
Decidable Properties for Regular Cellular 
Automata 

Pietro Di Lena 

Department of Computer Science, University of Bologna, Mura Anteo Zamboni 7, 
40127 Bologna, Italy, dilena@cs.uiiibo.it 

Abstract. We investigate decidable properties for regular cellular au­
tomata. In particular, we show that regularity itself is an undecidable 
property and that nilpotency, equicontinuity and positively expansive-
ness became decidable if we restrict to regular cellular automata. 

1 Introduction 

Cellular Automata (CA) are often used as a simple model for complex sys­
tems. They were introduced by Von Neumann in the forties as a model of self-
reproductive biological systems [16]. Mathematical theory of CA was developed 
later by Hedlund in the context of symbolic dynamics [7]. 

To a cellular automaton one associates the shift spaces generated by the 
evolution of the automaton on suitable partitions of the configuration space. 
Adopting Kiirka's terminolgy we call column subshifts this kind of shift spaces 
(see [12] chapter 5). A general approach to the study of a cellular automaton is 
to study the complexity of its column subshifts (see [5, 13, 10]). 

Regularity has been introduced by Kurka for general dynamical systems [14]. 
A CA is regular if every column subshift is sofic, i.e. if the language of every 
column subshift is regular. Kurka classified CA according to the complexity 
of column subshift languages [13]. In Kurka's classification the main distiction 
is whether the cellular automaton is regular or not. He compared language 
classification with two other famous CA classifications such as equicontinuity 
and attractor classification. 

In this paper we study the decidability of topological properties for CA. In 
particular, we show that regularity is not a decidable property (Theorem 7) 
which implies that the membership in Kurka's language classes is undecidable. 
In contrast, we show that some topological properties which are in general unde­
cidable become decidable if we restrict to the class of regular CA. For instance, 
we show that for regular CA nilpotency, equicontinuity and positively expan-
siveness are decidable properties (Theorem 6). Moreover, we provide an answer 
to a question raised in [3] showing that the topological entropy is computable 
for one-sided regular CA (Theorem 5). 

The paper is organized as follows. Section 2 is devoted to the introduction 
of the notation and general definitions while Section 3 contains our results. 
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2 Notat ions and Definitions 

2.1 Shift Spaces and representations of Sofic Shifts 

Let A — {ai,..., a„} be a finite alphabet, n > 1. For any fc > 0, wiW2---Wk € A'^ 
is a finite sequence of elements of A. The sets A^ and A^ are respectively the set 
of doubly infinite sequences {xi)i^z and mono infinite sequences {xi)i^j^ where 
Xi G A. Let X e A^, for any integer interval [i,j], X[ij] e Â "*"*"̂  is the finite 
subword XiXi+i...Xj of x. 

Define the metric d on A^ by d{x,y) = Si^z ^M ^^^^^ di{xi,yi) = 1 if 
Xi = Vi and di{xi,yi) = 0 otherwise. The set A^ endowed with metric d is a 
compact metric space. A dynamical system is a pair {X, F) where F : X -^ X 
is a continuous function and X is a compact metrizable space. The shift map 
(T : A^ —> A^, defined by a{x)i = Xi+i, is an homeomorphism of the compact 
metric space A^. The dynamical system {A^,a) is called full n-shift or simply 
full shift. 

A shift space or subshift (X, a) is a closed shift invariant subset of A^ en­
dowed with a. The shift dynamical system {X, cr) is called one-sided if X C A'*̂ . 
In general, we denote the subshift {X,a) simply with X. 

Let denote with Bk{X) = {x £ A'^ | 3y G X,3i e Z,y[i,i+fc-ij = x} the 
set of allowed k-blocks of the subshift X, k > 0. The language associated to 
a subshift X is denoted with C{X) — Si^^BkiX). Any subshift is completely 
determined by its language (see [15]). The language of a subshift X is: 

1. factorial: \i xyz € C{X) then y € C.{X). 
2. extendable: Vx £ L{X), 3y £ C{X) such that xy e C{X). 

The language C{X) of a subshift X is bounded periodic if there exists integers 
m > 0, n > 0 such that Vx G C{X) and Vi >m,Xi = Xi+n-

A factor map F : (X, CT) —> {Y, a) is a continuous and cr-commuting function, 
i.e. F o a = a o F. If F is onto (or surjective), X is called extension of F and 
Y is called factor of X. If F is biiective, it is a topological conjugacy and X, F 
are said to be topologically conjugated shift spaces. 

