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Abs t r ac t . We compute the influence of a vertex on the connectivity 
structure of a directed network by using Shapley value theory. In gen­
eral, the computation of such ratings is highly inefficient. We show how 
the computation can be managed for many practically interesting in­
stances by a decomposition of large networks into smaller parts. For 
undirected networks, we introduce an algorithm that computes all ver­
tex ratings in linear time, if the graph is cycle composed or chordal. 

1 Motivation and Introduction 

This work is originally motivated by the analysis of networks tha t represent neu­
ral connections in a brain. The cerebral cortical sheet can be divided into many 
different areas according to several parcellation schemes [4, 9, 20]. The primate 
cortex forms a network of considerable complexity depending on the degree of 
resolution. Information forwarding is usually accompanied by the possibility to 
respond. Thus, the corresponding networks are generally strongly connected. 
Prom a systems point of view, it is a great challenge to analyze the influence of 
a single area to the connectivity s tructure of the hole system. Such information 
could be helpful to understand the functional consequences of a lesion. 

We measure the influence of a vertex on the connectivity structure of a 
directed graph G = {VG, EG) by a function </> based on the Shapley value theory, 
which was originally developed within game theory^, see [16]. Our function 0 
is parameterized by a so-called characteristic function denoted by / Q . It counts 
for a set of vertices V C VG the number of strongly connected components in 
the subgraph of G induced by the vertices of V. In general, a characteristic 
function is a mapping from the subsets of a set of abstract objects A'̂  to the 
real numbers R. The application of Shapley value computations to graphs was 
first done by Myerson in [10], who considered only undirected graphs. For a 
characteristic function h : 2^° —> R defined on vertex sets, Myerson analyzed 

^ In game theory literature the argument of (/> is a game (usually denoted by letter v) 
over an abstract set of players A'' and the result is a vector of R^. Since we consider 
graphs, we prefer to use letter v for vertices rather for functions. 
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the function that computes for a given vertex set V the sum of all h{V"), where 
V" is a vertex set of a connected component in the subgraph of G induced by 
v . That is, for undirected graphs, our function i?!)/̂  is equivalent to the function 
defined by Myerson (called Myerson value) for the case that h{V") = 1 for all 
V" C VG. 

Several authors have already analyzed the computation of Shapley values de­
fined for vertices in graphs. Owen shows in [12] how to compute Myerson values 
for trees. Gomez et al. prove in [7] a simple separation property for undirected 
graphs that can be used to compute some Myerson values more efficiently. Van 
den Brink and Borm analyze in [18] a characteristic function for vertex sets 
of directed graphs and show that the Shapley values for this function can be 
computed efficiently. However, this characteristic function covers only a local 
property of the vertices. Deng and Papadimitriou consider in [2] a characteristic 
function that sums up the weights of all edges between two vertices of V. 

The paper is organized as follows. In Section 2, we recall the definitions 
we need from Shapley value theory [16]. In Section 3, we introduce a binary 
relation on vertices called strong separability. If two vertices u, v are strongly 
separable then the rating 4>f^ (u) is independent of the existence of v and vice 
versa, that is, (pfaiu) = 4>fG-{v}(^) ^'^^ 4'fai''^) = 'Pfa-iuy (''̂ )' where G — {u} is 
graph G without vertex u and G—{v} is graph G without vertex v. This allows 
us to decompose a directed graph into subgraphs such that the ratings of the 
vertices in the original graph are computable by the ratings of the vertices in the 
subgraphs (Theorem 1). We also show that deciding whether two vertices u,v 
are not strongly separable is NP-complete (Theorem 2) and deciding (?!>/c (u) < 
'Pfa (^) foi' t'^0 given vertices u, v is NP-hard. This implies that an algorithm 
for the computation of 4>f^ can be used to decide an NP-hard as well as a 
co-NP-hard decision problem. 

In Section 4, we consider undirected graphs as a special case of directed 
graphs where undirected edges are represented by directed edges oriented 
against each other. Definition 1 applied to undirected graphs yields that two 
vertices are strongly separable if and only if there is no chordless cycle passing 
u and V. The extension of Theorem 1 to undirected graphs (Theorem 4) allows 
us to compute the rating 4>fa{u) for all vertices in linear time if G is cycle 
composed (Theorem 5) or chordal (Theorem 6). 

Although some of the results shown in this paper can be extended to a much 
more general case, we restrict ourself to the one characteristic function fo- This 
reduces the mathematical notations and keeps the proofs as simple as possible. 

2 The Shapley value 

Let N be any set of abstract objects. A characteristic function / is a mapping 
from the subsets of A'" to the real numbers R with /(0) = 0. A carrier of / is 
a set C C A?" such that f{S) = f{S 0 C) for every S Q N. Any superset of 
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a carrier C of / is again a carrier of / . The objects outside a carrier do not 
contribute anything to the computations by / . 

The sum (superposition) of two characteristic functions / and g, defined 
by (/ + 9){S) = f{S) + g{S), is again a characteristic function. Let TT be any 
permutation of A'', that is, TT is a one to one mapping of N to itself. For a set 
5 C A'' let n{S) = {^{x) \ x e S) he the image of S under TT. Let /,r be the 
characteristic function defined by /^(S') = /(7r~^(5)). 

