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Abstract. The Gale-Shapley "propose/reject" algorithm is a well-
known procedure for solving the classical stable marriage problem. In 
this paper we study this algorithm in the context of the many-to-many 
stable marriage problem, also known as the stable allocation or ordinal 
transportation problem. We present an integral variant of the Gale-
Shapley algorithm that provides a direct analog, in the context of "or­
dinal" assignment problems, of a well-known bicriteria approximation 
algorithm of Shmoys and Tardos for scheduling on unrelated parallel 
machines with costs. If we are assigning, say, jobs to machines, our 
algorithm finds an unsplit (non-preemptive) stable assignment where 
every job is assigned at least as well as it could be in any fractional 
stable assignment, and where each machine is congested by at most the 
processing time of the largest job. 

1 Introduction 

In the United States, a medical school graduate is required to complete a res­
idency program at a hospital before entering the workforce as a doctor. Since 
the 1950s, the medical field has turned to a centralized mechanism, called the 
National Residency Matching Program (NRMP), to aid this marketplace [10]. 
In this program, final-year medical students and hospitals each submit prefer­
ences over possible matches, and an algorithm determines which matches will 
take place. In order for the system to be successful, it is essential that the com­
puted matches be stable. That is, there should be no (student, hospital) pair 
that both prefer each-other to their assigned partners — such a pair would have 
an incentive to withdraw from the centralized matching system and to make 
its own plans on the side. Computing a stable matching is a classic problem in 
economics and computer science, and can be solved in polynomial time by the 
deferred acceptance algorithm of Gale and Shapley [3].-' 

For many years the NRMP proved to be quite successful. However, in the 
late 1990s it was observed that many matches were being formed outside the 
NRMP [12]. The problem stemmed from the fact that many medical students 
were getting married to one another during medical school, and so had com­
plicated preferences that were ignored by the NRMP. In particular, married 

^ For a discussion of this problem and related questions, see the books by Gusfield 
and Irving [4] and Roth and Sotomayor [14], or the lecture notes by Knuth [8]. 
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students had strong preferences for hospitals in similar geographical locations. 
The NRMP was redesigned to accommodate such preferences [13]; currently, 
the NRMP permits married students to submit a joint preference list over pairs 
of hospitals and guarantees that, if they are matched, they will be matched to 
a pair in their list. Unfortunately, in a matching market with couples like the 
NRMP, a stable matching might not exist [10] and determining whether one 
exists is computationally difficult, in fact NP-hard [9]. 

Motivated by the issue of couples in the NRMP, we study a marketplace in 
which agents on one side of the market have non-uniform demands and agents 
on the other side have non-uniform quotas, or capacities. Demanding agents 
have a preference list over capacitated agents and prefer to be satisfied by a 
lexicographically maximal set of these agents. This problem is known as the 
stable allocation or ordinal transportation problem, and is a many-to-many gen­
eralization of the classical stable marriage problem, introduced originally by 
Baiou and Balinski [1]. It surfaces naturally in scheduling or load balancing set­
tings where only "ordinal" information (ranked preference lists) is known. When 
demands are all 1 or 2 and capacities are integral, as in the student/hospital 
setting, this restricted preference domain becomes a special case of weakly re­
sponsive preferences studied by Klaus and Klijn [6]. In such cases, Klaus and 
Klijn [6] proved that a stable matching always exists. Instances of this prob­
lem with generalized demands/capacities include the assignment of teaching 
assistants (TAs) to courses in academic departments: TAs rank courses, course 
instructors rank TAs, each course requires a certain number of TA hours, and 
different TAs are responsible for working different numbers of hours. Another 
example is the assignment of load to servers in a network - clients prefer servers 
geographically nearby and servers prefer clients with higher service types. Baiou 
and Balinski [1] study these generalized settings and prove that even in this case 
a stable allocation always exists. 

