Size of the longest path that goes through node «;, (Equation 3). 

L, = /(«,.) + L{n-) ~-\-~t; (3) 

CP: Set of nodes that make up the critical path. 
Lcp. Size of the DAG's longest path, called Critical Path. 
Outf. Number of immediate successors of node «;. 
Hangf. Number of tasks achievable by node K,-. 
Tf. Duration of each node rtj. 
SP{. priority of the node «, {Static Priority). 

Calculation of the priority is done as follows: 

1. Determine Li, V ? e [1, «] (according to equation 3). Group the tasks that have the 
same i , and arrange them in decreasing order: every new ordered group is labeled 
as i^ with g: 0, 1,2, ... 

2. Detemiine Outj, Vie [1, n]. Group the tasks that have the same outt and arrange 
them in decreasing order: eveiy new ordered group is labeled as OUT,, with r: 0, 1, 
2,... 

3. Determine Hang/, V / e [1, «]. Group the tasks that have the same hangi and 
arrange them in decreasing order: every new ordered group is labeled as HANG, 
with.s:0, 1,2,... 

4. Determine T,-, V i e [1, «]. Group the tasks that have the same 7} and arrange them 
in decreasing order: every new ordered group is labeled as T,, with ir. 0, 1,2,... 

5. Determine/)r!on7>',-, V i e [1, n]. To do this, add the subscripts of the subsets (I,, 
OUT,., HANGs, T„) to which each task belongs. Group the tasks that have the same 
priority I and arrange them in decreasing order: every new ordered group is labeled 
asPG, conv:0, 1,2, ... 

6. Determine 5P, = {v / n, e PG,} , V i e [1, n]. 

3.3 Assignment's Extended Latency Time (ELT) 

ELT [11] is capable of operating with tasks of arbitrary duration, using the same 
assignment policy as LT. It should be noted that the relation shown in Equation 2 
does not represent this new instance. However, At remains constant and is an input 
parameter to the algorithm. Every task has a time window of a size corresponding to 
its duration. For every time unit that goes by, the window of the task at the moment 
processed, are reduced by one unit until they reach zero, at which time the tasks that 
are enabled can be updated, and the coiiesponding assignments can be made on the 
processors that are no longer busy. 

The ELT algorithm, whose computing complexity is 0(«^), is shown below. 
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ELT Algorithm 
t=o 
Calculate priority for each node n̂ ;. 

For each node, define a Time Window equal to the size of the task. 

Put into Unsched all DAG nodes. 

Put into Enable all nodes with entry level tlevel " 1 . 

Put into groupp+i all Enable nodes. 

EnabledTasks := TRUE 

WHILE Unsched is not empty DO 

IP EnabledTasks THEN Schedule(t) 

Update Enable with recently assigned nodes. 

Displace the Time Window for each task in Schedj(t) 

IF any task assigned completed its Time Window THEN 

EnabledTasks:= TRUE 

ELSE EnabledTasks:= FALSE 

UpdateOldTasks{), UpdateGroupTasks() 

IP EnabledTasks THEN 

Update Unsched removing recently assigned nodes. 

Update-Enable(t) 

t := t + 1 

ENDWHILE 

Return Sched 

4 Tests and Results 

A comparison was made with seven scheduling algorithms obtained from the 
literature. To save space, the only comparison shown is that with the ISH algorithm, 
which is the algorithm that gave the best results with respect to ELT. The 
performance of the ELT algorithm was compared with the ISH algorithm by means 
of the average of the percentage difference between the results obtained by both 
algorithms for sets of test DAGs. If the value is positive, it means that the ELT 
algorithm delivers a best solution in its total parallel time (PT), and therefore it is 
better. 

The set of tests used consists of 226 DAGs which are divided into three 
categories: 180 "random structure" DAGs, 60 of which have tasks with random 
duration (CR), 60 have tasks with duration between 1 and 2 time units (CRu), and 
60 have tasks with duration between 1 and 5 time units (CR1.5); and 46 DAGs of 
"known structure" (obtained from the literature for comparison purposes), of which 
23 have tasks with arbitrary duration (CC) and 23 have the same structure of the 
previous ones, but the tasks have durations between 1 and 2 time units (CCu), All 
the results obtained are found in [11]. 

