
Collaborative architecture for malware detection
and analysis

Michele Colajanni, Daniele Gozzi, and Mirco Marchetti

Abstract The constant increase of malware threats clearly shows that the present

countermeasures are not sufficient especially because most actions are put in place

only when infections have already spread. In this paper, we present an innova-

tive collaborative architecture for malware analysis that aims to early detection

and timely deployment of countermeasures. The proposed system is a multi-tier

architecture where the sensor nodes are geographically distributed over multiple or-

ganizations. These nodes send alerts to intermediate managers that, in their turn,

communicate with one logical collector and analyzer. Relevant information, that is

determined by the automatic analysis of the malware behavior in a sandbox, and

countermeasures are sent to all the cooperating networks. There are many other

novel features in the proposal. The architecture is extremely scalable and flexible

because multiple levels of intermediate managers can be utilized depending on the

complexity of the network of the participating organization. Cyphered communica-

tions among components help preventing the leakage of sensitive information and

allow the pairwise authentication of the nodes involved in the information sharing.

The feasibility of the proposed architecture is demonstrated through an operative

prototype realized using open source software.

1 Introduction

It is pointless to repeat once again that the global network is growing steadily and

fast, and that the attached hosts are becoming more and more tightly connected

(for example with the shift from dial-up PSTN connections to broadband xDSL and

cable-TV connections). The increasing phenomenon of botnet infections is a real

threat to organizations which rely heavily on their web presence. Some evidences

Department of Computer Engineering, University of Modena and Reggio Emilia,
e-mail: michele.colajanni@unimore.it, e-mail: daniele.gozzi@unimore.it, e-mail:
mirco.marchetti@unimore.it

Please use the following format when citing this chapter: 

Colajanni, M., Gozzi, D. and Marchetti, M., 2008, in IFIP International Federation for Information Processing, Volume 278; Proceedings 
of the IFIP TC 11 23rd International Information Security Conference; Sushil Jajodia, Pierangela Samarati, Stelvio Cimato; (Boston: 
Springer), pp. 79–93. 



80 Michele Colajanni, Daniele Gozzi, and Mirco Marchetti

have been found that connect large botnets with organized crime, so voiding the

influence of this type of worms is not any more just a matter of computer security.

The present defense mechanisms against the most virulent forms of malware

and botnets are clearly inadequate. Some estimates [1] show that the Storm worm

reached two million machines, thus giving its owner a computing power theoret-

ically higher than the world’s top supercomputers. Other recent data concerning

worm spread can be obtained from the ShadowServer site [2]. Any domestic per-

sonal computer is heavily targeted by self-replicating malware when it is connected

to an ADSL line. (We recorded through the honeypot Nepenthes [3] 10464 infection

attempts over a 178 hour period, which is about one attempt per minute on average.)

The usual defense mechanisms aim to apply patches on demand well past the

first attack attempt and the discovery of a new vulnerability. For a safer diffusion of

the Internet-based services, we think it is important to move from independent and

late defenses to coordinated, timely and possibly preventive countermeasures.

We present an innovative collaborative architecture that aims to anticipate mal-

ware detection, analysis and related countermeasures. The cooperation between het-

erogeneous and geographically distributed networks can be especially useful to fight

autonomously spreading malware (i.e., worms) that represents the main focus of this

paper. For example, most negative effects of malware and botnet spreading can be

mitigated by simple packet filtering policies that must be activated as soon as pos-

sible. Unfortunately, each network implements this type of countermeasures in an

individual fashion, without any knowledge of what is happening in other networks.

In our proposal that allows different networks to cooperate, all information about

a new malware type (threats, how is spreading, which kind of vulnerabilities it ex-

ploits, which software application or operating system can be affected, countermea-

sures) gathered by one sensor is propagated in a fast, reliable and trusted way with

the goal of preventing the infection in other not yet touched networks.

The proposed architecture has several innovative features. Unlike the few existing

collaborative systems that are mainly oriented to spam fighting, the proposed system

is oriented to malware detection, analysis and communication of security threats.