A subshift is sofic if it can be represented by means of a labeled graph. We 
review the representation of a sofic shift as vertex shift of a labeled graph. A 
labeled graph G — (V, E, Q consists of a set of vertices V, a set of edges E and 
a labeling function ( : V —* A which assigns to each vertex v GV a. symbol from 
a finite alphabet A. Each edge e G E identifies an initial vertex i{e) G V and a 
terminal vertex i(e) G V. We denote the existence of an edge between vertices 
i),u' € y by 11 —* v'. Every sofic shift can be represented as the set of (mono 
or doubly) infinite sequences generated by the labels of vertices of a labeled 
graph. That is, the labeled graph Q = (V, E, (), with (^ : V -^ A, represents the 
(two-sided) sofic shift 

Sg = {x GA^\ 3{vi)i^z e V^,Vi -^ Vi+i,C{vi) =Xi,iG Z}. 
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The topological entropy h{X) = lim„-^oolog|S„(X)|/n of a shift space X 
is a measure of the complexity of X. While the topological entropy is not com­
putable for general subshifts, it is for sofic shifts (see [15]). 

The language of a sofic shift is denoted as regular in the context of formal 
language theory (see [9] for an introduction). The class of regular languages is 
the class of languages which can be recognized by a deterministic finite state 
automaton (DFA). Formally, a DFA is a 5-tuple {Q,A,5,qo,F) where Q is a 
finite set of states, F C Q is the set of accepting states, qo ^ Q is the initial 
state, A is a finite alphabet and S : Q x A ^> Q is a, partial transition function 
(i.e. it can be defined only on a subset oi Q x A). The language represented 
by a DFA is the set of words generated by following a path starting from the 
initial state and ending to an accepting state. 

For every regular language there exists an unique smallest DFA, where small­
est refers to the number of states. In general, most of the questions concerning 
regular languages are algorithmically decidable. In particular, it is decidable if 
two distinct DFA represent the same language. 

Prom a DFA representing the language of a sofic shift S it is possible to 
derive a labeled graph presentation of S in the following way: 

1. the set of vertices V consists of the pairs {q,a) G Q x A s.t. S{q, a) G Q. 
2. there exists an edge (g, a) —* {q', a'), {q, a), {q', a') G V, if 6{q, a) = q' 
3.yv = {q,a) GV, ((V) = a. 

2.2 Cellular Automata 

A cellular automaton is a dynamical system {A^, F) where A is a finite alphabet 
and F is a cr-commuting, continuous function. {A^, F) is generally identified by a 
block mapping / : A^^'^^ —+ A such that F(x)i = /(x[j_r,i+r.])j* G Z. According 
to Curtis-Hedlund-Lyndon Theorem [7], the whole class of continuous and cr-
commuting functions between shift spaces arises in this way. 

We refer to / and r respectively as local rule and radius of the CA. 
A CA is one-sided, if the local rule is of the form / : A''+^ —> A where 

Vx G A^,i G Z,F(x)i = f{x[ii^r])- -A- one-sided CA is usually denoted with 
{A^,F). 

We recall the definition of some topological properties of CA. Let d denote 
the metric on A^ defined in Section 2.1. 

Definition 1. Let {A^,F) be a CA. 

1. (A^,F) is nilpotent if 

3N > 0, 3x G A^, a{x) = x, s.t. Vn > Â , F"(A^) = x. 

2. {A^,F) is equicontinuous at x G A^ if 

Ve>0,3<5>0 s.t. VyGA^,d{x,y) < 5,3n > 0 s.t. d{F''{x),F"{y)) < e. 

3. (A^,F) is equicontinuous i/Vx G A^, {A^,F) is equicontinuous at x. 
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4. {A^,F) is almost equicontinuous if3x G A^ s.t. {A^,F) is equicont. atx. 
5. {A^,F) is sensitive if 

3e > 0 s.t. Vx G A^,\/5 > 0,3y e A^,d{x,y) < (5,3n > 0 s.t. 
d(F''{x),F'^{y)) > e . 

5. {A^,F) is positively expansive if 

3e > 0 s.t. Vx, y G A^,xj^y,3n>0 s.t. c!(F"(x), F"(y)) > e. 

Kari showed that nilpotency is an undecidable property [11]. In [4], Durand 
et al. showed that equicontinuity, almost equicontinuity and sensitivity are un­
decidable properties. Actually, it is unknown if positively expansiveness is or 
not a decidable property. 

