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Abs t rac t . The Self Distributing Virtual Machine (SDVM) is a middle­
ware concept to form a parallel computing machine consisting of a any 
set of processing units, such as functional units in a processor or FPGA, 
processing units in a multiprocessor chip, or computers in a computer 
cluster. Its structure and functionality is biologically inspired aiming 
towards forming a combined workforce of independent units ("sites"), 
each acting on the same set of simple rules. 
The SDVM supports growing and shrinking the cluster at runtime as 
well as heterogeneous clusters. It uses the work-stealing principle to 
dynamically distribute the workload among all sites. The SDVM's en­
ergy management targets the health of all sites by adjusting their power 
states according to workload and temperature. Dynamic reassignment 
of the current workload facilitates a new energy policy which focuses on 
increasing the reliability of each site. 
This paper presents the structure and the functionality of the SDVM. 

1 Introduction 
In the past, the user's increasing demand for capacity and speed was usually 
satisfied by faster single processors. Nowadays the increase in clock rates seems 
to have slowed down. The exploitation of parallelism is one way to enhance 
performance in spite of stagnating clock speeds. Its use isn't limited to the 
field of supercomputers; nowadays even Systems-on-Chip(SoC) with a lot of 
processors, so called MPSoCs, are in production. 

Task scheduling and data migration for parallel computers, especially if 
embodied as a cluster of processing units, are complex problems if solved cen­
tralized. The use of biologically-inspired mechanisms can reduce complexity 
without sacrificing performance. The properties of biological systems like self-
organization, self-optimization and self-configuration can be used to ease pro­
gramming and administration of parallel computing clusters. These properties 
can be implemented efficiently using a paradigm common in complex biological 
systems: the collaboration of autonomous agents. 
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Using biologically inspired techniques to implement a parallel computing 
system is only the means to the end in meeting user requirements. With the in­
troduction of parallel computing, speed is not the only property which users are 
interested in; others too have come to the fore. In the following, several of those 
properties are presented. These properties focus on MIMD computer clusters. 
Such a cluster consists of an arbitrary number of independent processing units 
called sites which are connected using any kind of network. 

Despite the performance of parallel computers the computations may take 
serveral days to finish. For large scale machines like the ASCI-Q machine, the 
mean time between failures (MTBF) for the whole system is estimated to be 
mere hours [1]. Thus system stability even in the face of failure of single compo­
nents is an important goal. Parallel systems must therefore detect failures and 
intercept them transparently and unnoticed by the user. Presently, a system 
won't be able to repair itself physically, but the other sites should adapt to the 
changed environment and take over the work from the faulty site. This could 
be termed "self healing" of a system. 

A main cause for the limited use of parallel computers lies in the challeng­
ing programmability: For single processors, scheduling in time is sufficient, but 
for multiprocessor systems, the spatial dimension has to be considered, too. 
Spatially and timely scheduling of the chunks of a program is a non-trivial 
optimization problem for the programmer, especially as the parallelism of an 
application can vary greatly over execution time and depends on the input data. 
Therefore a possible solution would be to relieve the programmer of the spa­
tial scheduling at all, and let the system decide it at runtime using convenient 
heuristics automatically. The resulting transparent parallelization is similar to 
the goal of self-optimization, known from the subject of organic computing [2]. 

Experience shows that the performance demands increase over time. To 
be cost-effective, it suggests itself to prolong the life-span of a system instead 
of replacing it with a new system every few years. In the case of a parallel 
system this can be done by adding new processors or computers to increase its 
processing power. A parallel computing middleware should therefore support 
scalability. The benefit even increases if the growing and shrinking of the system 
is possible at runtime to cope with short-time processing power demand peeks. 

In the beginning parallel systems were implemented as dedicated clusters. 
These days they more and more consist of clusters of workstations, multi­
processor embedded systems, or even multicore FPGA-based devices. Thus en­
vironmental parameters change frequently and sometimes fast. Configuration 
by hand of such a dynamically changing system is hard or even impossible. 
Thus it should configure itself autonomously. Concerning parallel systems, for 
well-founded configuration decisions the sites must be informed about the other 
sites' load, speed, etc., automatically. This can be denominated as the goal of 
self-configuration. 