Its flexibility and scalability is intrinsic in the architecture design that is based on a

decentralized communication scheme and a multi-tiered hierarchy of geographically

distributed components. The proposed solution is general and takes advantage of the

knowledge of each participant on its network part while requiring a very unobtrusive

trust scheme. Cross-organization security initiatives are rarely seen even if some

interesting solutions for partial information disclosure have been presented [4].

Current initiatives which require the cooperation of many users to collect mal-

ware represent an appreciable start, but most of the analysis work is still manual and

there is a strict separation between anti-malware research and deployment of coun-

termeasures. On the other hand, the proposed architecture needs a limited or null

human intervention that differentiates it from analogous solutions in similar fields.

Finally, it is worth to observe that we take advantage of honeypot properties to share

information without raising privacy concerns between different organizations.

The remainder of this paper is structured as follows. In Section 2, we evidence

the contribution of this paper with respect to the literature. In Section 3, we give



Collaborative architecture for malware detection and analysis 81

an overall description of the cooperation architecture and the details of the main

components. In Section (4) we describe the implementation of a prototype version of

the proposed architecture. In Section 5, we present the results of some experimental

tests. Finally, in section 6 we state our conclusions and outline future research work

opened by this paper.

2 Related work

A cooperative multi-tiered hierarchy of geographically distributed components for

fighting malware represents an original proposal. However, other interesting cross-

organization security initiatives exist. We can cite the DNS black lists (DNSBL) [5],

Botnet investigation [6, 2], IDS alert correlation frameworks [7, 8], partial informa-

tion disclosure [4].

DNS black lists (DNSBL) are one of the existing automated facilities for limiting

the activities of suspicious hosts, but they are still highly focused on a single service

(email). Our approach is general and avoids blacklists, since many home Internet

connections have dynamic IP addresses and the inclusion of such addresses would

be detrimental to the efficacy of the blacklist and to the user experience.

Investigation of botnets is still highly manual. The existing efforts are more ori-

ented to help law enforcement agencies, but not so much to limit malware spread.

Instead, we aim mainly to counter worm infections and botnet activities from a tech-

nical point of view. The absence of just one common countermeasure deployment

approach is an intentional goal of the designed architecture that intends to avoid

overreactions and prevent denials of service induced by attackers with specially

crafted malware.

Current NIDS alert correlation frameworks are rarely (if at all) seen in a cross-

organization deployment. We insist once again on the benefits of intrusion informa-

tion sharing and we propose a cooperative architecture where each participant has to

trust only two other parties (its Manager and the Collector, as evidenced in section 3)

and communication is authenticated and encrypted. The pairwise trust scheme and

cyphered communications among the components represent other interesting novel

features of the proposal, although similar solutions have been suggested in other

contexts [9, 10, 11]. The benefits of cooperation are not indirect: each participant

is notified timely of security threats collected from any cooperating organization.

The shared data does not need any modification for increased anonymity, since the

involved hosts are an attacker and a honeypot.

Malware collection organizations, such as the mwcollect Alliance [12], focus on

grasping the dynamics of infection spreading and detecting new malware types and

variants. This operation is carried out mainly through manual analysis of binary

code and extraction of call graphs. We seek to obtain a substantial reduction of the

human interaction required for identifying new malware.



82 Michele Colajanni, Daniele Gozzi, and Mirco Marchetti

The system design guarantees an intrinsic flexibility and scalability that, to the

best of our knowledge, cannot be found in any existing proposal as a priority archi-

tecture requirement.

3 Architecture design

The growing proliferation of Internet worms is mainly due to their non-stopping

evolution of the spreading and replication mechanisms, which have traversed several

stages:

1. automated infection of vulnerable network services on servers (e.g. [13]);

2. automated infection of vulnerable collateral network services on desktop com-

puters (e.g., [14]);

3. email spreading, where the attack code is activated by unaware users (e.g., [15]);

4. email spreading, where infection is based on a mail user agent vulnerability (e.g.,

[16]);

5. infection of vulnerable Web applications, often carried out through XSS tech-

niques; the search for vulnerable targets is made through web search engines

(e.g., [17]);

6. infection of the client side execution environment (JavaScript or Flash) in rich

Web applications, such as the lOrdOfthenOOse and EricAndrew worms [18].