For many settings, a stable allocation in which the demand of a single agent 
is satisfied fractionally is undesirable. Although a couple may prefer hospital 
a to 6 and thus a pair of placements (a, b) to a pair of placements (6, b), such 
an arrangement imposes strain on the matching. As often happens in labor 
markets with two-body problems, the couple may negotiate with hospital a 
to create an extra position, beyond the quota, for the extra member of the 
couple. In some sense, a fractional stable assignment is not stable. Thus, we 
seek a stable matching in which all the demand of a single agent is satisfied 
integrally. Clearly, such a matching may not exist, and so we relax our feasibility 
constraints and allow capacitated agents to be over-capacitated by at most 
the maximum demand. With a correspondingly appropriate modification of 
the definition of stability, we prove that a stable matching always exists, and 
give a modification of the Gale-Shapley algorithm to find it. Applied to the 
NRMP setting, our results compute a student-optimal (or hospital-optimal) 
stable matching where the number of students assigned to each hospital exceeds 
its quota by at most one position. 
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A close relative of the stable allocation problem is the well-studied trans­
portation problem, where there are linear costs associated with every possible 
pairing and our objective is to compute a fractional assignment of minimum cost 
rather than a stable assignment. The stable allocation problem is also known as 
the ordinal transportation problem since it differs only in that we express the 
desirability of an assignment in an "ordinal" fashion using ranked preference 
lists. UnspHttable variants of the transportation problem have been previously 
considered in the literature, and a celebrated result of Shmoys and Tardos [15] 
states that from a fractional assignment (where all agents are fully assigned), 
we can construct an unsplit assignment of no greater cost where each agent is 
over-capacitated (or congested) by at most the maximum demand. Our results 
can viewed as a direct analog of this result for the ordinal case. 

2 The Model 

Consider assigning a set [n] := {1 ,2 , . . . , n} of items to a set [m] of bins. To be 
somewhat more concrete, let us employ scheduhng terminology and assume we 
are assigning "jobs" to "machines". Job i requires pi units of processing time, 
machine j has a capacity of Cj units, and at most Uij units of job i can be 
assigned to machine j . If Uij = pi for all {i,j), we follow the terminology of 
Baiou and Balinski [1] and say our problem is unconstrained. All problem data 
is assumed to be integral. 

2.1 EVactional Assignment 

We first define a fractional setting where a job may be processed on multiple 
machines. A fractional assignment x is feasible if it satisfies 

I ] Xij <Pi^ie [n] 
je[m\ 
^ Xij < Cj Vj G [m] (1) 

ie[n] 
0 < Xij < Uij \/(i,j) G [n] X [m]. 

In the traditional transportation problem (a many-to-many generalization 
of the bipartite assignment problem), we designate a weight Wij for assigning 
one unit of job i to machine j , then maximize ^WijXij over (1) using linear 
programming or network flow techniques (another popular objective is to mini­
mize '^WijXij while insisting that all jobs must be fully assigned). In the stable 
allocation problem, however, we indicate the desirability of an assignment in an 
"ordinal" fashion by having each job (machine) submit a ranked preference list 
over all machines (jobs). 

Thus, each job i G [n] has a strict, transitive, and complete preference 
relation 7r(i) over the set [m] U 0 where {0} indicates a preference for remaining 
unmatched. If n{i) = ( j i , . . . , jfc_i,0 = jfc,ifc+i, • • •, Jm+i), then i prefers ja 
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to jb for any a < b < k, and prefers being unassigned to any machine jc 
for c > fc. If job i prefers machine j to machine j ' , we write j > , j ' . Job i 
prefers a fractional assignment x to another fractional assignment x' if x is 
lexicographically larger according to n{i); that is, if Xij > x'^j for the earliest 
machine j in 7r(«) such that Xij j^ x[y In this case, we write x > , x'. Similarly, 
each machine j G [m] has a strict, transitive, and complete preference relation 
7r(j) over the set [n\ U 0 where 0 indicates a preference for being under-utilized. 
If 7r(j) = (J i , . . . ,ifc_i,0 = ik,ik+i-, • • • ,^n+i), then j prefers to accept load from 
job ia to ib for any a < b < k, and is unwilling to process load from any job ic 
with c > k. We write i >j i' if machine j prefers job i to job i', and we write 
X >j x' if machine j prefers assignment x to assignment x'; again, this means 
that Xij > x'ij for the first job i in 7r(j) where Xij ^ xj •. 