Definition 2. (Column subshift) Let {A^,F) he a CA. For k > 0 let 

Sk = {xG (A'=)« \3yeA^: r{y)[o,k) =Xi,ie N} 

denote the column subshift of width k associated to {A^,F). 

Oilman noticed that the language of a column subshift is always context-
sensitive [6]. Kurka classified cellular automata according to the complexity of 
column subshifts languages [13]. 

Definition 3. (Bounded periodic CA) {A^,F) is bounded periodic z/Vi > 0, 
C{St) is a bounded periodic language. 

Definition 4. (Regular CA) {A^,F) is regular if^t > 0, C{St) is a regular 
language (or, equivalently, if St is sofic shift). 

Definition 5. (Kurka's Language classification) Every cellular automaton falls 
exactly in one of the following classes. 
LI . Bounded periodic. 
L2. Regular not bounded periodic. 
L3. Not regular. 

Class LI coincide with the class of equicontinuous CA [13]. Thus the mem­
bership in LI is undecidable while it was unknown if it is for 1/2, L3. 

The topological entropy H{F) = limfe^oo h{Sk) of (A^,F) is a measure of 
the complexity of the dynamics of (A^, F). The problem of computing or even 
approximating the topological entropy of CA has been shown to be in general 
not algorithmically computable [8]. The topological entropy of one-sided CA 
has a simpler characterization than the general case (see [2]). 

Tiieorem 1. Let {A^,F) be a CA with radius r. Then H{F) = h{Er). 
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3 Results 

In this section we investigate decidable properties of regular CA. Most of our 
effort will be devoted to show that if 5 C {A'^^'+'^f is a sofic shift and {A^,F) 
is a CA with radius r, it is possible to decide whether S = S2r+i (Theorem 
3). This strong result has a lot of consequences. The most relevant one is that 
for regular CA it is possible to compute column subshifts of every given width 
(Theorem 4). The (dynamical) complexity of a CA is strictly related to the 
complexity of column subshifts languages. Actually we show that, thanks to 
the computability property, it is possible to decide if a regular CA is nilpotent, 
equicontinuous or positively expansive (Theorem 6). Moreover, it turns also out, 
that it is possible to compute the topological entropy for one-sided regular CA 
(Theorem 5). The negative consequence of computability/decidability results is 
that regularity itself is an undecidable property (Theorem 7). 

In order to show our fundamental decidability result (Theorem 3) we need 
to define the concept of cellular automaton extension of a sofic shift and to 
show some basic properties. 

Definition 6. Let (A^,F) be a CA with radius r. Let Q = {V,E,C,) be a labeled 
graph with ( : V ^ A?'^'^^. For t > 0, let the (F,t)-extension ofQ be the labeled 
graph G(F,t) = {Vt,Et,Ct), with Ct '• Vt —^ A^''+*, defined in the following way 
(see figure 1): 

• vertex set: 

Vt = {{v,,..,vt) G V* I 3a G A^'+\Civi) = a[i,2r+i],l <i<t} 

• edge set: 

Et = {(ei,.., et) G J5* | 3v, v' G Vt, z(e,) - Vj, i(e,) = v'jJidvj)) = av'j)r+i} 

• labeling function: 

\/v = {vi,...,Vt) G Vt,Ct{v) =awherea[i^2r+i] = C{vi)A <i<t. 

Definition 7. Let {A^,F) be a CA. Lett>0,k> 1 and let a,b € Bt{Sk) such 
that a = ai...ak, b = bi...bk where ai,bi G A* and aj+i = foj,l < i < /c. Then, 
we say that x,y are compatible blocks and we denote with aQb — ai...akbk 
their overlapping concatenation. 

Moreover, let x,y G Sk such that x = xi..Xk,y = yi-.-J/fc where Xi,yi G 
A^ and Xi+i = yi,l < i < k. We say that x,y are compatible sequences 
and, abusing the notation, we denote with xQy = xi...Xkyk their overlapping 
concatenation. 

