
PML, an Object Oriented Process Modeling
Language

Prof. Dr.-Ing. Reiner Anderl 1 and Dipl.-Ing. Jochen Raßler 2

1 Prof. Dr.-Ing. Reiner Anderl, Germany, anderl@dik.tu-darmstadt.de

2 Dipl.-Ing. Jochen Raßler, Germany, rassler@dik.tu-darmstadt.de

Abstract: Processes are very important for the success within many business
fields. They define the proper application of methods, technologies, tools and
company structures in order to reach business goals. Important processes to be
defined are manufacturing processes or product development processes for
example to guarantee the company’s success. Over the last decades many process
modeling languages have been developed to cover the needs of process modeling.
Those modeling languages have several limitations, mainly they are still
procedural and didn’t follow the paradigm change to object oriented modeling and
thus often lead to process models, which are difficult to maintain. In previous
papers we have introduced PML, Process Modeling Language, and shown it’s
usage in process modeling. PML is derived from UML and hence fully object
oriented and uses modern modeling techniques. It is based on process class
diagrams that describe methods and resources for process modeling. In this paper
the modeling language is described in more detail and new language elements will
be introduced to develop the language to a generic usable process modeling
language.

Keywords: process modeling language, PML, UML

1. Introduction

As the tendency of enterprises to collaborate growths steadily, industry faces new
challenges managing business processes, product development processes,
manufacturing processes and much more. Furthermore, discipline spanning

products are in the need for knowledge from mechanical, electrical as well as
software engineers. Humanists and economists also play a huge role in modern
product development processes. Each individual discipline has its own, well-
defined and specific processes, which typically are based on well-tried
methodologies. These process descriptions are very powerful within the traditional
discipline or the original enterprise, they were invented in. On the other side, they
lack for flexibility, due to the reason that most existing process descriptions are

Anderl, R. and Raßler, J., 2008, in IFIP International Federation for Information Processing, Volume 277; Computer-
Aided Innovation (CAI); Gaetano Cascini; (Boston: Springer), pp. 145–156.

Please use the following format when citing this chapter:

product development processes are increasing, e.g. desired mechatronical

146 R. Anderl and J. Raßler

based on a procedural approach. These are not powerful enough to meet
requirements of describing cross collaboration. In particular OEMs challenge the
integration of suppliers. Suppliers have different levels of access to the OEMs data
base, data exchange is handled based on integration level. Furthermore the levels
supplier get differ between suppliers and projects.
Taking everything into account, the need for a process modeling language that
meets the above shown requirements is obvious. Not only must the different
disciplines be supported, but also cross enterprise collaboration, as well as
supplier integration. Still there is no proper description for this kind of flexible
processes descriptions. To meet all these needs a new process modeling language
is developed and demands the following requirements:
• Support of hierarchical structures.
• Support of flexible interpretation of a defined process without getting

incompatible – support of generalization and specification.
• Robust process definition for flexible proceeding sequences of activities

without losing process comparability – support of interchangeability of
processes.

• Support of different integration scenarios and levels without changing process

• Easy to learn and read – audience of those process definitions are very broad.
This paper summarizes the previous work done in defining a new process
modeling language – PML – and introduces new aspects of the language.
Although the development of PML isn’t yet finished within the context of this
publication, the process modeling language reaches a state, where it can be started
to use in a productivity environment. A conclusion closes this paper.

2. Existing Process Modeling Languages

In this chapter some existing process modeling languages are covered. It is briefly
described why they do not meet the requirements of modern process definitions.
For an in depth analysis and further details we refer to [1].

modeling languages and support modeling processes with different levels of
details. Both process modeling languages lack for transparency and clarity if they
are applied to complex processes. Moreover, they are not very flexible regarding
changes to the proceeding sequence of activities. [2, 3, 4, 5]
The Unified Modeling Language (UML) offers an all spanning modeling
language. Regarding data and information model the language is object oriented.
If UML is utilized to describe processes, UML reveals several disadvantages.
UML is not an object oriented language for process modeling, because processes
are still modeled procedural. Each activity is seen as an object. Relations between
activities still base on logical states. Processes defined with UML are not very
flexible regarding changes in the proceeding sequence of activities. [6, 7, 8, 9]

description at any time – support of flexibility of processes.