To rate the objects of N with respect to a characteristic function / , we use a 
function </> that associates with every characteristic function / a rating function 
(f>f : N -^R such that 

(Axiom 1:) for every permutation n oi N and all x G N, 

(Axiom 2:) for every carrier C of / , 

x;</>/(:r) = / (c) , 
xec 

and 
(Axiom 3:) for any two characteristic functions / and 5, 

(l^f+a ='Pf + ' 'g-

Shapley has shown in [16] that function <p is uniquely defined by the three 
axioms above. He has also shown that the rating of an object with respect to a 
characteristic function / is computable by 

*,M= E "^1' "X'-1^1" (/(.)-/(5-M)), (1) 
SCN, xes ' '• 

where l^l and |A''| denote the size of S and C, respectively, or alternatively by 

1 •̂ Ẑ )̂ = IM E ifirr^i^'^) U W) - fimiT^,^))), (2) 
TTGil/V 

where 11 N is the set of all one to one mappings (enumerations) w : N 
{!,..., |iV|} and 

m('K,x) = {y E N \ ^(y) < 7r(x)} 

is the set of all y G Â  arranged on the left side of x. 

3 A vertex rating for directed graphs 

We now define a characteristic function fa to rate the vertices in directed 
graphs. The rating will measure the influence of a vertex on the connectivity 
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structure. The smaller the rating of a vertex the greater its importance to the 
connectivity. 

Let G = {VG,EG) be a finite directed graph, where VG is a finite set of 
vertices and EG C VG X VG is a finite set of directed edges. A path in G is a 
sequence p = {vi,... ,Vk), k > 1, oi distinct vertices such that (vi,Vi+i) G EG 
for i = 1 , . . . , A; — 1. We say, p is a path of length k from vi to Vk- A path is 
called a cycle of G if G additionally has edge {vk,vi). We will consider only 
simple paths and cycles in which all vertices are distinct. 

For a vertex set V C VQ, let G\v' be the subgraph of G induced by the 
vertices o f y , that is, G |K' = (VQ', Ec) where VQ' =V' undEo' =-EnV^'xV^'. 
G is strongly connected if for every pair of vertices u,v G VG there is a path 
from u to u in G. A strongly connected component of G is a maximal strongly 
connected subgraph of G. 

Let SCC(G) be the set of all strongly connected components of G, and / G 
be a function from the subsets of VG to the real numbers R (here we need only 
the set of non-negative integers) such that for every subset V C VG, 

/ G ( n = |SCC(G|vOI-

That is, / G ( ^ ' ) is the number of strongly connected components in the subgraph 
of G induced by the vertices of V. Note that / G is a characteristic function, 
because / G ( 0 ) is always zero. The complete vertex set VG is always the only 
carrier of / G for every directed graph G. By Axiom 2, we have 

J2haiv)=fG{VG) = \SCG{G)\. 
veVa 

Figure 1 shows an example of the vertex rating (j)f^ for a directed graph G 
with vertex set VG = {f i, '̂2, ^3, V4, v^, VQ, v-r, v^}. Since G is strongly connected, 
we get fciVo) = Y^veVa'^foi'") = 1- Following the computation of (j)fc by 
Equation 2, vertex vs has rating (j)f^{v8) = 5, because /G("^(7 ' ' ,U8) U {VS}) — 
/G(m(7r, Vg)) = 0 if and only if 7r(v6) < 7r(z;8). Otherwise, we have fG{m{TT, vs)D 
{t̂ s}) —/G(TO('?r, Vg)) = 1, which happens for half of all 8! enumerations n. Vertex 
vi has rating (pfa{vi) = | , because fG{'m{Tr,vi) U {vi}) — /GC^^C""",fi)) = 0 if 
and only if 7r(f2) < 7r(vi) and 7r(i;3) < 7r(wi). Otherwise, we have /G(m(7r, fi) U 
{vi}) — fGi'm{n,vi)) = 1. Here the second case happens for two third of all 8! 
enumerations TT. 

Let G = {VG,EG) and G' = {VG',EG') be two directed graphs. We call G 
and G' isomorphic if there is a one to one mapping 6 : Vcj —» VG' such that for 
every pair of vertices ẑ i, 112 € VG, 

{vi,v2)e EG <S=> {b{vi),b{v2)) eEG'. 

Such a mapping b is called an isomorphism between G and G'. If G and G' 
are isomorphic then / G ( ^ ' ) = fG'{b{V')) for every vertex set V C VG- Here 
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Fig. 1. The vertex rating (j>f^ for a directed graph G with 8 vertices. The smaller 
the rating of a vertex the greater its importance to the connectivity of the graph. 

h{y') = {h{u) I u G V'} is the image of V under b. This implies 4'fai''^) = 
4'ja' (^(^)) f̂ '̂  ^"^ vertices v € V. Let V C VQ be any set of vertices of G. 
Graph G is called V-symmetric if for every pair of vertices vi,V'2 S V there 
is an isomorphism 6 of G to G itself such that b{yi) = V2- In ^'-symmetric 
graphs all vertices v E V have the same rating. If two vertices Vi, V2 have 
the same neighborhood, i.e., if {u \ {u,vi) G EQ} = {u | {u,V2) € EG} and 
{u I {vi,u) G EG} = {u I (i>2, u) G EG}, then G obviously is {wi, wgj-symmetric. 
Figure 2 shows some examples of partially symmetric graphs. 