The following two lemmas will be used extensively. 
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^(v") = aV..a'2r^j 

f(a|...a2r+j) = a'f^j, Vie[1,t] 

Fig. 1. A legal edge v ^^ v' oi an (F, i)-extended graph G(F,t)-

Lemma 1. Let {A'^,F) be a CA with radius r. Let t > 0 and let a,b e 
Bt{S2r+i) be compatible blocks. Then aQb G Bt{S2r+2)-

Proof. Let a = ai...at where oi,...,at G A '̂"+^ and let x £ A^ such that 
F'(x)[o,2r] = «i+ii 0 < i < t. Moreover, let b = bi...bt where bi,...,bt & ^^'"+^ 
and let y G A^ such that F*(j/)[i_2r+i] = &i+i, 0 < i < t. Let z G A^ he 
such that Z(^_oo,2r] = 2;(_oo,2r]. -2̂ (1,00) = 2/(1,00) and let a © 6 = ci-.c* where 
ci, ...,Ci G >1 '̂"+ .̂ Then it is easy to check that F'^(z)[o^2r+i] = Q+ii 0 < i < ^ 
which implies that a Qb G Bt{S2r+2)- D 

Lemma 2. l e i (A^, F) be a CA with radius r. Let S C (A^''+i)'^ be a sofic shift 
and let G be a labeled graph presentation of S. Let x,y G Sg.^^ j , be compatible 
sequences. Then x Qy G Sg.j,^,. 

Proof. Since, by hypothesis, x = {xi)i^{^,y = {yi)ieN G Sg^j, ^^ there exist two 
paths wi —> U2 —> ••• and wi ^ 112 —> ... in Q such that C("i) = ^i and C,{vi) = yi, 
i G N. Then, (wi,fi) —> (^2,^2) —* ... is a legal path in G(F,2) which implies 
that xQy G Sg^^.,^. D 

The following proposition shows that the sofic shift presented by the (F, t)-
extension G{F,t) of a labeled graph G doesn't depend on G but only on the sofic 
shift presented by G. 
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Proposition 1. Let {A^,F) be a CA with radius r and let Q,G' be two distinct 
labeled graph presentations of the same sofic shift S = Sg = Sg' C (yl^'"+'-)^. 
Then, for any t > 0, 5g(^ „ = 5'e|p ̂ . 

Proof. We show that Sg^^, ^^ C Sg' . The proof for the converse inclusion can 

be obtained by exchanging Q with Q'. 
First of all, note that, by definition of [F, l)-extension, Sg.^, ,̂ — Sgi . Let 

X G Sg^p^^ and let xj , ...,X( G S such that x = xi O ... © Xt- Then, xi, ...,Xt € 
Sc' and, by Lemma 2, it follows that x e Sa' • • 

Thanks to Proposition 1 we can refer directly to the extension of a sofic shift 
S rather than to the extension of a labeled graph presentation of S. 

Definition 8. Let {A^,F) be a CA with radius r. Let S C (yl2'-+i)N be a sofic 
shift and let Q be a labeled graph presentation of S. For t > 0, let denote with 
5(F,t) = ^S(F.t) ^^^ (F,t)-extension of the sofic shift S. 

We now show some useful properties of the {F, i)-extensions of sofic shifts. 

Lemma 3. Let {A^,F) be a CA with radius r. Let S C {A'^r+i^^ ĝ „ g^^^ 
shift. Then Vi > 0, 

a. if E2r+i C S then S2r+t C S(^F,t), 
h.if IJ2r+i = S then E^r+t = S(F,t), 
c. if S2r+i 3 5 then E2r+t 3 5'(F,t) • 

Proof, a. Let x e £'2r+f such that x = xi © .. 0 xt where Xj G i?2r+i) 1 <i <t. 
Then, Xj G 5'(F,I)> 1 < « < i and, by Lemma 2, xi © .. © Xt G 5(F,t). 

b.By point a, S2r+t C S(^F,t): thus we just have to show that S(^F,t) £ ^2r+t or, 
equivalently, that C{S(^F,t)) ^ C{S2r+t)- Let fc > 0 and let a G Bk{S(^F,t))- Let 
«!,..., at G Bk{S) be such that ai © ... Q at = a. By hypothesis, ai,...,at G 
Bk{S2r+i) then, by Lemma 1, it follows that ai © ... © at G Bk{E2r+t)-

c. Since S2r+i D S, appling the same reasoning of point 6, it is possible to 
conclude that S2r+t 2 5'(F,t)' We have just to show that the inclusion is 
strict. Since S2r+i 3 S, there exists a block 6i G C{S2r+i) such that 6i ^ 
£(5) . Then, let b G £(Z'2r+f) such that b = 6i 0 62 © ••• © t̂ for some 
&2,..., 6t G /:(i:2r+i). IVivially, fo ̂  CiS^F.t))- • 
The following theorem easily follows from Lemma 3 and provides a strong 

characterization for regular CA. It is a two-sided extension of a theorem proved 
by Blanchard and Maass for one-sided CA [1]. 