IDEF0/SADT and Event Driven Process Chains (EPC) are procedural process

PML, an Object Oriented Process Modeling Language 147

Business Process Modeling Notation (BPMN) representation of processes is quite
similar to the UML activity diagram. It is a standardized graphical notation for
drawing business processes in a workflow. Processes are defined as a sequence of
activities in swim lanes. Again it is a state based connection between object
oriented activities. Therefore the evaluation result upon BPMN is similar to the
UML verdict. [10, 3]
The Integrated Enterprise Modeling as a refinement of SADT enables users to
generate views on the complete enterprise, not only on its processes. Processes are
still in a SADT kind of style. Due to its retaining on logical sequence of activities
it has no real advantage in modeling flexible processes. It still lacks a powerful
support of process flexibility. [11, 3]
The Process Specification Language (PSL) basically is an ontology for describing
processes. As PSL’s objective is to serve as an Interlingua for integrating several
process-related applications without formal and graphical constructs, it is therefore
not capable for process modeling. [12]
The Semantic Object Model (SOM) methodology allows flexible and robust
process modeling, based on the division of an enterprise model into several model
layers, each of them describing a business system from a specific point of view.
Within the process model the activity objects are connected with events. In
comparison, SOM is most progressive regarding the definition of relations, but its
constructs are difficult to understand due to the complex, integrated approach. [3]
The modeling languages still describe relations on state based, proceeding
sequences of activities. Taken together these results evoke the need for a new
process modeling language facing the requirements of the paradigm change. [1]

3. Basic concepts of the Process Modeling Language

A new approach for a process modeling language has been introduced in [1],
which uses object oriented techniques and hence meets all requirements. This
approach uses the well known and widely used modeling language UML, that
applies object oriented techniques to obtain modularization, reuse, flexibility and
easy maintaining, among others, in the field of software and system modeling.
Ongoing developments on the basis of UML, like SysML, prove the sustainability
of the UML metamodel. Thus UML is a good starting point for the development
of an object oriented process modeling language.

attributes and methods.

class

attributes

methods

Fig 1 UML class diagram

Fig 1 shows the definition of an UML class diagram including class name,

148 R. Anderl and J. Raßler

The class itself is time invariant as it is a generic description of the content of the
context. But the instance of a class, an object, is time variant, because it holds
characteristic values that can be checked to given times and can change over time.
This means, the values can change, but the general structure of an object (number
and kind of attributes) can not change.
Having a time variant object it can be derived by time regarding to [13]

bjectO
dT

dObject
TT

TObjectTObject
TT

&==
−
−

→
0

0)()(lim
0

(1)
.

Equation (1) shows that the content of an object, which means the attributes of an
instance of a class, may change over time. Given a rule to change the attributes of
an object one can express the change of the object’s content as a process instance,
which is shown in (2). Note that we use a discrete time T instead of continuous
time t to implement “time steps”. This is due to the result of the derivation as
different process instances may need different time intervals to execute.

(2) instanceProcess=bjectO&

uses the word attributes as defined in UML, in equation (3) we will derive the
attributes, but using the word information to make the meaning clearer and more
generic.

nformationI
dT

ondInformati
TT

TnInformatioTnInformatio
TT

&==
−
−

→
0

0)()(lim
0

(3)

The derivation of information shows that the information may change over time.
So the change of information, the change of attributes or data can be expressed as
a method, which is shown in (4).