A blocking pair is a familiar feature that is forbidden in any stable assign­
ment: it is a pair {i,j) where Xij < Uij and both i and j prefer each-other to 
at least some of their current assignments. In this case, job i and machine j 
would be "unhappy" with the current assignment and would prefer to increase 
Xij. That is. 

Definition 1. Job i and machine j form a blocking pair if there is some job i' 
and machine j ' such that Xij < Uij, Xij> > 0, Xi>j > 0, and we have i >j i' and 
3 >i f-

A job i is saturated if all its load is assigned. Similarly, a machine is saturated 
if all its capacity is utilized. 

Definition 2. A job i is saturated if ^ • Xij > pi. A machine j is saturated if 

A^i ^ij — ^3 • 

Finally, ajob i is said to be popular in an assignment if there is some machine 
j to which i is not assigned, but where j prefers i to at least some of the jobs 
currently assigned to it. We define a popular machine similarly. 

Definition 3. In an assignment x, we say job i is popular if there exists a 
machine j with j >i 0 and Xij < Uij such that i >j i' for some job i' with 
Xi'j > 0. Likewise, we say machine j is popular if there exists a job i with 
i >j 0 and Xij < Uij such that j >i j ' for some machine j ' with Xij' > 0. 

If job i is popular due to machine j and i is not saturated, then our as­
signment is not stable since both i and j would be more satisfied if Xij were 
increased. 

Definition 4. An assignment x is stable if (i) it admits no blocking pairs, and 
(ii) all popular jobs and machines are saturated. 

A feasible stable assignment x is said to be job-optimal if every job prefers 
X to any other feasible stable assignment x', i.e. V z e [n], x>ix' (a machine-
optimal assignment is defined analogously). In a job-optimal assignment, each 
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job simultaneously receives at least as much of an allocation of its first-choice 
machine as it could in any feasible stable assignment, and it also receives at 
least as much of an allocation of its second-choice machine as it could in any 
feasible stable assignment with the same first-choice allocation, and so on. It is 
always possible to find a job-optimal feasible stable assignment for any problem 
instance using a strongly-polynomial algorithm of Baiou and Balinski [1]. 

2.2 Unsplit Assignment 

We now consider the "unsplittable" unconstrained stable allocation problem 
where each job must be entirely assigned to a single machine. Thus the feasible 
assignments x are precisely the integral solutions to (1) where either Xij = 0 or 
Xij = Pi for all {i,j). As the following simple example shows, an integral stable 
assignment may not exist. 

Example 1. Suppose there are two jobs ii and 12 with demands 1 and 2 re­
spectively, and two machines j i and J2, both with capacity 2. Let Tx{ii) = 
7r(i2) = (jii J2) and n{j\) = 7r(J2) = (H,«2)- Then the only stable assignment is 
^iiji = li ^i23i ~ li ^^d x,jj2 = 1, but this is not an unsplit assignment. 

We therefore consider a relaxation that is directly analogous to a result of 
Shmoys and Tardos [15] for the bipartite assignment problem with costs. As­
suming existence of a feasible fractional assignment of cost C with all jobs fully 
assigned, Shmoys and Tardos show how to round this solution in polynomial 
time to obtain an unsplit solution of cost no more than C where each machine 
is congested (filled beyond its capacity) by at most Pmax = maxjpj. Similar 
results have been achieved in literature on unsplittable flows (see [7, 2, 16] for 
more background), where our goal is generally to take a fractional solution to a 
network flow problem and round it to an unsplit flow (where the flow for each 
commodity follows a single path) without significantly raising the cost of the 
flow, and without causing excessive congestion on edges. 

Definition 5. An assignment x is minimally congested if for every machine j , 
removal of the least-preferred job (to jj currently assigned to j results in j being 
utilized at or below its capacity. 