Fig. 2. The graph to the left is {i)i,'i;3,t;5,ii7}-symmetric and {v2,V4,ve,vs}-
symmetric, the graph in the middle is {iii,i)2,t'3}-symmetric, and the graph to the 
right is {iiiji^aji'a, V4, «5, V6}-symmetric. 

The computation of a vertex rating 0/^ {v) by Equation 1 or Equation 2 is 
highly inefficient. The number of subsets and the number of enumerations in­
crease exponentially in the number of vertices of G. To handle the computation 
of (j)f^ for many practically interesting instances we will introduce a method to 
decompose a large graph into smaller parts. This decomposition will allow us 
to compute efficiently the ratings of vertices of the original graph by using the 
ratings of the vertices of smaller subgraphs. Our decomposition method will be 
introduced by the following two lemmas and Theorem 1. 

The first lemma shows that the computation of a rating 4>fa{v) for which 
the arguments of fa are restricted to vertices of a subset V C VG yields the 
computation of 0/^. ^ (v). 
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Lemma 1. Let G = {VG,EG) be a graph, V C VQ, and G' = G\v'- Let Ilva 
be the set of all enumerations n : VG —»• { 1 , . . . , | V G | } . Then for every vertex 
veV 

ha' (^) = riTTl E (fG(.{rn{n, v) U {v}) n V) - /G(m(7r, v) D V')). 

Proof. Let Lfv be the set of all enumerations TT' : V —> { 1 , . . . , | y |} . First we 
show that for every enumeration TT' e Uv there are (|V''| + l ) - ( | y | + 2 ) \VG\ 
unique enumerations 7r e LIVG ^^ch that for every pair of vertices vi,f2 € V, 
n'{vi) < TT'{V2) if and only if 7r(ui) < IT{V2). Let p = {vi^,.. .,Vi^^,^) be the 
sequence of vertices of V in the order defined by TT', that is 

n'ivi,) <n'{vi,)<...<TT'{vi^^,^). 

If we consider the vertices of VG — V in an arbitrary order, then the first vertex 
of VG — V can be placed at | y | +1 positions at sequence p to get a sequence with 
\V'\ + 1 vertices. After that the next vertex can be placed at | y | + 2 positions 
in the resulting sequence to get a sequence with | y | +2 vertices, and so on. The 
final vertex of VG — V can be placed at | VQ | positions in the sequence obtained 
by the preceding placement to get a sequence of all |VG| vertices of G. For all 
these ( | y I + 1) • (|T^'| + 2) |VG| enumerations TT defined for enumeration TT' 
we have 

fG'im{TT',v) U {v}) - fG'{m{n',v)) 

= / G ' ((m(7r, v) U {t;}) n V) - fG' (m(7r, v) n V) 

for every vertex v £V', and thus 

-^/o'W = WvX.'en^XfG'{m(.ir',v)VJ{v})-fG'{m{'K',v))) 

_ _ 1 _ Y - (/»/ ((m(7r,i;)U{-»})nV')-/„, {m{-K,v)nV')) 
- \V'\\ ^^enva {\V'\+l)-{\V'\+2) \VG\ 

= ^ E^envG ifaiimin, v) U W ) n ^ ) - fcimi-,, v) n F'))-

The last equaUty follows from the fact that fG'{V" n V) = fG{V" n V) for 
every subset V" CVQ- • 

It is easy to see that the rating of a vertex in a graph G depends only 
on the connectivity structure of the strongly connected component the vertex 
belongs to, as the following observation shows. If G' = {VG',EG') is a strongly 
connected component of G = (VG, EG) then for every vertex v G VG' and every 
vertex set V" C VG, 

faiiV" U {v}) n VG') - faiV" n VG') - fG{V" U W ) - fG{V"), 

and thus by Lemma 1, (pj^, (f) = ^/(,(v). 
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We will now define a property of a vertex pair u, v that allows us to compute 
independently the rating for two vertices u and v. That is, the rating of M in G 
will be equal to the rating of u in graph G without v. 

Definition 1. Let G = (VQ, EQ) he a directed graph and u,v £VG be two non-
adjacent vertices, that is, neither {u,v) nor {v,u) is an edge ofG. Vertex u and 
vertex v are strongly separable in G if for every strongly connected induced sub­
graph H = {VH,EH) of G which contains u and v there is a strongly connected 
subgraph J = {Vj,Ej) of H without u and v such that H\VH-VJ has no path 
from u to V and no path from v to u. 

For the proof of the next lemma we need the notion of an undirected graph. 
In an undirected graph G = iVc, EG) the edge set is a subset of {{u, v} \u,v & 
VG, U ^ v}. Analogously to the definitions for directed graphs, an undirected 
path of length A;, fc > 1, is a sequence p = (vi,... ,Vk) of fc distinct vertices 
such that {vi, Vi+i} S EG iov i = 1,... ,k — 1. An undirected path is called an 
undirected cycle if G additionally has edge {vk,vi} and the path has at least 
three vertices. The subgraph of G induced by a vertex set V Q VG has edge set 
EG r\{{u,v} \ U,V G V, U y^ V}. A graph is connected if there is a path between 
every pair of vertices, a connected component is a maximal connected subgraph, 
a forest is an undirected graph without cycles, and a tree is a connected forest. 