(4) MethodnformationI =&

The last field of a UML class diagram and thus in the object holds the methods,
which act on the attributes. In the following we use the term operation for UML
methods to differentiate between UML and our introduction. Operation and the
just derived method are quite similar and are the same in several cases. In the
following we derive the operation, which is shown in equation (5).

perationO
dT

dOperation
TT

TOperationTOperation
TT

&==
−
−

→
0

0)()(lim
0

(5)

The meaning of the derivation of an operation is quite complex. To express this

is the first derivation of an operation or the second derivation of information. This

information. The expression gradient of an operation seems quite handsome and
opens the question: what does result in the change of an operation? Or, more
exact, what does result in a change of the quality of the execution of a method?

mathematically we can use equations (3) to (5), which show, that dOperation/dT

means dOperation/dT is the gradient of an operation or the curvature of

As we have derived the object we now have to derive the object’s content. Fig 1

PML, an Object Oriented Process Modeling Language 149

Think also of the similarity of operation and method. This question directly leads
to the answer to the problem, which is

(6) Resource=perationO&
Resources influence the execution of an operation. The use of more or less
resources leads to faster or slower execution, influences the quality of the output,
may lead to more innovation and so on.
Equations (1) through (6) have shown the derivation from a time variant object to
a time variant process instance. Generalizing the process instance we get a process

process

methods

resources

Fig 2 PML Process class diagram

UML uses assurances to guarantee the range for its attributes. We need assurances
too, but not as static ranges. Deriving a static value by time normally leads to zero.
But knowing that the integral of a delta impulse δ(t) is defined as 1 [14] and we
derive the constant with this definition in mind, the derivation of the static
assurance leads to the delta impulse, which can be interpreted as an event. This
means, an assurance for the processes is an event, a constraint becoming true, a set
of data becoming available, time is elapsed and so on.
We introduce the term PML, which stands for Process Modeling Language and
can be seen as an extension to UML, as SysML is. Thus the known techniques of
inheritance, association, and cardinalities can be used. Implementing those
techniques processes can be modeled hierarchically with modularization,
structure, exchangeability and reusability.
[1, 15] show the used way to derive PML. Starting from the time invariant UML
class we have instantiated a time variant object. This is derived by time and leads
to a process instance, or project, which is time variant, and finally generalized to a
time invariant process. The class therefore describes the product in a generic way,
while the real contents are stored in its instantiation. The same is true on process
level. The PML process class describes the process in a generic way. It allows one
to define all methods with assurances and resources needed for the process. The
instantiation of a process is a project. This means, the instance of a process defines
the current occurrence of resources, used data models etc.
Regarding to connections and dependencies between single process classes, PML
features the well known UML-concepts of inheritance and associations. The
concepts for inheritance of process classes follow the notation of standard UML
classes through simple object-oriented means like generic super-processes, sub-
processes, overwriting and inheritance of methods and resources. Structural and

class, which again is time invariant. The diagram of a process is shown in Fig 2.

150 R. Anderl and J. Raßler

hierarchical modeling is supported by using the concepts of associations,
aggregations, and compositions and the usage of cardinalities. [1, 15]
Now we want to illustrate the capability of PML means by a complex product
development process and a manufacturing process. This example application
stresses out the advantages of PML regarding flexibility of defined processes,
reusability, clarity and understandability. In [15] we have introduced the product

illustrates the process model as an example for the strength of PML. For details of
this algorithm driven development process we refer to [15, 16, 17].

higher order bifurcations

As the complete process model is expressed in PML, the generic process
description remains at a level of utmost flexibility and is clearly structured. This
enables all projects dealing with the product emergence of integral sheet metal
products to be modeled with this generic process model by instantiating it. The
model itself does not alter through instantiating it and remains unchanged. An
instantiated process embodies exactly one project representing a specific integral
sheet metal product.
UML supports instance diagrams, which basically are class diagrams with the
instances built in to show the relations between instances and classes. The instance
diagram additionally shows the actual object’s occurrence and hence the used
resources in our process models. As instance diagrams are not very handsome for
complex models we will not use them here. Instead we use other diagrams to show
the instances and – more interesting to processes – their timely and logical

Fig 3 generation process of integral sheet metal parts with higher order bifurcations.