Theorem 2. Let {A^, F) be a CA with radius r. Then {A^, F) is regular if and 
only if S2r+i is a sofic shift. 

Proof. The necessary implication is trivial. Then, suppose Z'2r+i is a sofic shift. 
For every d < 2r -f 1, Z'rf is a factor of S2r+i then it is a sofic shift. For every 
d> 2r + l,hy Lemma 3 point b, Sd can be represented by a labeled graph then 
it is a sofic shift. D 

In general, if Ud is a sofic shift for d < 2r + 1 it is not possible to conclude 
that the CA is regular (see [10]). 
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Definition 9. Let A be a finite alphabet. Let t > 1 and let [i,j] C [1,^] be an 
integer interval. Let 

#(,,,]: {Ar - {A^-'+r 
denote the projection map induced by the one-block factor map 

defined by (p[ij-^{ai...at) = aiai+i...0j,Vaia2...at £ A*. 

Remark 1. Let {A^,F) be a CA with radius r and let G{F,t) be tiie (F, t)-
extension of Q. Then for every i G [l,i], ^[i,2r+i](5'£;(f, j,) C S'g. 

Definition 10. Let {A^,F) be a CA with radius r and let S C (A2'-+1)N be a 
sofic shift. S is F-extendibie if 

S = %2r+i ] (V, t ) ) ' ^^ > 0,Vi G [l,i]. 

Note that for a sofic shift to be F-extendible is a necessary condition in 
order to be equal to S2r+i-

Proposition 2. Let {A^, F) be a CA with radius r and let S C (A2' '+1)N be a 
sofic shift. Then, S is F-extendible iff S = ^[i,2r+i](5'(F,2)) = ^i2,2r-+2](5'(F,2))-

Proof. The necessary implication is trivial. Then, let 5 = ^[i,2r+i](5'(F,2)) = 
^[2,2r+2](5'(F,2))- Note that this imphes S = S(^F,I)- Let t > 2, we have to 
show that S = $[i,2r+i]{S{F,t)) iox 1 < i < t. Let z e S and let k G [l,i]. 
To reach the proof it is sufficient to show that z G ^[k,2r+k]iS(F,t))- Since 
S = ^[i,2r+i]iS(F,2)) = ^{2,2r+2]{S{F,2)), there exists xi,..,xt-i G 5(ir,2) such 
t h a t ^[2,2r+2](a;i) = ^ [ l , 2 r+ l ] (2 ; i+ l ) , 1 < i < t - 1 a n d ^[2,2r+2](a;fc-l) = 

^[i,2r+i]{^k) = z. Then, xi,..,Xt-i are compatible and by Lemma 2, it fol­
lows that xi O ... O xt-i € S(^F,t) and ^[k,2r+k]{xi © ... 0 xt-i) = z. D 

Proposition 3. Let {A^,F) be a CA with radius r and let S C (^Sr+i^N jg ^ 
sofic shift. Suppose S is F-extendible then S C Z'2r+i-

Proof We prove by induction on fc > 0 that Bk{S) C Bki^2r+i)-

1. (Base Case) By definition, Bi{S) C Bi{S2r+\) = A'^''+\ 
2. (Inductive Case) Suppose Bk{S) C Bki^2r+i) for fc > 0. We have to show 

that Bk+i{S) C Bk+i{S2r+i)-
Since the radius of the CA is r, the set of blocks Bk+i{S2r+i) is com­
pletely determined by the set of blocks BkiSir+i) as well as the set of blocks 
Bk+i{^[r+i,3r+i]{S{F,2r+i))) is Completely determined by the set of blocks 
Bk{S(F,2r+i))- Thus, showing that Bk{S(^F,2r+i)) £ Bk{S4r+i) we can reach 
the conclusion Bk+iiS) C Bk+i{S2r+i)-
Let X G Sfc(5(F,2r+i))- Since S is F-extendible, there exist xi, ..,X2r+i G 
Bk{S) such that x = xiQ ...(Dx2r+i- By inductive hypothesis, xi, . . . , X2r+i G 
Bk{^2r+i) then, by Lemma 1, a; G Sfc('^4r+i)- • 
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Proposi t ion 4. Let {A^,F) be a CA with radius r and let S C (A^r+i^N ĝ ^ 
sofic shift. Then it is decidable if S is F-extendible. 