Note that in a minimally congested assignment, each machine is over-
capacitated by at most pmax- We show how a modified version of the GS 
algorithm can find, in polynomial time, a stable unsplit assignment that is 
job-optimal among all minimally congested stable unsplit assignments. Sup­
pose a; is a job-optimal feasible stable fractional assignment. We prove that in 
a job-optimal unsplit assignment, each job is assigned to at least the best of 
its fractional assignments in x (our analog of the condition that cost does not 
increase). 

Our unsplit assignment is stable in that (i) it admits no blocking pairs and 
(ii) all popular machines are saturated. Note that one must take some care 
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here with the definition of condition (ii). We define machine j to be saturated 
with respect to its original capacity, Cj, and not the inflated capacity Cj + Pmax 
according to which our unspHt solution is feasible, i.e. machine j is saturated if 
Z^j xy > Cj. Otherwise, it might be impossible to satisfy (ii) by ensuring popular 
machines are saturated — for example, if Cj is odd but all pj's are even. This 
definition makes intuitive sense because a machine beyond its capacity will not 
want any new jobs assigned to it. 

3 The Gale-Shapley Algori thm 

Gale and Shapley [3] devised a simple intuitive algorithm, now quite well known, 
for solving the classical "one-to-one" stable marriage problem. The algorithm is 
usually described in terms of men being assigned to women, although we con­
tinue to use job/machine terminology since it is less awkward once we advance 
to many-to-many matchings. The Gale-Shapley (GS) algorithm has each job i 
issue "proposals" to machines in the order of Vs preference list. Each machine j 
tentatively accepts the best proposal received so far. If machine j is tentatively 
matched with job i and receives a more favorable proposal, it tentatively accepts 
the new proposal and rejects i, which then continues to propose to machines 
further down on its preference list. Remarkably, it can be shown that regardless 
of the order in which jobs propose, the GS algorithm always terminates with a 
job-optimal and machine-pessimal stable matching. Each job receives the most 
preferred partner it could receive in any stable matching, and each machine 
receives the least preferred partner it could receive in any stable matching. By 
symmetry, the reverse is true if the machines do the proposing. 

Baiou and Balinski [1] mention that the GS algorithm can be generalized to 
solve the many-to-many stable allocation problem, although its running time 
in this case is only pseudo-polynomial. The generalized GS algorithm issues 
"aggregate" proposals: in each iteration a job i that is not fully assigned issues 
a proposal to the next machine j in its preference list and proposes all of 
its unassigned processing time (up to Wy). Machine j accepts only as much as 
allowed by its capacity, current allocation, and preference list, possibly rejecting 
(fractionally) some of the jobs already assigned to it if they are less preferred 
than job i. Whenever a job is "split" due to a fractional acceptance or rejection, 
it remains split into two "virtual jobs" for the remainder of the algorithm, 
each of which carries out independent sequences of proposals. Just as with the 
classical unit stable matching problem, one can show that order of proposals 
and rejections does not matter — we always obtain a job-optimal feasible stable 
assignment. A similarly defined algorithm with machine proposals always finds 
the machine optimal assignment. 

Theorem 1. For any order of proposals, the job-proposing GS algorithm com­
putes the job-optimal fractional stable assignment. 



The Unsplittable Stable Marriage Problem 71 

This theorem follows immediately from the fact that we can interpret the 
extended GS algorithm for the many-to-many stable allocation problem as noth­
ing more than the standard "one-to-one" GS algorithm applied to an expanded 
instance where each job i is replaced with p, unit-sized jobs (each with the same 
preference list) and each machine j is replaced by Cj unit-sized machines (each 
with the same preference list). The many-to-many algorithm is sped up by is­
suing proposals in batches, but it inherets from the one-to-one algorithm the 
property that the final solution must be job-optimal irrespective of the order of 
proposals. As an interesting remark, if problem data is irrational, then not only 
does this reduction to the one-to-one case fail, but it is also not known whether 
the GS algorithm terminates after a finite number of iterations. We comment 
on this issue further in the conclusion section. 