Lemma 2. Let G = {VG,EG) be a directed graph and VH,VJ Q VG be two 
vertex sets such that VH U Vj = VG and for every edge (̂ 1,112) G EG both 
vertices are in VH or in Vj, or in both sets. Let H = G\VH, J = G\vj, and 
I = G|y„nVj • V every pair of vertices u G VH — Vj, v £ Vj — VH is strongly 
separable in G, then for every vertex set V C VG, 

foiV) = fniV n VH) + fj{V' n Vj) - fj{V' n Vi). 

Proof. Let V C VG be any set of vertices of G. Consider the following undi­
rected graph T — (Vr, ET) with vertex set 

VT == SCC{H\v') U SCC(J|yO 

such that two vertices of VT are connected by an undirected edge if and only 
if the two strongly connected components have at least one common vertex. If 
two distinct strongly connected components of VT are connected by an undi­
rected edge in T then one of them has to be from SCC{H\v') and the other 
has to be from S C C ( J | K ' ) - Furthermore, for every strongly connected compo­
nent C of SCC{I\v'), there is exactly one strongly connected component Ci of 
SCC{H\v') and exactly one strongly connected component C2 of SCC(J |v ) , 
and the common vertices of Ci and C2 are exactly the vertices of C. 

Since every pair of vertices u GVH — Vj, v €Vj — VH ^s strongly separable 
in G, the undirected graph T has no cycles, that is, T is a forest. The number 
of connected components of T (the number of trees of forest T) is equivalent to 
the number of strongly connected components of G. The number of connected 
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components in a forest is always equivalent to its number of vertices minus its 
the number of edges. Since T has exactly one edge for every strongly connected 
component of SCC(/ |v ) and exactly one vertex for every strongly connected 
component of SCC(iJ|y') and SCC(J |y ) , we get 

/G(V') = fniV n VH) + fj{v' n Vj) - fiiV n Vj). 

a 

The following theorem states how ratings of vertices of G can be computed 
by the ratings of the same vertices in certain subgraphs of G. 

Theorem 1. Let G = (VCEG) be a directed graph and VH,VJ Q VQ be two 
vertex sets such that VH U Vj = VQ and for every edge (vi,'y2) € EQ both 
vertices Vi,V2 are in VH or in Vj, or in both sets. Let H — G\VH, J = G\vj, 
and I = GlvnnVj • If every pair of vertices u GVH — VJ, V € VJ — VH is strongly 
separable in G, then 

1. for every vertex w GVH (^ Vj, 4>f^ {w) = (f)f^ (w) + (pfj {w) — 4>fi (w), 
2. for every vertex w &VH — Vj, 4>fG (^) — 4'fH (^)» ^''^'^ 
3. for every vertex w GVJ — VH, (/>/G(W) = (f)fj{w). 

Proof. Let w be any vertex of VQ- By Lemma 2, for every vertex set V CVG, 

fciV U {w}) - faiV) = ifHiiV U M ) n VH) - fniV' n VH)) 
+ {fj{{v'yj{w])nvj) -fj{V'nVj)) 
-{fi{{V'yj{w))nVi) -fj{v'nVi)). 

If w e VH n Vj, then by Lemma 1 we get 

4>ia (w) = </*/« i.w) + (i)fj {w) - 4)f, {w). 

If w is a vertex of VH-VJ, then (V' U {w}) nVj = V'nVj and {V U{w})nVi = 
V r\Vi, and thus 

fciV U {w}) - faiV) = fH{{V'U{w})nVH)-fH{V'nVH), 

which implies by Lemma 1 

<PfGiw) = 4>f„{w). 

If w is a vertex of Vj — VH, then an analog argumentation yields cpf^lw) = 
<pfj{w). D 

Figure 3 shows an example of a directed graph G in which all ratings (j)f^ (v) 
are computed with Theorem 1 from the ratings of three subgraphs H, I, and 
J . 

We will show now that the problem to decide whether two vertices in a 
directed graph are not strongly separable is NP-complete. See [6] for an in­
troduction to the theory of NP-completeness. This implies that there is no 
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Fig. 3. Four graphs G = (VG,-EG), H = G\v„, J = G\vj, and I = G\v„nVj such 
that VH,VJ C VG, VH U VJ = VQ, and for every edge (vi, V2) £ EG both vertices are 
in VH or in Va, or in both sets. Vertex pair vi & VH — Vj, ve G Vj — VH is strongly 
separable in G. 

polynomial time algorithms which decides whether two vertices in a directed 
graph are not strongly separable, unless P = NP. The NP-hardness follows by a 
simple reduction from the satisfiability problem. The terms we use in describing 
this problem are the following. 