In section 2, the concept of the SDVM and its underlying mechanisms are 
described. After a list of some speedup results in section 3, this paper closes 
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with a conclusion in section 4. The SDVM prototype is implemented in C + + 
and its complete source code is freely downloadable [3]. 

2 The SDVM 

The Self Distributing Virtual Machine (SDVM) is a middleware to form an 
adaptive parallel system which is applicable to different granularities like func­
tional units on an FPGA, processors in a multiprocessor SoC, or a cluster of 
customary computers(see Figure 1). The SDVM is currently implemented as a 
prototype in software running as Linux daemons on a workstation cluster. 

site 1 

site 2 

site n 
networl< < 

Fig. 1. The SDVM connects processing units (sites) to form a cluster, regardless of 
the topology of the connection network. 

The SDVM actually implements several of the concepts inspired by biolog­
ical systems, namely the cooperation of somewhat autonomous systems, self-
controlled adaptivity to changing environments (as the size of the cluster or its 
heterogeneity) and decentralization of task scheduling. The sites that build the 
cluster are basically equal with no master or fixed division of functions. Fur­
thermore, the SDVM supports self-healing by the use of checkpoints, to ensure 
proper program execution irrespective of failing cluster members. 

2.1 T h e concept 

The SDVM can be seen as a dataflow machine augmented with a distributed 
shared memory: An application to be executed by the SDVM is cut into several 
chunks of code, the microthreads. Each microthread needs certain parameters 
when run, therefore these parameters have to be collected prior to execution 
of the microthread. The data container collecting the parameters is called the 
microframe (see Figure 2). 

target addresses 

microframe microthread 

Fig. 2. Microframe and Microthread 

A microframe is filled over time with the parameters it awaits. When all pa­
rameters have been received, the corresponding microthread is executed using 
these parameters and in the process calculates results needed by other mi-
croframes as parameters. Microframes can travel throughout the cluster while 
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being filled. As the corresponding inicrothread is only needed when they are 
actually executed, the microthread is not included in the microframe to lessen 
bandwidth consumption when moving from one site to another. 

While a microframe is being filled, the SDVM has not yet decided which 
site will execute this microframe with its corresponding microthread. When 
a site autonomously decides to execute a microframe locally, it finally needs 
the corresponding microthread which is then read from the local code cache 
or copied over the network. In this way the application itself (in terms of its 
microthreads) spreads automatically throughout the cluster over time—the sites 
will request just what they need and when they need it. 

Microframes are not the only way to exchange data between parts of a 
program. The entirety of the SDVM provides a distributed shared memory 
(DSM) like SCI [4] and FLASH [5]. SDVM-programs can allocate and use this 
memory just like heap memory is used in C / C + + . The memory addresses 
pointing to allocated memory regions can be passed as microframe parameters 
between microthreads. This global memory consists of the sum of all sites' 
memories. If a site is shut down (shrinking the cluster) the data stored in its 
local part of the global memory is pushed out to other sites before. 

Any site which has nothing to do will ask other sites for work and will in 
return get a microframe which is ready for execution, if available. Any new site 
joining the cluster will just notice that its work queue is empty and act like 
any site which is out of work. In this way a site autonomously provides itself 
with work. This is called the work stealing principle (also referred as "receiver-
initiated load balancing"), as opposed to the work sharing principle ("sender-
initiated load balancing") where overloaded sites try to push away work to less 
loaded sites. Nearly all load balancing mechanisms base on work sharing, work 
stealing, or a combination of both [6]. On heavy loaded clusters work sharing 
leads to an even higher burden due to unsuccessful load balancing attempts. 

