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Abstract This paper presents a neural-based model for estimating the particle size
distribution (PSD) of a polymer latex, which is an important physical characteristic
that determines some end-use properties of the material (e.g., when it is used as an
adhesive, a coating, or an ink). The PSD of a dilute latex is estimated from combined
DLS (dynamic light scattering) and ELS (elastic light scattering) measurements,
taken at several angles. To this effect, a neural network approach is used as a tool
for solving the involved inverse problem. The method utilizes a general regression
neural network (GRNN), which is able to estimate the PSD on the basis of both
the average intensity of the scattered light in the ELS experiments, and the average
diameters calculated from the DLS measurements. The GRNN was trained with a
large set of measurements simulated from typical asymmetric PSDs, represented by
unimodal normal-logarithmic distributions of variable geometric mean diameters
and variances. The proposed approach was successfully evaluated on the basis of
both simulated and experimental examples.
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1 Introduction

Polymers play a major role in the current production of materials, both mass con-
sumer commodities (such as engineering plastics, rubber, etc.) and more special
products (adhesives, paints and coatings, reagents for medical diagnosis, etc.) [1].
The production of polymers with pre-specified quality characteristics is an impor-
tant scientific and technological challenge, which combines expertise in at least two
major research areas: a) optimization of production processes, and b) characteriza-
tion of the obtained products. The first line intends to define the best way to produce
the polymer, and involves the development of estimation, optimization, and con-
trol techniques, usually based on mathematical models representing the process [2].
The second line is intended to determine the quality of a product, using analytical
specific techniques and physical, chemical or mechanical tests on the properties of
the final product [3]. Nowadays, it is possible to simulate detailed mathematical
models of the process dynamics, which can easily involve dozens of simultaneous
differential and algebraic equations [4]. At an early stage, the model parameters are
adjusted off-line to the main process variable measurements. Subsequently, the ad-
justed model can be used to design operation and control strategies that may enable
an optimum polymer production with pre-specified quality characteristics.

Product characterization involves standard procedures for signals analysis and
data treatments. In this case, it is usually necessary to solve ill-conditioned inverse
problems, which result from indirect measurements of the desired properties, com-
bined with theoretical principles of the employed analytical techniques [5]. The res-
olution of such problems involves the use of numerical techniques for digital filter-
ing and functions regularization, to partially mitigate the inevitable noise measure-
ment presence in the signals and systematic mistakes committed during the mod-
elling of the associated analytical technique, which limits the accuracy and resolu-
tion of the obtained solutions. As an alternative to detailed models, artificial neural
networks (NN) allow describing the system from the viewpoint of their input/output
behavior [6]. A NN appropriately adjusted to a given process allows variables esti-
mation in short times, thereby facilitating its subsequent implementation in on-line
control process strategies [7].

Regarding analytical techniques for polymeric end-products characterization, the
resulting problems are hard to solve due to: (i) the indirect and relative character-
istics of the involved measurements, (ii) the low information content in the mea-
surements regarding the properties of interest, and (iii) the need of solving an ill-
conditioned inverse problem. For example, the quality of some polymer colloids
(or latexes) are normally associated to their particle size distributions (PSD). Such
characteristic determines some end-use properties (e.g., rheological, mechanical,
and physical properties) of the material when used as an adhesive, a coating, or
an ink. For example, the PSD can define the behavior of adhesives and paints, and
the chemical stability of latexes; and it can influence the physico-chemical mecha-
nisms involved in emulsion polymerization [8]. Unfortunately, there is no analytical
instrumentation capable of directly measuring a PSD. For this reason indirect mea-
surements are needed, where the measured physical variables are related to the PSD
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through theoretical models. Some optical techniques, such as elastic light scattering
(ELS) or dynamic light scattering (DLS), can estimate a latex PSD from measure-
ments of the light scattered by particles in dispersion, when they are lightened with a
monochromatic light (typically, a laser). These techniques are sustained in the Mie
theory, which describes the light scattered by a particle at different measured an-
gles [9]. The resolution of the resulting inverse problem is usually approached using
standard regularization techniques [10], but the obtained solutions have low reso-
lution (i.e., inability to differentiate among similar particles). The combination of
measurements tends to increase the information content of the property to be mea-
sured. To improve the estimation of a latex PSD, some progress has been made by
combining ELS and DLS measurements carried out at multiple angles [11], even if
the refractive index of the particles is unknown [12].