Fig 3a Process diagram for product emergence of integrated sheet metal products with

PML, an Object Oriented Process Modeling Language 151

occurrences. These are the sequence diagram and the activity diagram
respectively. As announced in [1] it is possible to derive sequence and activity
diagrams with PML.

product. In the UML, an activity diagram represents the logical workflows of
components in a system and shows the overall flow of control. This approach also
fits for PML.

circle in the upper left corner shows the starting point, the black circle in the lower
right corner shows the end point. Activities are modeled as rectangles with
rounded corners, decisions are modeled as a rhombus. Straight horizontal lines are
used to show the splitting of the process flow or the synchronization of processes.
Note that in this example only a small extract of the above shown development
and manufacturing process is illustrated.

appropriate sequence diagram for the manufacturing process. As in UML the
sequence diagram shows the life time of objects with its construction and
destruction events and signals.

classes they are instantiated of. RollerTrailManufacturing is active for the whole
manufacturing process and activates different sub-processes as planning,
mounting, configuring, and the series production. The pre-production is
constructed and controlled by the configuration to allow iterations to optimize the
machine configuration.

Manufacturing consists of SplittingProcess, which has three sub-processes:
LinearFlowSplitting, LinearBendSplitting, and LinearBending. To instantiate
Manufacturing different SplittingProcesses are instatiated. But, using the concept
of object orientation, not SplittingProcess but the sub-processes will be
instantiated. The same is true for the resources in Manufacturing. Machines

The general meaning of a PML activity diagram is the same as in UML. The black

Fig 3 illustrates the activity diagram for the emergence of an integral sheet metal

Fig 3b Activity diagram of manufacturing process

Another way to show the instances is by using sequence diagrams. Fig 4 shows the

Fig 4 shows the current instances with instance names and the corresponding

To show the real strength of PML Fig 5 details the manufacturing processes.

152 R. Anderl and J. Raßler

should hold the specialized machines, which are linear flow splitting machines,
linear bend splitting machines, and linear bending machines. Thus having a
generic process description, the product and its manufacturing process is
dependent of the used machines, the splitting processes and their order in the
manufacturing line.
The method names manufacture are used in the process classes Manufacturing,
SplittingProcess, and its sub-processes. The manufacture method in the
SplittingProcess and its sub-processes can just be implemented and used, but the
manufacture method in Manufacturing has to be implemented on its own in the
actual instance to specify the manufacturing process for the actual product.

So the production depends on the resources and the order of the usage of the
resources. Hence different products can be produced using the same generic
process model.

4. Additional Aspects of PML

We have shown the derivation and usage of PML in the previous chapter. Now we
want to integrate other UML concepts in the context of PML and, to be
continuous, give a mathematical explanation of the concepts.

Activity Diagram
In the previous chapter and in [15] we have used the activity Diagram, but without

diagrams use Boolean descriptions to model the activities. An activity gets started

Fig 4 Sequence diagram of manufacturing process

Fig 5 Detailed manufacturing processes

a mathematical description. As one can see in Fig 3 the concepts of activity

PML, an Object Oriented Process Modeling Language 153

if the result of the previous activity gets true, e.g. has finished. Thus the model is
based on Boolean states.
Decisions use one input and two outputs in their process flow. The input is again
triggered by the result of an activity becoming true. The two outputs can be seen
as the decision is true or false, expressed with variable x, the output is similar to x
or x .
Synchronization lines can be expressed using the Boolean symbol and (∧) to
model that all incoming events have to be true or with the Boolean symbol OR
(∨) to model that at least one of the inputs has to be true. Another possibility is
the Boolean operator XOR (⊕) to model that exactly one input has to be true and
all other false.
Hence the activity diagram can be expressed mathematically using Boolean
expressions. Discussing the Boolean expressions in the context of the timely
derivation one can see that UML uses the activities of its classes in this diagram.
The same is true for PML. The only difference is the used field of UML’s or

third field, PML methods are in the second, central field.

Sequence Diagram
The sequence diagram lacks the mathematical description too. This is introduced
in the available paragraph.
The sequence diagram uses objects, which are instances of process classes. This
means the sequence diagram uses time variant objects and therefore is time
dependent. This makes sense as the sequence diagram doesn’t model a process but
a given project.
Another important aspect of processes is that they do not necessarily converge.
Think for example about product development. There may be a set of
requirements for the new product that lead to a dead end development or a very
expensive one that is stopped to save money for the company. Thus a process may
diverge. Knowledge about the convergence of processes and the discrete time
steps make it obvious to use z-transform [14] to describe sequence diagrams.

written as
()

)7()6()6()5()5(
)4()4()4()3()3(

)2()2()1()1()(

−+−+−+−+−
+−+−+−+−+−
+−+−+−+−+=

zazfzazdza
zezdzazdza

zczazbzazazy

(7)
.