Let X = {xi,..., x„} be a set of Boolean variables. A truth assignment for 
X is a function t : X —^ {true, false}. If t{xi) = true we say variable Xj is true 
under t; if t{xi) = false we say variable Xi is false under t. If Xi IS Si variable 
of X, then x, and xj are literals over X. Literal Xi is true under t if and only 
if variable Xj is true under t; literal xj is true under t if and only if variable 
Xi is false under t. A clause over X is a set of literals over X, for example 
{xi ,xj , X4}. It represents the disjunction of literals which is satisfiedhy a truth 
assignment t if and only if at least one of its literals is true under t. A collection 
C of clauses over X is satisfiable if and only if there is a truth assignment t that 
simultaneously satisfies all clauses of C. 

The satisfiability problem, denoted by SAT, is specified as follows. Given 
a set X of variables and a collection C of clauses over X. Is there a satisfying 
truth assignment for C? This problem is NP-complete even for the case that 
every clause of C has exactly three distinct literals (3-SAT, for short). 

Theorem 2. The problem to decide whether two vertices u,v of a directed graph 
G are not strongly separable is NP-complete. 

Proof. Let us first illustrate that the problem belongs to NP. Two vertices u 
and V are not strongly separable in G if and only if G has a strongly connected 
induced subgraph G' = (VG',EG') that includes u and v such that G"|VQ,_{„_„} 

has no strongly connected subgraph G" = (VG",EG") such that in G'\v^,-Va>i 
there is no path from u to v and no path from v to u. Without loss of generality 
we can assume that G" is a strongly connected component of G' | y^, _ |„_^,}. So we 
can non-deterministically consider every strongly connected subgraph G' of G 
that includes u and v. Then we can verify in polynomial time for every strongly 
connected component G" — {VG",EG") of G'\v^,-^u,v} whether G'\v^,-Va'' 
has no path from u to v and no path from v to u. Thus, the problem to decide 
whether two vertices u, v are not strongly separable belongs to NP. 
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The NP-hardness follows by a simple transformation from 3-SAT. Let 
X = { x i , . . . , Xn} be a set of n Boolean variables and C = { C i , . . . , Cm} be 
a collection of m clauses. We define a graph G{X, C) with two vertices u, v such 
that there is a truth assignment t for X that satisfies every clause of C if and 
only if u and v are not strongly separable in G{X,C). Figure 4 shows an ex­
ample of such a construction for four variables a;i,a;2,X3,X4 and four clauses 
{ X 2 , X 3 , X i } , {xi,X^,X4}, {xl,X^,X^}, {xT,X2,Xs}. 

Graph G{X,C) has six vertices u,a,b,v,c,d, two literal vertices Xj, x7 for 
every variable Xi, 1 < i < n, and three literal vertices Cj^i, Cj,2, Cj,3 for every 
clause Cj = {cj,i,Cj,2,Cj,3}, I < j < rn. G{X,C) has the edges {u,a), (a,xi) , 
(a,xl), the edges (xi,Xi+i), ( x i , x ^ ) , (x7,Xi+i), ( x 7 , x ^ ) for i = 1 , . . . , n -
1, the edges (x„,6), (x^ ,̂ &), {b,v), {v,c), (c,ci,i), (c,ci,2), (c,ci,3), the edges 
{cj^k,Cj+i,i) for j = l , . . . , m — 1 and k,l G {1,2,3}, and the edges {cm,i,d), 
{cm,2,d), {cm,3,d), {d,u), and {d,a). Additionally, there are a so-called cross 
edges from every literal vertex Xj (x7) for variable Xi to every literal vertex xj 
(xj, respectively) for some clauses. In Figure 4, the cross edges are drawn as 
dotted arcs. 

literal vertices for variables 

literal vertices for clauses 

Fig. 4. The graph G{X,C) for X = a;i,a;2,a;3,a:4 and C = {a;2,a;3,a;4}, {xi,0:2,2:4}, 

Every cycle of G{X, C) that includes vertex u and v consists of two vertex 
disjoint path pi = {u,a,..., b, v) and p2 = {v,c,..., d, u). Path pi passes exactly 
one literal vertex for every variable, and defines in this way an assignment t for 
the variables, where path p2 passes exactly one literal vertex for every clause. 

Assume there is a truth assignment t for X that satisfies every clause. Then 
there is an induced subgraph G' of G{X, C) that includes vertex u and v but no 
cross edge, for example the subgraph of G{X, C) induced by u, v, a, b, c, d and all 
true literal vertices. In this case, it is not possible to destroy all paths between u 
and V and all paths between v and u by removing a strongly connected subgraph 
of G'. Thus u and v are not strongly separable. 

Assume there is no truth assignment for X that satisfies every clause. Then 
every strongly connected induced subgraph G' of G that includes u and v has 
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at least one cross edge («', v'). In this case it is easy to destroy all paths from u 
to V and all path from v to M by removing a cycle that includes the edge (d, a) 
and the cross edge {u',v'). Thus u and v are strongly separable. D 

Theorem 2 can be used to prove that deciding whether two vertices have 
a different rating is NP-hard. Consider again the graph G{X, C) with the two 
vertices u and v constructed for an instance {X, C) of 3-SAT as in the proof 
of Theorem 2. Let G'{X,C) be the graph G{X,C) without the vertex v and its 
incident edges. Then 4'fo(x,c) (") ~ ^fa'tx o (^) ^̂  ^ ^^^ ^ ^^^ strongly separable 
in G, and (l>fg,x c) (•") < 'PSG'IX O (") '^^ " '̂̂ '̂  ^ ^^^ '^°^ strongly separable in G. 