The application of NN for the resolution of an inverse problem associated to
characterization techniques is scarce. For example, NNs have been used for pattern
recognition in high performance liquid chromatography [13]. They have also been
used to estimate: a) the radius and refractive index of homogeneous spherical parti-
cles, based on a reduced number of light scattering measurements taken at multiple
angles [14], b) the PSD of an aerosol, from measurements of laser light diffrac-
tion [15], and c) the radius, aspect ratio, and orientation of cylindrical and spherical
particles, from light scattering measurements at multiple angles [16]. This paper
proposes the use of a NN for the resolution of an ill-conditioned inverse problem
as an effective tool to mitigate the effect of noise on measurements; and to achieve
better solutions than those obtained through classical inversion procedures. To date,
it is unknown the existence of research papers using a NN for estimating a latex
PSD from combined DLS and ELS measurements.

The organization of this work is the following: Section 2 introduces some funda-
mentals concepts of DLS and ELS measurement techniques; Section 3 explains the
proposed neural network-based inverse model; Section 4 presents some simulation
and experimental results for model validation, and finally, Section 5 summarizes the
main conclusions of the work.

2 DLS and ELS fundamentals

Both DLS and ELS are optical techniques widely used for measuring mean diame-
ters and PSD of polymer latexes in the sub-micrometer range. The instruments em-
ployed for DLS and ELS techniques basically consist of: i) a monochromatic laser
light that falls onto a dilute latex sample; and ii) a photometer placed at a given de-
tection angle, θr, with respect to the incident light, that collects the light scattered by
the particles over a small solid angle. In practice, DLS and ELS have been broadly
employed for measuring mean diameters and PSD of polymer latexes [17]. The PSD
is calculated by solving an ill-conditioned inverse problem, on the basis of a math-
ematical model describing the light scattering phenomena (e.g, the Mie theory [18]
[19]). Unfortunately, single optical measurements have a low information content
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on the PSD; and consequently only a rather poor PSD resolution is expected. The
combination of two or more independent sets of measurements allows increasing the
information content, and can contribute to improve the quality of the PSD estimate
[20][21].

A photometer placed at θr collects the light scattered by particles in a diluted
latex sample. In ELS, the light intensity I(θr) is measured at each angle θr. In DLS,
a dedicated digital correlator, together with special software, measures the first or-
der autocorrelation function of the light scattered at every θr, g(1)

θr
(τ), for different

values of the time delay τ [9]. For each θr (r = 1,2, · · ·R), the measurements model
can be described through the following first order Fredholm equations [11][12]:

I(θr) =
∫ ∞

0
CI(θr,D) f (D)dD; r = 1, · · · ,R (1)

g(1)
θr

(τ) =
∫ ∞

0
e−

Γ0(θr)
D CI(θr,D) f (D)dD; r = 1, · · · ,R (2)

where f (D) is the unknown PSD, represented by the number of particles with di-
ameter D; CI(θr,D) is the light intensity scattered by a particle with diameter D
at θr calculated through the Mie theory, and Γ0(θr) depends on several experimen-
tal conditions [11]. In general, the estimation problem consists in finding the (un-
known) f (D) by inverting equations 1 and 2. Such inverse problem is normally
ill-conditioned; i.e., small errors in the measurement (for example, small perturba-
tions due to measurement noise) can originate large changes in the f (D) estimate.
Moreover, the difficulty of the inverse problem increases as the distribution becomes
narrower.

While DLS is reliable and fast for evaluating average particle diameters, it ex-
hibits serious limitations for estimating the PSD due to the extreme ill-conditioning
of equation 2, that makes it impossible to exactly obtain the PSD by numerical meth-
ods. Regularization methods aim at improving the numerical inversion by including
adjustable parameters, a priori knowledge of the solution, or some smoothness con-
ditions [10]. While a strong regularization produces an excessively smoothened and
wide PSD, a weak regularization normally originates oscillatory PSD estimates.
Thus, a trade-off solution must be selected. In general, the estimation of a narrow
PSD is more difficult than the estimation of a wide PSD.