Proof. Given a labeled graph representation of S, it is possible to compute S(^F^2) 

and it is possible to compute labeled graph representations for ^[i,2r-+i]('S'(F,2)) 
and ^[2,2r+2]('S'(F,2))- Given labeled graph representation of 5, 5" = ^[i,2r+i](5'(F,2)) 
and S" = ^[2,2r+2]{S{F,2)) it is easy to build three finite state automata whose 
recognized languages are respectively C{S),C{S') and C{S"). Then, the proof 
follows from Proposition 2 and from the decidability of the equivalence between 
finite state automata. D 

Proposi t ion 5. Let {A^, F) be a CA with radius r and let S C S2r+i be a sofic 
shift. Then it is decidable if S2r+i = S. 

Proof. We provide a proof for the following claim which trivially is algorithmi-
cally checkable. 

Let M = ((5,A2'-+i,go,i^,<5) be the smallest DFA recognizing the lan­
guage C{S). Let N = {\Q\ • |A|2'-+i)2'-+i. Then Z-sr+i -= S if and only 
if BNi^Ar+l) = Siv(5'(F,2r+l))-

By Lemma 3, the necessary condition is trivially true. Obviously, if Sir+i = 
5(F,2r+i) then Z'2r+i = S. Thus, we show by induction on fc > 0 that 
Bk{Sir+l) = Sfc(S'(F,2r+l))-

a. (Base Case) By hypothesis, Sjv(^4r+i) = 'Sjv(5'(F,2r+i))- Moreover, since the 
language of a subshift is factorial, ^^(1^4^+1) = Sfc(S(F,2r+i))i Vfc < A''. 

b.(Inductive Case) Suppose 5x(^4r+i) = BK{S(F,2r+i)), K > N. We have to 
s h o w t h a t BK+li^ir+l) = BK+l{S(^F,2r+l))-

Let Q = {V, E, 0 be the labeled graph presentation of S derived from the 
smallest DFA M according to the procedure described at the end of section 
2.1. Note that the number of vertices of Q is less then or equal to \Q\ • \A\'^'^'^^. 
Moreover, let ^(F,2r+i) be the (F, 2r+l)-extension oiQ. Note that the number 
of vertices of Q(F,2r+i) is less then or equal to A''. 
Let a G BK+ii^ir+i) and let a^, ...,a^''+^ G Bx+i(-^2r+i) such that a = 
a^ 0 ... 0a^ ' '+^ Since, by inductive hypothesis, Bxi^Ar+i) = BKiS(^F,2r+i)): 
it follows that BK+i{^2r+i) = BK+I{S) and, trivially, that a^,...,a'^^'^^ G 
BK+I{S). Then there exist uniques legal paths 

in g, where u\ = iqo,a\) and ( ( 4 ) = ai^i e [l,2r + 1], 1 < A; < iiT + 1. 
We show that there exists x G 5'(F,2r+i) such that x^o^i^] = a. Let y G 
S{F,2r+i) such that ^[0,^-1] = o,[o,K-i]- One such y exists since, by induc­
tive hypothesis, Si<-(Z'4r+i) = S_ft-(5'(F,2r+i))- Then there exists an unique 
path vo -^ vi —» . . i n ^(F,2r+i) such that C2r+i{vi) = Vi, i G N and 
such that Vo = ((go,C[i,2r+i]). •••> (9o,C[2r+i,4r+i])) where c = yo G A'^''+^. 
Since K > N there exist 0 < i < j < K such that Vi — Vj. Then, 
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let consider a'' = aia2..aj'aj^ia^_,_2...a^^i, 1 < fc < 2r + 1. Obviously, 
a'' e C{S) n C{i:2r+i), l < k < 2r + l. Moreover, a^ are compatible then, 
by Lemma 1, a = â  0 ... 0 5^''+^ G £(1^4^+1) and, by inductive hypothesis, 
a e £ (5 ( i r , 2 r+ l ) ) -

Let I = \a\. Let z G S(^p^2r+i) such that zro,!) = a. Then, there exists an unique 
path UQ —> tij —> .. in Q{F,2r+i) such that C2r+i{v[) = Zi, i GN and such that 
V'Q — VQ. Moreover, since V'Q = VQ and zjo,;) = a, it follows that ujj. = Vk for 
0 < A; < « and v̂ _,_j. = Vj+k, 1 < k < C where C — K — j . Then it is easy to 
see that 

vo -> ... -^VK^ vl^c+i -^ '"i+c+2 -^ -

is a legal path in Q{F,2r + 1) and that the labehngs of the vertices in the 

path generate a sequence x G >S'(F,2r+i) such that xp^x] = o-- O 

Now we are ready to state our main result and next to show the most 
immediate consequences. 