The main types of malware that the present version of our architecture is targeting

are those of types 1 and 2. The scheme in Figure 1 describes the main components

of the proposed multi-tier system: sensors, managers, collector. In this section we

describe each component and show how this solution can be scaled to become a

massive geographically distributed network of cooperating honeypots.

3.1 Sensors

We define a cooperating network as a honeypot sensor installation in a remote lo-

cation. The sensor is able to collect infection attempts from its location and collect

the payloads of the offending worms. Ideally, each machine connected to the In-

ternet has the same chance of being targeted by a worm, however the presence of

firewalls in some organizations internal networks has the effect of slowing the in-

fection because some protocols are blocked for inbound connections. The capillary

distribution of honeypot sensors grants a thorough monitoring of malware spread,

but the locally stored malware payloads have to be transferred to a collection point

where they are further analyzed through some behavior and safe supervision. Mal-

ware collection should abstract from the topology of the underlying networks, and a

single point of connection between the cooperating networks is aimed at preventing

the disclosure of the the internal network structures.



Collaborative architecture for malware detection and analysis 83

Fig. 1 Cooperative architecture for malware detection and analysis

The edge level of the proposed architecture is composed of sensors, which could

be every type of IDMEF [19] event generator. However, low interaction honeypots,

such as Nepenthes [3], are the best suited sensor type for our purpose, as they are

able to collect copies of the malware payload while guaranteeing a continuous op-

eration.

Upon collection, the malware payload samples are sorted on the basis of their

MD5 hash. This solution prevents the collection of duplicate binaries, although the

chance of hash collisions is not null. Novel malware is marked as different from

known malware because its MD5 hash is unknown. Polymorphic malware spans

over many hashes while having actually the same behavior and the operation needed

for correlating the different hashes of the same malware as the mwcollect Alliance

does is currently manual. We will describe in section 3.3 how to address this issue.

3.2 Managers

Managers are the architecture nodes which collect alerts and payloads from the set

of sensors. A manager installation is composed by a Manager process (e.g., Prelude)



84 Michele Colajanni, Daniele Gozzi, and Mirco Marchetti

Fig. 2 Hierarchical organization of managers

and a polling agent which retrieves unknown malware payloads from the controlled

sensors. The ideal location for the malware payload would be a base64 encoded ID-

MEF AdditionalData element [19], however the current honeypots tested as sensors

do not provide a payload transfer facility inside IDMEF messages. To solve this

problem, we utilize a script which periodically lists captured payloads on sensors

and retrieves those with an unknown MD5 hash.

The managers can be configured in a relaying way. As Figure 2 shows, the alert

and payload collection nodes are connected as a hierarchy. This topology maximizes

the collection capability while keeping low the number of transferred payloads, be-

cause the payloads are transferred to a higher level manager only if they are not

already present there. This solution guarantees the transmission of each new mal-

ware variant to the collector .

The flexibility of the architecture is guaranteed by the possibility of having any

number of manager levels. In such a way, small organizations can connect its sen-

sor(s) directly to a remote manager; complex organizations can have multiple levels

of managers that are controlled locally and connected to one or multiple remote

managers.

3.3 Collector

The Collector is the top element of the hierarchical architecture. Each cooperating

network contributes to the collection of malware hosted by the Collector. For each

incoming malware sample, the collector runs an automated thorough analysis by

means of local and external tools. The result of the analysis is stored and utilized to

classify the malware. In our test case, the collector forwards the malware to some

remote sandbox services and sends an email to the administrators of all cooperating

networks with the analysis results that evidence also the ports and the protocols



Collaborative architecture for malware detection and analysis 85

involved in the malware remote controlling. It is important to observe that, to avoid

system bottleneck and single points of failure, the collector is one logical component

that actually runs on a cluster of machines.