Theorem 3. The problem to decide whether (pf^ (u) < (pf^ {v) for two vertices 
u,v of a directed graph G is NP-hard. 

Thus, an algorithm for the computation of 4>f^ can be used to decide an 
NP-hard as well as a co-NP-hard decision problem. 

4 A vertex rating for undirected graphs 

The vertex rating (j)f^ for directed graphs can simply be extended to undirected 
graphs. For an undirected graph G let dir(G) be the directed graph we get if 
we replace every undirected edge {u,v} by two directed edges {u,v) and {v,u). 
Let fa now be the function from the subsets of VQ to the real numbers R such 
that for every V CVG, / G ( ^ ' ) is the number of connected components in the 
subgraph of G induced by the vertices of V. That is, the rating of a vertex v in 
an undirected graph G is equal to the rating of v in the directed graph dir(G). 

Figure 5 shows an example of the vertex rating cpf^ for an undirected graph 
G with vertex set VQ = {VI,V2,V3,V4,V5,VQ,V7,V8}. 

Fig. 5. The vertex rating (j)f^ for an undirected graph G with 8 vertices. 

It is easy to verify that two vertices u, v of dir(G) are not strongly separable 
if and only if G has a chordless cycle that includes u and v. A chord for a 
cycle c = ( u i , . . . ,Uk) is an edge {ui,Uj} such that 2 < |i — j | < k — 2. The 
problem of determining whether an undirected graph G contains a chordless 
cycle can be solved in linear time [3, 15, 17]. This is the well-known chordal 
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graph recognition problem. A graph G is a chordal graph if any cycle of G of 
length at least four has at least one chord, or alternatively, if G has no chordless 
cycle, see [8]. The problem of determining whether G contains a chordless cycle 
of length fc > 5 can be solved in 0 ( | V G | + |-EG|^) time on 0 ( | V G | • \EG\) space, 
see [11]. 

Theorem 1 applied to undirected graphs yields the following theorem which 
is a more general version of Proposition 2 of [7]. 

Theorem 4. Let G — (VcEa) be an undirected graph and VH,VJ C VG he 
two vertex sets such that V/f U Vj = VG and for every edge {vi,U2} G EG both 
vertices ui,U2 are in VH or in Vj, or in both sets. Let H = G\VH, J = G\vj, 
and I = G\vHnVj- If G has no chordless cycle with a vertex ofVn — Vj and a 
vertex of Vj — VH, then 

1. for every vertex w £ VH r\Vj, 0/^ (w) = (pf„ (w) + (j)fj (w) — (j)fj (w), 
2. for every vertex w GVH — Vj, <pf^{w) = <j)f^{w), and 
3. for every vertex w £ Vj — VH, (f)f(.{w) = 4'jj{w). 

Assume a connected graph G can be separated into fc > 1 connected compo­
nents Gi,... ,Gk by removing a complete subgraph / of G. Let G'^ = G\va-uVi 
for i = 1 , . . . , fc be the subgraphs of G induced by the vertices of connected 
component Gi and the vertices of the removed complete subgraph / . Then by 
Theorem 4 for every i = 1 , . . . , fc the vertex rating for a vertex w of G'^ is 
^fo (•"') = ^fc'. ("') ^^^ ^^^ vertex rating for a vertex iz; of J is 

k 

An example of a class of graphs for which the rating (j>f^ is efficiently com­
putable is the class of cycle composed graphs which can recursively be defined as 
follows. The cycle C„ with n > 3 vertices is cycle composed. Let G = (VG, EG) be 
a cycle composed graph and ei = {ui, ui} be an edge of G. Let C„ = {Vc„,Ecn) 
be a cycle with n> 3 vertices and 62 = {w2, "̂2} be edge of Cn- Then the graph 
obtained by the vertex disjoint union of G and C„ and the identification of U2 
with Ml and V2 with vi is cycle composed. That is, the composed graph has vertex 
set VcjUVcn -{u2,V2} and edge set {{h{u),h{v)} \ {u,v} € EQUEC^}) where 
h{u) — u for every M G VG U Vc„ — {^2,^2}, and h{u2) = MI and h{v2) = vi. 

Cycle composed graphs are biconnected and have tree-width at most 2, see 
[13, 1] for a definition of tree-width. Graphs of tree-width at most 2 can be 
recognized in linear time by removing vertices of degree at most 2. When a 
vertex u of degree 2 is removed then the two neighbors of u will be connected 
by an edge if they are not adjacent. A graph has tree-width 2 if and only if it 
can completely be reduced by removing vertices of degree at most 2 in the way 
described above, see for example [19]. 

Let C be the set of vertex sets of the cycles used to compose a cycle composed 
graph G, that is, C has a vertex set C for every cycle used to compose G. The 
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vertex rating 0(w) for all vertices w of G is computable in linear time by the 
following simple procedure. 