Figures 1, 2 and 3 show the comparison between ELT and ISH for differents 
values of At and of p. Figure 1 shows the result of the average of the percentages of 

* Nodes without predecessors. 
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the PT when both algorithms, were applied to the CR]_5 set. The graph of Figure 2 
shows the result of the average of the percentages in the PT when ELT and ISH were 
applied on the CR1.2 set. And finally, that of Figure 3, the same result obtained on 
the CC set. 

The best results of the ELT algorithm were obtained, in general, for granularity 
less than 3 (Figures 1-3). On the other hand, increasing the number of processors 
available to carry out the assignment of the DAG improves the results obtained by 
the ELT algorithm in relation to the ISH algorithm. This is explained because the 
ELT algorithm has a priority function whose purpose is, among other things, to 
maximize the number of enabled tasks, so having more processors means executing 
these tasks and decreasing the total parallel time. However, as the number of 
processors increases, the performance of the ELT improves, but more slowly because 
ELT is in charge of executing the enabled tasks, and not of balancing the load among 
the processors. Therefore, as more processing elements appear, there is a point at 
which some of them are not being occupied, making it possible to minimize the 
number of processors required for the solution. 

S-Dt=1" WCUT •••Dt=3" D"Dt=5" 

Fig. 1. Comparison of the average percentage in the PT" between ELT and ISH for 
CR,.5 (Dt = M). 
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Fig. 3. Comparison of the average difference in TP between ELT and ISH for CC (Dt = AO-
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4.1 Optimums Achieved by ELT 

In the results obteined by ELT, optimum assignments were found in agreement with 
the theoretical optimum parallel time (PTop,) value indicated in equation (4), which 
represents the ideal optimum considering that maximum use is made of all the 
processors. 

"^opt SV w 

Table 1 indicates the number of optimum assignments found for the different sets 
and test cases performed. The shadowed cells correspond to tests not carried out and 
cells with "-" indicate that an optimum assignments was not found. The number in 
parentheses next to each set name is the number of DAGs that it has. 

Table 1. Optimums obtained by ELT for the test sets used. 

CR (60) CRi_5(60) CR|.2(60) CC (23) CC,.; (23) 
At=l At=2 At=l At=2 At=3 At=5 At=l At=2 At=l At=2 At=l At=2 At=3 At=5 

p=2 
p=4 

p=6 

p=8 

p=10 

p=16 

8 

4 

-
-
-
-

8 
4 

6 

-
-
-

36 
22 

10 
6 

42 

21 

6 
2 

40 

19 

6 
1 

36 

13 

1 

-

46 

21 

14 
2 

38 
23 

8 

-

2 

-

-

2 

-

-

1 

1 

-
-

The largest number of optimum assignments was obtained with DAGs from tasks 
with average duration close to the value of At, showing that for fine granularity the 
ELT algorithm is capable of generating optimum assignments. It should be noted that 
in all the sets of tests performed optimum solutions were obtained, but they are not 
reflected in the graphs because these consider only the average percentage in units of 
time from the ISH result. Of the 2334 tests performed, 455 correspond to optimum 
assignments. The C R u and CR1.5 sets had the largest number of optimums found, 
152 and 261, respectively. This result is attributed to the fact that the durations of the 
tasks are comparable to synchronization time, to their random structures, and to their 
having more tasks than CC. It is likely that there are more optimum assignments, but 
another method would need to be defined to show it, since the optimums are not 
known. 

5 Conclusions 

The LT algorithm is based on the idea of working using DAGs with fine granularity. 
The ELT algorithm keeps this characteristic: its results are improved under two 
conditions, when the average computing time of the DAG decreases, and when the 
time required for synchronization increases. The best results are achieved when the 
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synchronization time takes the value of the greatest duration of the tasks (granularity 
less than 3). 

Like ELT aims at maximizing the number of enabled tasks, when number of 
processors for carrying out the assignment increases, the performance of the ELT 
algorithm improves. However, if exist more processors than enabled tasks, the rest of 
the processors are ignored. 
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