Cyphering and polymorphism mechanisms may be applied to the worm code

both if the worm is spread in a binary form or as a script: binaries can be altered by

polymorphisms, while scripts may be obfuscated. These attacker strategies makes

extremely difficult the worm classification as a single phenomenon, and this problem

affects mostly the reverse engineering of the worm code. Worm detection is usually

done through signature checking which becomes harder because of an increased

number of signatures in the case of polymorphic malware. However, the perfect
polymorphic engine (one that can change all the malware code at each attack) has

yet to come. After a first classification through the MD5 hash, the mwcollect Al-

liance currently employs custom hash functions to classify the variants of the same

worm with polymorphic transformations. This approach is indeed effective, but a

special hash function has to be designed for each different polymorphic worm and

the internals of this function have to remain undisclosed, otherwise the worm author

could easily prepare an immune variant.

In order to solve the problems of payload cyphering and polymorphism, our mal-

ware classification is done in two steps. During the first step, the malware is ana-

lyzed by many different antivirus engines. If the payload cannot be identified just by

a signature detection, the analysis proceeds to the second step. Here, the malware is

executed in a protected environment and its effects are monitored (this technique is

known as sandboxing).

While the behavioral analysis is not as precise as signature analysis since two dif-

ferent worms may have similar behaviors, it is the only way to collect any data for

identifying the structure of botnets. This sandbox-backed analysis, although not ex-

act, is the way of classifying the polymorphous variants of the same malware which

fits best the purpose of fighting malware spread. This method has the benefit of be-

ing completely automatic, while not as exact as signature detection. All connections

to honeypots are by default intrusion attempts, so assuming that the analyzed binary

is harmful, it is perfectly legitimate. The knowledge of the real activities carried out

by the malware if preferable to an exact classification.

3.4 Activity report

When using multiple remote sandboxes for analysis, the corresponding results will

be dis-homogeneous, often unstructured and not directly comparable. In order to

allow the cooperating networks to take advantage of the report information, all the

results are adapted by the collector. In particular, the endpoints of the observed

network connections which are related to the malware activity are highlighted. Af-

ter the adaptation phase, the reports are sent to all the cooperating networks, even

to those not yet reached by the malware. In this way, all the components receive

the information needed for deploying defensive countermeasures, such as blocking



86 Michele Colajanni, Daniele Gozzi, and Mirco Marchetti

certain network connections, closing ports or patching some software applications.

The exchange of information between the cooperating networks is the most effec-

tive measure against the spread of malware. By knowing timely how a worm is

being transmitted, the administrators can deploy adequate countermeasures or at

least plan some attack mitigation actions. Furthermore, the knowledge about the

infection vector may be shared very early with the vendor of the targeted software,

which can start correcting the problem when very few machines have been attacked.

The increased bandwidth and availability of Internet connections facilitate the patch

deliver in a short time.

One of the countermeasures that can be adopted against malware is the interrup-

tion of connections towards the malware distribution servers and the Command &
Control (C&C) servers, if the payload is downloaded from a remote location or the

malware has a control infrastructure. Usually these countermeasures are activated

after the malware has begun spreading, not on a preventive basis. Each network im-

plements this type of countermeasures in an individual way. On the other hand, if

different networks cooperated, the information describing the way a new malware is

spreading could be used to prevent the infection in networks not yet touched. It may

even be feasible to deploy preventive measures before the working hours. For exam-

ple, if the C&C servers are identified, it is possible to put into place new firewalling

rules which prevent any infected host behind the firewall to connect and download

further instructions from the malware controller; it also becomes possible to write

blacklists of known C&C servers (although some recent worms such as Storm use

decentralized communication systems).