1. for every u E V do { 
2. l e t < ^ / ^ ( u ) : = ( d e g ( u ) - 2 ) * ( - i ) ; } 
3. for every C £ C do { 
4. for every u £ C do { 
5. let (l)f^(u) := (pfa(M) + 1^; } } 

Since a vertex u is involved in degr(u) — 2 vertex identifications, the rating 
for u can be initialized by (deg('u) — 2) * (—|). After that the algorithm adds 
for every cycle C the fraction j ^ to the ration of every vertex of C. Since the 
number of vertices in the sets of C is ^cec 1̂ 1 ~ 2|£^G| — \^G\, the rating for 
all vertices in cycle composed graphs can be computed in linear time, if C is 
given. 

The vertex sets of the cycles can be computed by the following algorithm. 
We assume that an empty vertex list is initially assigned to every edge. That 
is, every edge {u,v} is initially represented as a pair ({u,u},0). An edge e = 
{{u,v},L) with a non-empty vertex list L represents a path between u and v 
passing the vertices of L. If G has a vertex u of degree 2 such that the two 
neighbors v,w of M are not adjacent, we remove vertex u and its two incident 
edges {{u,v},Li), {{u,w},L2) and insert a new edge {{v,w},Li U L2 U {u}) 
between u and v. 

If G has a vertex u of degree 2 such that the two neighbors VjW of u are 
adjacent, the vertices of a cycle can be reported. Let {{u,v},Li), {{u,w},L2)-, 
{{v, w}, L3) be the three edges between the vertices u, v and w. The algorithm 
then reports vertex set Li U L2 U L3 U {u,v,w}. If graph G has no further 
edges than the three edges above, then all cycles are reported and the algorithm 
finishes. If graph G has some further edges and L3 is non-empty, then the graph 
is not cycle composed. In any other case the algorithm removes the two edges 
{{u,v},Li), {{u,w},L2) and so forth. If this processing ends because there are 
no further vertices of degree 2, then the graph is also not cycle composed. 

This algorithm computes the vertex sets of all cycles used to compose a cycle 
composed graph. The running time of this algorithm is 0 ( | V G P ) because we 
have to check for every vertex whether its two neighbors are adjacent. However, 
this problem can be eliminated by a simple trick which is also used in [19] for 
the recognition of outerplanar graphs. The trick is to check whether the two 
neighbors v, w of u are adjacent at the time when one of these two vertices 
V, w gets a degree of 2 or less. At that point the test can be done in a fixed 
number of steps and either a new edge is inserted or a cycle is reported. This 
modification yields a linear time algorithm for the computation of all cycles of a 
cycle composed graph. The following example shows a possible implementation. 
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create-new-edge (vertex u) 

{ 
let ei = {{u,v},Li),e2 = {{u,w},L2) € EG be the two edges incident to u; 
insert {{v, w}, Li U -L2 U {u}) into Enew', 
remove ei and 62 from EG; 
if (deg^^ (u) = 2) then 

insert i; into M; 
if (deg£;^(w) = 2) then 

insert w into M; 
} 

raove-new-edge (edge enew = {{u,v},Lnew)) 
{ 

if there is an edge e = {{u, v}, L) G EG then { 
o u t p u t L U Lnew U {u, v]] 

remove Cnew from Enewl 
if ( | £ G | = 1) and (l^newl = 0) then 

halt " all cycles reported"; 
else if (L ^ 0) then 

halt " G is not cycle composed"; 
else { 

remove enew 
from -Enew; 

insert Cnew into EG] 
if (deg^;^ (u) = 3) then 

remove u from M; 
if {deg^^iy) = 3) then 

remove v from M; } 
} 
compute-cycles (graph G = {VG,EG)) 

{ 
let M := 0; 
for every u GVQ do { 

a (degE^iu) = 2) then { 
insert u into M; } } 

while (M 5̂  0) { 
let u€ M; 
if there is an edge enew S -Enew incident to u then 

move-new-edge (e 
else { 

if (deg£;^(u) = 2 ) then 
create-new-edge (u); 

remove u from M; } } 
halt " G is not cycle composed"; 

} 
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The algorithm above stores in a set M all vertices of degree 2. Note that the 
degree of a vertex is always determined by the edges of EQ • For every vertex u 
adjacent with exactly two vertices v,w a. new edge is inserted into a set denoted 
by -Bnew but not yet into edge set EG of graph G. Whenever a vertex w of M is 
considered for processing it is first checked whether there are edges incident to 
u in set -Bnew If -E'new has an edge e incident to u then e will either be inserted 
into EG (if the two vertices of e are not adjacent by some edge of EG), or a 
cycle is reported (if the two vertices of e are adjacent by some edge of EQ)- The 
test whether the two vertices of e are adjacent by some edge of EG can be done 
in time 0(1) because u is one of the end vertices of e and has vertex degree 2. 
This proves the following theorem. 

Theorem 5. The vertex rating 4>f^{u) for all vertices u of a cycle composed 
graph G is computable in linear tim,e. 

The vertex rating (l>f^ is also computable in linear time for chordal graphs. 
An interesting characterization of chordal graphs is the existence of a perfect 
elimination order. Let p = ( u i , . . . , u„) be an order of the \VG\ = n vertices of 
G = {VG,EG), and let N{G,p,i) for i = 1 , . . . ,n be the set of neighbors Uj of 
vertex Ui with i < j , 

N{G,p,i) := {uj I {ui,Uj} € EG A i < j}. 