Theorem 3. Let (A^, F) be a CA with radius r and let S C (^2r+i^N ^̂  ^ ^^yj^ 
shift. Then it is decidable if S = U2r+i' 

Proof. S = S2r+\ if and only if S is F-extendible and S 2 ^2r+i- Then, the 
proof follows from Proposition 4 and Proposition 5. D 

We now explore some important consequences of Theorem 3 related to reg­
ular CA. 

Theorem 4. Let {A^,F) be a regular CA. Then Vi > 0, St is computable. 

Proof Let r be the radius of the CA. By Theorem 3, given a sofic shift 
S C (A^'"+^)^, it is possible to decide if 5 = ^2r+i- We can enumerate all 
labeled graph representing all sofic shifts contained in A'^^'^^. Then there exists 
an algorithm that iteratively generates graphs in the enumeration and checks 
if the shift represented is S2r+i- Since {A^,F) is regular, S2r+i will be even­
tually generated and recognized. This proves that, if {A^, F) is regular, Z'2r+i 
is computable. 

In general, if i < 2r 4-1, we can compute St by simply taking the projection 
^[i,t](^2r+i) otherwise, if i > 2r -I-1, by Lemma 3 point b, we can compute St 
by computing the (F, t — 2r)-extension of S2r+i- D 

The following theorem gives an answer to a question raised in [3]. 

Theorem 5. The topological entropy of one-sided regular CA is computable. 

Proof Since the entropy of sofic shifts is computable, the conclusion follows 
from Theorem 1 and Theorem 4. D 

The following theorem shows that if we restrict to the class of regular CA, it 
is possible to provide answers to questions which are undecidable in the general 
case. 
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Theorem 6. Let {A^, F) be a regular CA. Then the following topological prop­
erties are decidable. 

l.Nilpotency 
2. Equicontinuity 
3. Positively Expansiveness 

Proof. By Theorem 4, given {A^,F), it is possible to compute S2r+i' 

1. It is easy to see that {A^, F) is nilpotent if and only if there exists a G A^^+^ 
and N > 0 such that Vn > N,'^x e S2r+i, o'"(x) = a. Given a labeled 
graph representation of Z'2r+i! this last condition is trivially algorithmically 
checkable. 

2.It is easy to see that {A^,F) is equicontinuous if and only if £(Z'2r+i) is a 
bounded periodic language and that, given a labeled graph representation of 
I^2r+i, it is algorithmically checkable if C{S2r+i) is bounded periodic. 

3.Every positively expansive CA is conjugated to (Z'2r+i,cr) where S2r+i is a 
shift of finite type and, in particular, it is an n-full shift (see [12]). Since, for 
positively expansive CA, n = |F"-'-(x)| for every x G A^, n is a computable 
number. The proof follows from the decidability of the conjugacy problem for 
one-sided shifts of finite type (see [15]). D 

To conclude, we show that, as a negative consequence of the decidability of 
properties in Theorem 6, regularity is an undecidable property which implies 
that the membership in Kurka's language classes is undecidable. 

Theorem 7. It is undecidable whether a CA is regular. 

Proof. Assume it is decidable if a CA is regular. Then, since nilpotent CA are 
regular, by Theorem 6, it is possible to decide if a CA is nilpotent. D 

4 Conclusions and open problems 

We investigated decidable properties for regular cellular automata. We showed 
that regularity itself is not a decidable property (Theorem 7) and that, con­
versely, for regular cellular automata nilpotency, equicontinuity and positively 
expansiveness are decidable properties (Theorem 6). Moreover we aswered a 
question raised in [3] showing that the topological entropy is computable for 
one-sided regular CA (Theorem 5). It is unknown if almost equicontinuity and 
sensitivity are or not decidable properties for regular CA (since to be almost 
equicontinuous or sensitive is a dicotomy for CA, this two properties are either 
both decidable or both not decidable). 
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