As the SDVM provides a way of virtualization, it can connect heterogeneous 
machines to form a cluster: Several underlying architectures, platform types and 
operating systems are supported. If a site wants to execute a microthread which 
doesn't exist in its needed binary format yet, it must be generated somehow. 
If the SDVM is used as a middleware for computer clusters, it will request 
the source code and compile it on-the-fly and at runtime vising the locally 
installed compiler (like gcc). The results show that the compilation time is fast 
enough, because the microthreads are small chunks of code and don't have to be 
linked (this is done automatically by the SDVM when receiving a microthread 
anyway). When the SDVM is used as a firmware for MPSoCs, techniques like 
code morphing can be used to translate the binary of the microthreads. 

As a middleware the SDVM connects several machines. In contrast to 
client/server concepts like CORBA [7], the machines are treated equally, 
though. The SDVM cluster consists of the entirety of all sites, which are SDVM 
daemons running on participating machines. The number of sites, their comput­
ing power, and the network topology between them is irrelevant, as the SDVM 



The SDVM: Making Computer Clusters Adaptive 173 

automatically adapts to any cluster it is run on, even when the cluster grows 
or shrinks at runtime by adding or removing sites [8]. 

The SDVM daemon consists of several managers with different fields of re­
sponsibility. Some deal with the execution of code fragments, some attend to 
communications with other sites, some are concerned with the actual decision­
making (see Figure 3). The latter implement the self-x features of the SDVM. 
They are described in the next sections. 

A(lrari.on 

Fig. 3. An SDVM daemon consists of several managers. 

2.2 T h e execut ion layer 

The execution layer is responsible for the handling and execution of the code 
and data. Furthermore it provides I /O virtualization. 

Microframes waiting for more parameters as well as global memory objects 
are kept in the attraction memory. If a data object is requested, it is first sought 
locally. In case of a miss the site it actually resides on is determined and then 
the data object is moved or copied to the local site. 

The microthreads are only requested when they are to be executed lo­
cally. The local caching of microthreads and the compilation of microthreads, 
if needed, is done by the code manager. 

The processing manager executes the microthread/microframe pair. To ac­
complish this, it provides an interface for the microthread to read the parame­
ters of its microframe. When the execution has finished the processing manager 
deletes the no longer needed microframe. To hide network latencies when e.g. 
an access to a remote part of the global memory is needed, the processing man­
ager may execute several microthread/microframe pairs concurrently. Test runs 
suggest that a number of 5 parallel processing manager threads are a good value 
for applications having much communication between the microframes. 

The input/output manager manages user interaction and accesses local re­
sources like hard disks or printers. 

2.3 T h e communicat ion layer 

The communication layer manages sending and receiving of messages between 
sites. The message manager is the central communication hub for all other 
managers. It generates serialized data packets to be sent to other sites, adds 
information about the local site and determines its address before optionally 
passing them to the security manager. This manager may then encrypt and sign 
the data packets to avoid e.g. eavesdropping and spoofing. On the receiving 
site it will validate the signature and decrypt the message, if necessary, before 
passing it to the message manager. 
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The network manager is the part of the SDVM which is responsible for 
the actual transportation of the data packets. For the currently existing cluster 
realization it uses T C P / I P to send data to other sites. For an implementation 
of the SDVM on SoCs or multiprocessor chips it would have to use the on-chip 
network to pass data to the receiving site. 

2.4 T h e decis ion layer 

While the responsibilities of the managers in the execution and communication 
layers are more or less usual in computer systems, the decision layer implements 
the more sophisticated parts and the self-x-properties of the SDVM. 

The SDVM features distributed scheduling which is done by the scheduling 
manager. Most scheduling methods assume a central calculation of the exe­
cution order, combined with a centrally managed load balancing. They take 
advantage of the accord that all information is collected on one site and thus 
good scheduling decisions can be made. However, in big clusters this central 
machine may become a bottleneck or even a single point of failure. 