The vertex order p — (ui,..., w„) is called a perfect elimination order (PEO) if 
the vertices of N{G,p, z) for i = 1 , . . . , n — 1 induce a complete subgraph of G. 

Dirac [3], Fulkerson and Gross [5], and Rose [14] have shown that a graph 
G is chordal if and only if it has a perfect elimination order. Rose, Tarjan, and 
Lueker have shown in [15], that a perfect elimination order can be found in 
linear time if one exists. If a perfect elimination order p = {vi,..., Vn) of the 
vertices of G = (VQ, EQ) is given, then the vertex rating (j)f^ can be computed 
with Theorem 4 by the following algorithm. Note that, in a complete graph G 
with n vertices, I/I/Q (V) = - for every vertex of G, because G is Vc-symmetric. 

1. let (pfoivn) ••= 1; 
2. for i = n — 1 , . . . , 1 do { 
3. le t (Pfa{Vi) : = | ;v(G,p,i) |+i ' 

4. for a l i v e A/'(G,p,j) do { 

5. let (t>Sc{v) ••= 'Pfaiv) + \N{G,l,i)\ + l - \NiG,p,i)V > > 

The running time of this algorithm is linear in the size of G, because the 
assignment of Line 3 is done exactly | VG | — 1 times and the assignment of line 
5 is done exactly |£^G| times. Since the perfect elimination order can be found 
in linear time, we get the following theorem. 

Theorem 6. The vertex rating 4>fah^) f°''~ ^^^ vertices v of a chordal graph G 
is computable in linear time. 



298 M. Abraham et al. 

References 

1. H.L. Bodlaender. A partial fe-arboretum of graphs with bounded treewidth. The­
oretical Computer Science, 209:1-45, 1998. 

2. X. Deng and C.H. Papadimitriou. On the complexity of cooperative solution 
concepts. Methods of Operations Research, 19(2):257-266, 1994. 

3. G. Dirac. On rigid circuit graphs. Ahh. Math. Sem. Univ. Hamburg, 25:71-76, 
1961. 

4. D.J. Felleman and D.C. Van Essen. Distributed hierarchical processing in the 
primate cerebral cortex. Cerebral Cortex, 1:1-47, 1991. 

5. D.R. Fulkerson and O.A. Gross. Incidence matrices and interval graphs. Pacific 
J. Math., 15:835-855, 1965. 

6. M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the 
Theory of NP-Completeness. W.H. Freeman and Company, San Francisco, 1979. 

7. D. Gomez, E. Gonzalez-Arangiiena, C. Manuel, G. Owen, M. del Pozo, and J. Te-
jada. Splitting graphs when calculating Myerson value for pure overhead games. 
Mathematical Methods of Operations Research, 59:479-489, 2004. 

8. A. Hajnal and J. Suranyi. Uber die Auflosung von Graphen in vollstandige Teil-
graphen. Ann. Univ. Sci. Budapest, Eotvos Sect. Math., 1:113-121, 1958. 

9. R. Kotter and E. Wanke. Mapping brains without coordinates. Philosophical 
Transactions of the Royal Society London, Biological Sciences, 360(1456) :751-
766, 2000. 

10. R.B. Myerson. Graphs an cooperations in games. Methods of Operations Research, 
2:255-229, 1977. 

11. S.D: Nikolopoulos and L. Palios. Hole and antihole detection in graphs. In Pro­
ceedings of the ACM-SIAM Symposium on Discrete Algorithms, pages 850-859. 
ACM-SIAM, 2004. 

12. G. Owen. Values of graph-restricted games. SIAM Journal on Algebraic and 
Discrete Methods, 7(2):210-220, 1986. 

13. N. Robertson and P.D. Seymour. Graph minors II. Algorithmic aspects of tree 
width. Journal of Algorithms, 7:309-322, 1986. 

14. D.J. Rose. Triangulated graphs and elimination process. J. Math. Analys. AppL, 
32:597-609, 1970. 

15. D.J. Rose, R.E. Tarjan, and G.S. Lueker. Algorithmic aspects of vertex elimina­
tion on graphs. SIAM Journal on Computing, 5:266-283, 1976. 

16. L.S. Shapley. A value for n-person games. In H.W. Kuhn and A.W. Tucker, 
editors. Contributions to the Theory of Games II, pages 307-317, Princeton, 1953. 
Princeton University Press. 

17. R.E. Tarjan and M. Yannakakis. Simple linear-time algorithms to test chordality 
of graphs, acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs. 
SIAM Journal on Computing, 13:566-579, 1984. 

18. R. van den Brink and P. Borm. Digraph competitions and cooperative games. 
Theory and Decision, 53:327-342, 2002. 

19. M. Wiegers. Recognizing outerplanar graphs in linear time. In Proceedings of 
Graph-Theoretical Concepts in Computer Science, volume 246 of LNCS, pages 
165-176. Springer-Verlag, 1987. 

20. K. Zilles. Architecture of the Human Cerebral Cortex. Regional and Laminar 
Oganization. In G. Paxinos and J.K. Mai, editors, The Human Nervous System, 
pages 997-1055, San Diego, CA, 2004. Elsevier. 2nd edition. 