Equation (7) uses the letters a to f for the process instances and y for the result to
enhance the readability. Process instance a is active for the life time of the
example, starting all other process instances except of e which is started from d.

Interaction Diagrams
In the UML exist 4 types of interaction diagrams. These are the sequence diagram,
the interaction overview diagram, the communication diagram, and the timing

PML’s class description, regarding to Fig 1 and Fig 2. UML methods are in the

Using the example of the previous chapter shown in Fig 4 the sequence can be

154 R. Anderl and J. Raßler

diagram [9]. The sequence diagram has just been described mathematically, all
other interaction diagram types can be handled similar, but they show different
aspects of interaction within the running time of a process instantiation. Thus we
pass the in depth view to these interaction diagrams.

State Machine Diagram
The state machine diagram in UML shows the actual state of time variant objects
to given times t0. The same is true in PML. The state machine diagram shows the
actual state of a given process instance P(T) at a given time T0. This can be written
as

(8))(0TPneDiagramStateMachi a .

Package Diagram
The package diagram is a structural diagram. It clusters processes and bears the
capability to organize processes particularly for modularization and reuse.
Package diagrams can be described using the set theory. The membership
operators element of (∈) and subset of (⊆) can be used to describe the relations
of processes and packages to subordinate packages. The union operator (U) can

illustrates this concept.

Process 1

Process 2 Process 3

Package 1

Package 2

Use Case Diagram
Use case diagrams get a special meaning within the context of PML. In UML use
case diagrams are mainly used to model the context of the system to be developed.
Thus the use case diagram can be seen as a diagram to model requirements.
Although the use case diagram in PML can be used to model requirements for the
processes to be developed, it gets its strength as a documentation tool for the
processes or projects as instances of processes.
To make this more understandable, we introduce an example for quality
management. The ISO 900x certification is approved on a certain process. This
means a company describes a quality management process in a certain context and
asks for approval. If the same company deploys products in a different context
they need to describe the quality management process again and ask for approval
once again. If the ISO 900x certification process is described in a generic way
using PML it only needs approval once and can use this process for different
projects in different contexts, using different parameters for instantiating the
processes or specializing some process classes. Thus modified projects can be

be used to cluster processes and packages into a subordinate package. Fig 6

Fig 6 PML Package Diagram

PML, an Object Oriented Process Modeling Language 155

instantiated or enhanced without losing compatibility to the approved generic
process.
To document the instantiation of processes use case diagrams can be used to
describe reference instantiations and interactions of projects and sub projects
without actual instantiation of a project.

5. Conclusion

The strength of the shown approach for process modeling is the complete object
oriented view to processes and the differentiation and linkage of and between
processes and projects. As in data modeling process modeling can now be done in
a generic way. The introduced process description perfectly fits into PDM systems
with the process class descriptions. Hence process management is now process
modeling at running time. A process in a PDM system can be extended by more
classes, that extent existing classes, or specialize them. The instances of those
processes are used in projects, which define the parameters of the instances. The
implemented technique of processes and projects within PDM systems is then
similar to data models, where object orientation has been a standard since years.
The object oriented approach of process modeling introduces a paradigm change
not only to the view of process and project management, but also enables new
possibilities for interoperability. Heavy use of modularization enables
exchangeability and process reusability and hence strengthens the integration of
third-party processes. This leads to more powerful cross-enterprise collaboration.
Another important point is the certification of processes. Depending on products
or customers it is necessary to have certified processes. Think of ISO 9000 or
certification for medical issues. With PML the process is only certified once but
can lead to different instantiations – regardless to the project (in terms of same or
different product).
Future work on PML will cover many important topics. Using PML to model
more real world processes and using it for productivity projects will prove the
usability of this new modeling language. Missing components will be added to
complete PML. Also the formal description of PML, regarding to UML, has to be
enhanced and will be covered in future work.
Most important concepts that are still missing are process and project
management. Using PML process and project management get new meanings.
Thus the meaning of process and project management has to be redefined in the
context of PML and new management methods have to be developed.
To apply PML for productivity it may be very interesting to develop a model to
map the PML process class diagrams into PDM (Product Data Management)
systems and use the instantiation for actual projects within product development.
UML tools have the capability to generate source code from the class diagrams.
Future work will cover the possibilities to generate PDM descriptions from PML
models to map processes into engineering tools.