The SDVM works without client-server concepts as far as possible. Therefore 
the scheduling is done autonomously by each site. The sites therefore don't have 
knowledge about the current global execution status of the application, but only 
about the locally available executable microframes. Some information can be 
extracted in advance, though: The dataflow graph of the application contains 
all microthreads and therefore the critical path of an application and regions 
of high data dependencies can be detected. These parts will then be executed 
with higher priority resp. executed preferably on the same site. 

The site manager collects data about the local site, e.g. processing speed, 
current load, number of applications the site works on, etc. This information 
is then passed (piggyback on other messages) to other sites' cluster managers, 
measuring the current network latency between these sites on the way. The 
cluster manager then possesses performance data about any site it directly 
works together with. Thus it can provide hints on which microframes to pass 
to which site. For example, a slow site with long network latencies will not be 
given a microframe which lies in the critical path of the application—another 
microfraine which will be needed a bit later and therefore can afford to be 
calculated slower would be a better choice. 

Another job of the cluster manager is the crash management. If a site does 
not respond to messages anymore, it is (after a while) regarded as crashed. The 
cluster is informed about the crash, then the applications which were executed 
on this site are determined by the other sites, as these applications have to 
be restarted. To avoid a whole restart of an application the SDVM features a 
checkpointing mechanism: Any microthread may not only apply its calculation 
results to the microframe awaiting them but also to a special microframe, the 
checkpoint frame (see Figure 4(a)). When a crash occurs, the site holding the 
youngest complete checkpoint frame is determined. This site then creates a 
recovery frame which recreates the not-yet executed microframes and reapplies 
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reapply 
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(a) Information about microframes 
and the data apphed to them gets 
copied to the checkpoint frame. 

Fig. 

(b) After a crash occured, the 
recovery frame is generated and 
executed. It recreates the stored 
microframes and reapplies the 
stored data. 

4. The checkpointing mechanism works on the CDAG (controlflow dataflow 
allocationflow graph) [9] of an application 

the parameters to them (see Figure 4(b)). The application then runs on from 
that point undisturbed. 

2.5 Freedom of adapt iv i ty 

The optimization success of an application's execution depends on how the 
current environment properties can be dealt with. Therefore an application 
which doesn't make too many restricting assumptions before runtime is more 
easily optimized at runtime. Typical assumptions are e.g. the platform type the 
application will be run on, the performance needed, the size of the cluster, the 
degree of parallelism, etc. The later those degrees of freedom are exploited and 
actual information taken into consideration, the more this information will be 
accurate with regard to the execution environment—and thus the system be 
made adaptive and the optimization improved. 

In order to cope with the mentioned degrees of freedom, the SDVM acts 
as a virtualization layer which hides most properties of the underlying hard­
ware from the applications. Therefore the SDVM may decide single-handedly 
where and when to execute specific microframes. In the area of reconfigurable 
hardware, the SDVM may even decide to resize the cluster by configuring ad­
ditional processors and thus react to performance demand peeks. Based on 
available space and application requirements microthreads themselves can be 
configured as hardware at runtime and thus executed much faster. 

The support for heterogeneous hardware architectures and varying cluster 
sizes makes it possible to upgrade hardware while the software runs on: Add 
new hardware and shut down the old. 

2.6 Rel iabi l i ty and dynamic power management 

The SDVM features another interesting concept which can be useful to enhance 
the reliability of a cluster or better yet of a multiprocessor chip it runs on. 
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The energy manager monitors the current load of the whole cluster and decides 
whether more processing power than needed is available. In this case it will send 
some sites a signal to work in a slower mode or even shut down completely. This 
reduces energy consumption and avoids overheating of processors. In case the 
load increases sites will get a signal to recur from sleep or shutdown mode. 

Since energy management has an impact on the reliability of a system [10], 
the reliability can be further enhanced by introducing a new energy manage­
ment policy. Unlike usual strategies which try to minimize energy consumption 
or reduce it without sacrificing performance, the new policy aims towards a 
minimal number of temperature changes. Thermal cycles induce mechanical 
stress which is a major contributor to chip failure [11]. Thus reducing thermal 
cycles reduces mechanical stress and therefore prolongs lifetime. 