3.5 Communication security

Is is essential to prevent a single node from polluting the set of collected data when

we are aggregating information from many sources. The data may be misleading

due to a malfunctioning or because a malicious user joined the network of coop-

erating sensors. In both instances, we need a way to trace back every alert to its

origin. We use a public key cryptographic scheme to address this issue. The col-

lector and the managers are provided with a public and private key pair, which are

used for authenticating all the information exchanged among the architecture com-

ponents. Each component knows in advance the keys of its communicating com-

ponents. This choice guarantees the traceability of communications, together with

the certainty that only registered managers can communicate with higher level man-

agers and with the collector. Public key cryptography also provides confidentiality

to the communication. The proposed communication scheme takes advantage of co-

operation without the need of exchanging data directly between peers, since all the

communications occur vertically. The only necessary trust relationship is pairwise

between a sensor and a manager, or different lines of managers or between a top

manager and the collector.



Collaborative architecture for malware detection and analysis 87

3.6 Malware collection

A capillary distributed network of sensors allows us to collect a set of data statis-

tically relevant, that can be used for practical and research purposes. Most security

products vendors have a similar infrastructure, but the proposed decentralized net-

work has the advantage of being vendor-agnostic and possibly larger.

4 Prototype implementation

The feasibility of the proposed architecture is demonstrated through the realization

of a prototype based on open source software and custom integration scripts. The

prototype has been validated experimentally in controlled conditions as a whole

and in its individual components through known malware. Furthermore, the proto-

type has been deployed in live operation, and it has been able to collect previously

unknown malware. In this section we describe the technical details of the most im-

portant and novel components.

4.1 Malware collection

Malware collection is carried out by Nepenthes [3] instances. This software is a

modular daemon which mainly has the following functions:

• socket binding and listening for incoming connections

• identification of targeted vulnerability

• analysis of the exploit code for the extraction of information necessary for down-

loading the worm payload

• payload retrieval

• logging and issuing alerts, potentially to a remote server through the IDMEF

protocol

Each of these functions is implemented in a separate module, which in the

Nepenthes source code is prefixed by a descriptive prefix, such as dnsresolve-,
download-, module-, log-, shellcode-, shellemu-, sqlhandler-, submit-, vuln-. For

example, modules whose name starts with ”vuln” contain the vulnerability simula-

tion logic which is needed to reply correctly to attacks so as to retrieve the payload

location.

Malware distribution can occur in many ways, and the honeypot software has to

support as may method as possible. Sometimes the shellcode opens a remote con-

nection with a TCP or UDP stream from which it transfers subsequent commands;

otherwise a TFTP, FTP or HTTP download is used to transfer the worm payload.

Nepenthes computes a SHA512 or MD5 hash of the malware and it stores a copy

of the harmful binary. Such binaries can be moved to remote servers with different



88 Michele Colajanni, Daniele Gozzi, and Mirco Marchetti

methods or be submitted1 to organizations that search for new malware, like the mw-

collect Alliance [12], or Norman [20]. Nepenthes also provides a libprelude output

module which can be used for issuing alerts to a Prelude Manager. In the prototype

which we prepared, sensors use the Prelude output module to inform their respective

manager of new infection attempts, while managers periodically call a script which

looks in the archived payload directory of each controlled sensor. Since it would be

preferable to collect malware samples as soon as possible, we plan to integrate alert

issuing and payload uploading in the future.

4.2 Communication infrastructure

The critical component of the proposed distributed architecture is the communica-

tion infrastructure. Its requirements are:

• forwarding of alerts and malware binaries from sensors to managers and between

managers

• transfer of unknown malware samples to the collector

• authentication of all exchanged messages

• confidentiality

In addition to these functional requirements, it is essential for the format of the

exchanged messages to be a recognized standard and allow the maximum inter-

operability between heterogeneous threat detection systems. These considerations

brought ourselves to choosing Prelude [21] as the alert management framework.