156 R. Anderl and J. Raßler

This paper has shown the concepts of the new process modeling language PML.
Deriving PML mathematically from UML led to a process model that supports
object oriented process modeling capabilities. Thus the requirements for a modern
process description language have been fulfilled, such as modularization,
exchangeability, cross enterprise collaboration, easy maintenance, enhance ability
and many more.
This paper has introduced and discussed many new diagram types that are known
from UML. The usage of PML has been shown with a complex example that
illustrates the strength of this process modeling language. Thus the basic work for
the usage of PML in productivity has been done.

References

1. Anderl R., Raßler J., Malzacher J.: Proposal for an Object Oriented Process Modeling
Language. Proceedings of the 4th International Conference on Interoperability for

2. IEEE Std 1320.1-1998. IEEE Standard for Functional Modeling Language—Syntax and
Semantics for IDEF0, IEEE, New York (1998).

3. Bernius P., Mertins K., Schmidt G. (Eds): Handbook on Architectures of Information
Systems, 2nd Edition. Springer Verlag Berlin, Heidelberg (2006).

4. Scheer A.W.: ARIS – Business Process Frameworks, 2nd Edition, Berlin (1998).
5. Scheer A.W.: ARIS – Business Process Modeling, 2nd Edition, Berlin (1999).
6. OMG: Unified Modeling Language: Superstructure v2.1.1, of Feb 2007, www.omg.org,

(2007).
7. Eriksson H.E., Penker M.: Business modeling with UML: business patterns at work, John

Wiley & Sons Inc, New York (2000).
8. Burkhardt R.: UML – Unified Modeling Language: Objektorientierte Modellierung für die

Praxis. Addison-Wesley-Longman, Bonn (1997).
9. Booch G., Rumbaugh J., Jacobsen I.: Das UML Benutzerhandbuch, Addison-Wesley

Verlag, München (2006).
10. OMG: Business Process Modeling Notation Specification, of Feb 2006, www.omg.org.
11. Spur G., Mertins K., Jochem R., Warnecke, H.J.: Integrierte Unternehmensmodellierung

Beuth Verlag GmbH (1993).
12. International Standards Organization (ISO): ISO 18629 Series: Process Specification

Language of 2004, www.iso.org, (2004).
13. Luh W.: Mathematik für Naturwissenschaftler, Bd.1, Differentialrechnung und

Integralrechnung, Folgen und Reihen, Aula, Wiesbaden (1987).
14. Clausert H., Wiesemann, G.: Grundgebiete der Elektrotechnik 2. Wechselströme,

Leitungen, Anwendungen der Laplace- und Z-Transformation, Oldenbourg, München
(2000).

15. Anderl R., Raßler J., Rollmann T.: PML in Application – An Example of Integral Sheet
Metal Design with Higher Order Bifurcations, Proceedings of the ASME 2008 International
Design Engineering Technical Conferences & Computers and Information in Engineering
Conference IDETC/CIE 2008, Brooklyn, New York, USA, August (2008).

16. Anderl R., Wu Z., Rollmann, T.: Eine integrierte Prozesskette in integralen
Blechbauweisen, 5. Gemeinsamen Kolloquium Konstruktionstechnik, Dresden (2007).

17. Anderl R., Kormann M., Rollmann, T., Wu Z., Martin A., Ulbrich S., Günther U.: Ein

Produktentstehung, 5-2007, Konstruktion, Springer VDI Verlag (2007).

Enterprise Software and Applications (I-ESA), Berlin, Germany, March (2008).

Ansatz zur Algorithmen-getriebenen Konstruktion – Paradigmenwechsel in der