The SDVM is well suited for this kind of energy management pohcy, because 
the workload distribution adapts automatically to the changing performance of 
each site. Sites which fail to request work are not slowed down immediately in 
order to reduce thermal cycling. Similarly, sites having high load levels are not 
put to a higher performance level immediately if there are still underworked 
sites present in the cluster. 

A method where any site may freely decide for itself its energy status may 
result in a situation where all sites simultaneously decide to shut down; there­
fore, as a mitigation of the distributed paradigm, the energy managers use an 
election algorithm to define a master which then is the only one to decide. The 
master may even decide to shut down its own site or to quit being the master; 
then the election is simply started again among the remaining sites. 

3 Results 

In this section some results are shown for a simple application, namely the 
Romberg numerical integration algorithm [12]. This algorithm partitions the 
area to be measured into several portions of constant width. Those can be 
measured independently and the results added eventually. The first microthread 
will generate a target microframe where the results are finally added and then, in 
our example, 100 or 150 other microframes containing the Romberg algorithm, 
which can be run in parallel. 

The SDVM needs a lot of calculations and communication to distribute 
code and data. Therefore a question is whether the additional overhead is small 
enough to maintain the concept. 

First, it shall be demonstrated how much overhead is generated by using 
the SDVM. To show this, run times on a stand-alone SDVM site are compared 
with the run times of a corresponding sequential program (see Figure 5). This 
overhead appears to be about 2%, even if the microthreads have to be compiled 
before execution. 

In the next step, it has to be shown that the speedup is in expected regions. 
On a cluster of identical machines (Pentium IV, 1.7 GHz), a value for the 
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Fig. 6. Romberg algorithm: Run times 
and speedup depending on the number 
of sites 

Fig. 5. Romberg algorithm: Comparison 
of the run times (in seconds) of a sequen­
tial program and the SDVM with one 
site. Values are given with and without 
compilation time, respectively, for width 
100 and 150. 

speedup is shown in Figure 6. It reaches roughly the number of participating 
sites, which is a good result. 

width 100 
width 150 

speedup width 100 
speedup width 150 

1 site 2 sites 4 sites 
128 
193 

1 
1 

65 34 
97 51 

1.97 3.76 
1.99 3.78 

4 Conclusion 
The Self Distributing Virtual Machine is a middleware which connects any func­
tional units to form an adaptive parallel computing system. Both structure and 
functionality are biologically inspired as it is built from autonomous interact­
ing units, features decentralized decision making and supports self-healing from 
cluster member faults. The SDVM detects failed members, removes them from 
the cluster and enables applications to efficiently recover from failure by the 
use of checkpointing. 

The SDVM is self-organizing as a new SDVM-enabled unit which wants to 
join only needs a communication channel to a site which is already part of the 
cluster. As sites may join or leave at runtime without disturbing the execu­
tion of running applications, the cluster may grow or shrink to any convenient 
size, moreover regardless of the sites' operating systems, hardware or even the 
network topology between them. The cluster scales automatically. 

It is self-optimizing as it automatically distributes data and program code 
to sites where it is needed, thereby dynamically balancing the workload of the 
whole system. Furthermore, this vastly facilitates a hardware upgrade while 
the system is running by shutting down old hardware and signing on new 
hardware—the applications will be relocated automatically and continue to run 
nonetheless. Similarly, resources can be added temporarily to cope with short 
term peeks in computing power demand. 

The distributed scheduling of the SDVM provides the foundation for a new 
energy management policy which can improve the reliability of the participat­
ing systems. It differs from usually applied policies in its focus to reduce the 
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number of thermal cycles of the system while minimizing the negative impact 
on performance. The tradeoffs between performance and reliability, and number 
of thermal cycles and mean temperature levels are currently investigated. 

A prototypical implementation of the SDVM has been created and evaluated 
for the area of cluster computing. The prototype and its full source code is freely 
downloadable [3]. The SDVM is currently being adapted to multi-core processor 
systems. 
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