4.2.1 Prelude: a hybrid IDS

Prelude is an Open Source software which allows the deployment of a hybrid in-

trusion detection system - an aggregate of sensors employing different technologies

and approaches to detect attacks. A typical use case is the integration of Host and

Network IDSs in large networks. The format of the exchanged messages is IDMEF

[19]. Prelude offers a library (libprelude) that security-related software can use to is-

sue alerts and communicate with Prelude managers. Communications are encrypted

using public key cryptography and relaying of messages is supported by managers,

so it becomes possible to build a hierarchical network of malware-collecting nodes.

4.2.2 Transferring captured malware

A key requirement or the proposed architecture which is not natively supported by

the hybrid IDS Prelude is the submission of the binaries downloaded by Nepenthes

1 submission is done though the GOTEK protocol or with custom solutions which are different for
each collection service



Collaborative architecture for malware detection and analysis 89

to a collection node. The sole propagation of IDMEF alerts is not sufficient for

this. The Nepenthes developers are currently working on the integration of their

work with the malware submission services of some sandboxes (CWSandbox and

Norman) and online antivirus engines (VirusTotal), and they have developed the

GOTEK malware distribution protocol which is actively employed by the mwcollect

Alliance.

Our implementation is based on a script which is executed periodically on the

collector and manager nodes. The script spawns a remote shell to each machine that

is managed on the immediately lower level of the architecture, lists the collected

binaries and retrieves the unknown ones. For example, the collector examines the

caches of the highest level managers, which in turn collect the malware binaries

from their respective subordinate managers. The lowest level managers collect bi-

naries from their pool of honeypots.

4.2.3 Malware analysis

One of the advantages of the proposed architecture is the independency from a single

malware analysis tool. It is possible to employ locally installed antivirus engines or

sandboxes as well as remote public malware analysis services.

Our prototype is able to submit malware to three different remote services:

• Virustotal [22], via SMTP submission

• Norman Sandbox [23], using a custom HTTP POST request

• CW Sandbox [24], also using HTTP POST

The process of submitting the malware samples is handled by a custom modular

software which is easily extendable to support other analysis services. By combining

traditional signature detection and behavioral analysis (both from different vendors)

we can identify clearly the actions performed by malware. Exact classification of the

malware is only marginally useful since we know that the analyzed binary comes

indeed from a worm, having collected it with a honeypot.

4.2.4 Report generation and sending

The results of different analysis services have heterogeneous formats and are typ-

ically semi-structured texts. Before sending the results to the administrators of the

cooperating networks, the reports are tagged semantically so that an automated

response may be prepared from each network accordingly to the local policies.

The most important data are the location of the malware payload and the retrieval

method, the address of command & control servers, the IP addresses of known in-

fected hosts and the protocol being exploited for the infection to occur.

We remark that those reports can be easily used to generate and deploy auto-

matic countermeasures without human intervention, thus greatly reducing the time

required to react a network attack



90 Michele Colajanni, Daniele Gozzi, and Mirco Marchetti

Fig. 3 Test setup

5 Experimental results

The described prototype has been validated experimentally in controlled conditions

with the deployment scheme shown in Figure 3.

A single host is being used as a sensor, manager and collector, and two sensors

have been installed in other machines. The manager is collecting alerts and malware

samples from three sensors, and the collector is doing the same on a single manager.

With this setup we can simulate:

1. the collection of binaries performed by the manager

2. the forwarding of alerts from the sensors up to the collector

3. the analysis of binaries performed by the collector

4. the collector generating a report and sending it to all the cooperating network

administrators

A first test has been performed by sending known malware to the sensors. Ne-

penthes managed to collect the binaries and correctly issued alerts that were for-

warded by the manager to the collector. Accordingly, the binary payload of the mal-

ware was transferred from the sensor to the manager and then to the collector, which

proceeded with the analysis, since the hash of the binary is unknown. The payload

was sent to the Norman sandbox analysis tool and the analysis outcome was in-

terpreted and emailed to the administrators of the three simulated networks. The

report included all the information gathered from the online analysis tool and was

delivered timely to all the interested parties.