4 Computing Unsplittable Stable Allocations 

In this section we discuss our "ordinal" analog for the stable allocation problem 
of the result of Shmoys and Tardos for the minimum-cost bipartite assignment 
problem. Since the constraints Xij < Uij do not make sense for an unsplit­
table stable allocation problem, we henceforth assume we are dealing with an 
unconstrained stable allocation problem. 

Let us modify the GS algorithm as follows. Jobs issue proposals in sequence 
according to their preference lists, and in each iteration an arbitrary unassigned 
job i issues a proposal to the next machine j on its preference list. In this case, 
however, all proposals and rejections are "integral" in that either an entire job 
is accepted or rejected. Machine j accepts Vs proposal, but then proceeds to 
reject in sequence the least favored jobs assigned to it (possibly including i) 
until j is at most over-congested by the processing time of a single job — that 
is, until rejecting the next job would leave the machine being utilized strictly 
below Cj units of load. Note that such an algorithm results in an assignment 
where each machine is congested by at most the maximum processing time of 
a job. 

If each machine stores its accepted jobs in a heap based on preference list 
ranking, this integral variant of the GS algorithm runs in 0 (mn log n) time. 
We now prove some desirable properties of the algorithm. First we show that 
the assignment output by our algorithm is stable and job-optimal. The proof of 
the following theorem is similar to the traditional proof for the correctness and 
optimality of the one-to-one GS algorithm. 

Theorem 2. The integral job-proposing GS algorithm computes i/ie job-optimal 
stable unsplit assignment among all minimally congested unsplit stable assign­
ments. 

Proof. Let x* be the solution output by the GS algorithm. Clearly, x* is an 
unsplit assignment that congests each machine by at most Pmax- Let x*{i) be 
the machine to which job i is assigned in x* and x*{j) be the set of jobs to 
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which machine j is assigned in x* (i.e. x*{j) = {i : x*^ > 0}). We also extend 
the preference notation such that for a set S, S >j i means i' >j i for all ?' G 5 
with i' yt i. 

We first show that x* is stable. Suppose not. First note that once a machine 
is saturated, it never again becomes unsaturated. Thus, every popular machine 
j must be saturated since if j is popular due to i, then i must have proposed 
to j at some point and been rejected. This means that the instability in x* 
must be caused by a blocking pair. Let {i,j) be a blocking pair. There are two 
cases. If i never proposed to j , then, since jobs propose in decreasing order of 
their preference list, x*{i) >j j which contradictions the assumption that (i, j ) 
is a blocking pair. On the other hand, if i proposed to j and was rejected, then 
x*{j) >j i since machines only ever improve the set of jobs assigned to them. 

We now show that x* is job-optimal. Suppose not and let i be the first job 
rejected by one of its stable machines (i.e. a machine assigned to i in some 
minimally congested stable unsplit assignment), and let j be the first stable 
machine to reject i. Call the minimally congested unsplit stable assignment 
in which i and j are matched x. When j rejected i, in the current tentative 
assignment x', x'{j) >j i and Y^ii^x'(i)Pi' — ^J- ^^ ^'^^ know that there must 
be some i' S x'{j)\x{j); if this were not the case and x'{j) C x{j), then x 
could not have been minimally congested (removal of job i and all other jobs j 
prefers less than i would still leave machine j saturated). Since i' has not yet 
been rejected by a stable machine, and since jobs propose in decreasing order 
of their preference list, j >»' x{i'). But then (i', j ) form a blocking pair in x, 
and so j could not have been a stable machine for i. 

We now observe that this solution computed by the integral variant of the 
GS algorithm assigns each job to at least the best of its fractional assignments in 
the job-optimal fractional assignment. Thus, the jobs weakly prefer the solution 
output by the integral variant to the solution output by the fractional variant 
- i.e. the solution is both integral and lexicographically larger. Our proof uses 
the fact that the order of proposals does not affect the outcome of the GS 
algorithm. Thus, we can run the fractional variant of the GS algorithm using 
the order of proposals induced by the integral variant. During this process, we 
observe that jobs are assigned to the same machines in both variants. However, 
the fractional variant may have additional proposals to make after the integral 
variant completes. As jobs always propose to machines in decreasing order of 
their preference list, and as the fractional (integral) variant computes the job-
optimal fractional (unsplit) stable solution, this coupling of the two algorithms 
shows that the unsplit solution must be preferred to the fractional solution by 
each job. 