Collaborative architecture for malware detection and analysis 91

In order to verify the behavior of the system in a real setup, some Nepenthes

sensors have been installed on home ADSL connections. This experiment led to the

issuing of 3866 alerts and to the collection of 52 distinct binaries over a span of

about eight hours. Seven of the collected binaries were previously unknown to our

collector, and they were submitted to the available online scanning services. In many

cases the behavioral analysis performed in CWSandbox has lead to the classification

of malware as a worm-bot, and to the identification of several C&C hosts.
The following is a sample of the the report produced by the sandbox service:

0995104827bee951abc4fcc93cdf85ee :
INFECTED with W32/Malware
(Signature: W32/Malware.LNH)

* Connects to "j4m4lz.B3D3RPIERO.INFO"
on port 6137 (TCP).

* Connects to IRC Server.

* Possible backdoor functionality
[Authenticate] port 113.

Network Activity:
Opened listening TCP connection on port: 113

* C&C Server: 69.64.36.188:6137

* Server Password:

The worm bot tries to connect to a C&C server and opens a backdoor on port 113.

13ff667bebcc58253faba2313dce7b89 :
INFECTED with W32/Kut.gen1
(Signature: W32/Poebot.ADT)

* C&C Server: 140.116.199.57:8998
Network activity

* Server Password: PING

In this case it has been possible to intercept the password use by the malware for

authenticating to its C&C servers.

03fb1ecf2cbcfb74ab5c29dcd247e132 :
INFECTED with W32/Endom.A (Signature: Allaple.gen1)

* Sends data stream (76 bytes) to remote
address "124.86.6.4",

port 139.

* Connects to "124.86.6.4" on port 445 (TCP).

* Sends data stream (76 bytes) to remote
address "124.86.8.6",

port 139.

* Connects to "124.86.8.6" on port 445 (TCP).

* Sends data stream (76 bytes) to remote
address "124.86.10.8", port 139.

* Connects to "124.86.10.8" on port 445 (TCP).

* Connects to "124.86.6.4" on port 9988 (TCP).

* Sends data stream (255 bytes) to remote
address "124.86.6.4", port 9988.

This result demonstrates that the proposed solution allows us to detect and block

malware communications even if they rely on a complex, multi-tier control network,



92 Michele Colajanni, Daniele Gozzi, and Mirco Marchetti

as this bot does. Such solutions make it difficult to block the malware communica-

tions by only inspecting network traffic anomalies, because of the multiple servers

and the different TCP ports. However, by examining the malware behavior we know

at least the entrance points of the C&C network, and by blocking them we can pre-

vent newly infected machines from joining the botnet.

6 Conclusions

This paper describes an innovative architecture to automate malware collection and

classification with the purpose of implementing just in time countermeasures. It

aims to benefit from the cooperation of multiple sensors spread over geographically

distributed networks. The architecture is highly scalable and flexible because the

number of component tiers can be adapted to the network characteristics of each

participating organization.

We envision this proposal as a possible evolution of the existing malware collect-

ing infrastructures, whose benefits are still dependent on a predominantly manual

analysis of the collected samples.

The automatic analysis carried out on the collected malware allow the architec-

ture to defeat most concealing techniques used by virus writers, since it includes

the execution of the malware payload in a sandbox. This behavioral analysis avoids

most hiding techniques found in modern malware. The related computational cost

is reduced thanks to the collection of malware from multiple networks and to the

rapid classification of duplicate binaries based on their MD5 hash.

Much attention has been paid to the security of the architecture that utilizes pair-

wise trust between the close components and ciphered communications. However,

the necessary theoretical and practical validation of the security level of the archi-

tecture and consequent possible adjustments are left to future work.

We should also observe that we have implemented a prototype for the validation

of the main ideas that are behind the proposed architecture. All experiments have

obtained the expected results. On the other hand, a large scale deployment of the

proposed architecture over the networks of different organizations lacks because of

practical obstacles. Nevertheless, preliminary contacts with other academic

7 Acknowledgements

The authors would like to thank Saverio Verrascina 2 for his valuable help with the

prototype implementation.

2 saverio@weblab.ing.unimo.it



Collaborative architecture for malware detection and analysis 93

References

1. Sharon Gaudin (2007), Storm Worm botnet more power-
ful than top supercomputers, Information Week, available at
http://www.informationweek.com/software/showArticle.jhtml?articleID=201804528

2. ShadowServer Foundation homepage, available at http://www.shadowserver.org
3. Nepenthes, available at http://nepenthes.mwcollect.org/
4. Xu D and Ning P (2005), Privacy-Preserving Alert Correlation: A Concept Hierarchy Based

Approach, 21st Comp. Sec. App. Conf.
5. Jaeyeon Jung J and Sit E (2004) An empirical study of spam traffic and the use of DNS black

lists, IMC ’04: Proceedings of the 4th ACM SIGCOMM conference on Internet measurement
6. Freiling FC, Holz T, and Wicherski G (2005) Botnet Tracking: Exploring a Root-Cause

Methodology to Prevent Distributed Denial-of-Service Attacks, ESORICS 2005: Proceedings
of the 10th European Symposium on Research in Computer Security

7. Valeur F, Vigna G, Kruegel C, and Kemmerer RA (2004) A Comprehensive Approach to In-
trusion Detection Alert Correlation, IEEE Transactions on dependable and secure computing,
Jul-Sept 2004, Vol. 1 pp.146-169

8. When-Yi Hsin, Shian-Shiong Tseng, Shun-Chieh Lin (2005) A study of alert based collab-
orative defense, Proceedings of the 8th International Symposium on Parallel Architectures,
Algorithms and Networks (ISPAN05)

9. Zhu S, Setia S, Jajodia S (2003) LEAP: efficient security mechanisms for large-scale dis-
tributed sensor networks, CCS ’03: Proceedings of the 10th ACM conference on Computer
and communications security

10. Perrig A, Canetti R, Tygar JD, Song D (2000) Efficient Authentication and Signing of Mul-
ticast Streams over Lossy Channels, Proc. of the 2000 IEEE Symposium on Security and
Privacy

11. Przydatek B, Song D, Perrig A (2003) SIA: secure information aggregation in sensor net-
works, SenSys ’03: Proceedings of the 1st international conference on Embedded networked
sensor systems

12. mwcollect Alliance, homepage available at http://alliance.mwcollect.org/
13. Robert Tappan Morris (1988), The Morris Worm, homepage available at

http://www.morrisworm.com/. Cited 17 Jan 2008.
14. Internet Storm Center (2004), Sasser Worm, LSASS exploit analysis, available at

http://isc.sans.org/diary.html?date=2004-04-30
15. Computer emergency Response Team (2000), CERT R©Advisory CA-2000-04 Love Letter

Worm, available at http://www.cert.org/advisories/CA-2000-04.html
16. SymantecTM(2004), W32.Wallon.A@mm worm description, available at

http://www.symantec.com/security response/writeup.jsp?docid=2004-051112-0815-99
17. US-CERT (2004), Technical Cyber Security Alert TA04-356A (Santy worm), available at

http://www.us-cert.gov/cas/techalerts/TA04-356A.html
18. Wikipedia (2007), Timeline of notable computer viruses and worms, available at

http://en.wikipedia.org/wiki/Timeline of notable computer viruses and worms#2006
19. IETF Intrusion Detection Working Group (2007) The Intrusion Detection Message Exchange

Format (IDMEF), available at http://tools.ietf.org/html/rfc4765
20. Norman ASA, homepage available at http:/www.norman.com/
21. Prelude Hybrid IDS project, homepage available at http://www.prelude-ids.org/
22. Virustotal, a malware analysis service offered by Hispasec Sistemas, available at

http://www.virustotal.com/
23. Norman SandBox Information Center, available at http://sandbox.norman.com
24. CWSandbox, Behavior-based Malware Analysis remote sandbox service, homepage available

at http://www.cwsandbox.org/