Let x(i) be the set of machines to which i is partially assigned in assignment 
X, i.e. x{i) = {j : Xij > 0}. 

Theorem 3. Consider any feasible fractional stable assignment Xfrac 'md the 
job-optimal minimally congested unsplit stable assignment Xint- Then for all 
jobs i, Xint{i) >i XfraS)-
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Proof. The proof follows from Theorem 1 and the fact that jobs propose in 
decreasing order of their preference list (and so as the algorithm runs the jobs' 
situations worsen). More formally, consider the sequence of proposals defined 
by the integral GS algorithm. Call this sequence (11,12,...,«;) (note this list 
includes repetitions and I may be greater than n). Run the fractional GS algo­
rithm with the same order of proposals. We prove by induction that after the 
proposal of ik, the current assignment x in the integral variant and x' in the 
fractional variant satisfy x{j) = x'{j) for all j and a machine is saturated in x 
if and only if it is in x'. This is clearly true after the proposal of i i . Assume 
this is the case after the proposal of ife_i and let j be the machine to which ik 
proposes. By inductive assumption, j must be the same machine in both the 
integral and fractional variants of the algorithm. If j rejects ik in the integral 
variant, then it must be that x{j) >j ik and 13iea;(j)P«+ — ^j- Thus, in the 
fractional variant, X îg .̂/̂ ,) x'^J = Cj and x'{j) >j ik so all of i^'s load is re­
jected. A similar argument holds if j rejects ik in the fractional variant, and so 
the inductive hypothesis holds. 

Therefore, after the Tth proposal in the integral variant, the final solution 
Xint of the integral variant is at least as preferable as the current solution x' of 
the fractional variant for each job. Furthermore, as jobs propose in decreasing 
order of their preference list, the final solution Xfrac of the fractional variant 
cannot be preferred to the current solution x' by any job. This completes the 
proof. 

We remark that all the theorems in this paper hold if we instead seek the 
machine-optimal solution. We merely need to run the Gale-Shapley algorithm 
with machine-proposals - a machine proposes to the next job on its preference 
list if it is currently under-utilized (it's load is currently less than its capacity). 
A job (fractionally) accepts a proposal if it is (fractionally) unassigned or if 
it prefers the proposing machine to (some of) its current machine(s), in which 
case it rejects (some of) its current machine(s). 

5 Conclusion 

In this paper, we studied a natural integral variant of the stable allocation 
problem in which every job was unsplittably assigned and every machine was 
not excessively congested. Our results have implications for many economic 
settings where varying sized agents must be matched to each other. Our work 
leaves open a number of interesting questions: 

Rural hospitals: It is well known that in one-to-one matching, the set of singles 
remains the same in every stable matching. Roth [11] extended this theorem and 
showed that in one-to-many matching, an agent not fully utilized in a stable 
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matching always receives the exact same assignment in every matching.^ It 
seems hkely tha t similar s tatements might hold in a many-to-many matching as 
well. It would be interesting to learn whether the same machines are congested in 
every stable unsplit matching, and if so whether these machines are congested by 
the same amount in every stable unsplit matching, and /or tha t the uncongested 
machines have the same assignment in every stable unsplit matching. 

Incentives: Centralized matching algorithms like the one proposed in this paper 
are often used in economic settings where agents are self-interested and might 
alter their submitted preference list in order to improve their match. It is known 
tha t no stable mechanism can be incentive-compatible for both jobs and ma­
chines. In a job-optimal mechanism, for example, machines have an incentive to 
lie. However, Immorlica and Mahdian [5] showed tha t , in a one-to-many match­
ing, if preference lists of jobs are short and preferences are drawn randomly 
according to a particular class of distributions, then each agent has a unique 
stable partner with high probability, and thus has no incentive to lie. It would 
be interesting to prove a similar s tatement in the many-to-many setting studied 
here. 
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