The combination of independent measurements allows increasing the informa-
tion content and can contribute to improve the quality of the estimated PSD [12].
Properly combining the previous equations, an inverse problem can be stated for
estimating the PSD of a latex from ELS and DLS measurements. This approach
proposes to combine, for each θr, a scalar value I(θr) with a function g(1)

θr
(τ). How-

ever, both independent problems (ELS and DLS) are known to be ill-conditioned;
therefore their combination into one problem will also be ill-conditioned. To over-
come this problem, we propose to replace the equation 2 by the mean diameter
calculated with DLS measurements at each θr. That diameter - which we will call
DDLS(θr) - can accurately be evaluated in most commercial equipment. For a given
PSD, DDLS(θr) is calculated through:
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DDLS(θr) =
∫ ∞

0 CI(θr,D) f (D)dD∫ ∞
0

CI(θr ,D) f (D)
D dD

; r = 1, · · · ,R (3)

Call f (Di) the discrete number PSD, where f represents the number of particles
contained in the diameter interval [Di,Di+1], with i = 1,2 · · · ,N. All the Di values
are spaced at regular intervals ∆D along the diameter range [Dmin,Dmax]; thus, Di =
Dmin +(i−1)∆D, with ∆D = (Dmax−Dmin)/(N−1).

Now equations 1 and 3 may be re-written as:

I(θr) =
N

∑
i=1

CI(θr,Di) f (Di); r = 1, · · · ,R (4)

DDLS(θr) = ∑N
i=1 CI(θr,Di) f (Di)

∑N
i=1

CI(θr ,Di) f (Di)
Di

; r = 1, · · · ,R (5)

Then, the estimation problem consists in finding the PSD ordinates f (Di), by invert-
ing equations 4 and 5.

3 The proposed inverse neural model

To estimate the PSD from the indirect measurements I(θr) and DDLS(θr) the ill-
conditioned non-linear inverse problem of equations 4 and 5 must be solved. To
avoid solving such difficult problem, this work proposes the estimation of f (Di)
through a NN-based model. To this effect, a general regression neural network
(GRNN) is employed [22]. A GRNN is a normalized radial basis function network
in which there is a hidden unit (k) centered at every learning case [23]. In a GRNN
the number of neurons equals the total number of input/target vectors (K) selected
for building the model. The hidden-to-output weights (wik) are just the target values,
so the output is simply a weighted average of those target values that are close to
the given input case. Strictly, a GRNN model is directly built on the basis of the
learning cases, and therefore no specific training algorithm is required. The GRNN
can also be considered as a one-pass learning algorithm, with a highly parallel struc-
ture. Even with sparse data in a multidimensional measurement space, the algorithm
provides smooth transitions from one observed value to another [22].

When using GRNN models, the selection of an appropriate smoothing (spread)
factor is required, to be applied to each of the radial units, which indicates how
quickly the activation function decreases as the distance increases from the neu-
ron centroid. With a small spread, the neuron becomes very selective. With larger
spread, distant points have a greater influence and the function approximation will
be smoother.

Figure 1 shows a schematic representation of the inverse radial neural model
proposed for the estimation of the latex PSD. This model is created using a set
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Fig. 1 Inverse GRNN model proposed for estimating the PSD of a latex.

of K discrete PSDs, and their corresponding measurements obtained according to
equations 4 and 5. To simplify the problem, the discrete axis Di and the angles θr
are assumed fixed, and only the PSD ordinates ( f ) and the measurement ordinates
(I and DDLS) are presented to the model. Each discrete PSD a-priori known lies
in the diameter range [50-1100] nm, with ∆D=5 nm. Measurements were taken at
the range θ [20-140] degrees, with ∆θ= 10 degrees. Each input variable I(θr) and
DDLS(θr) is represented by R = 13 discrete points, and the total number of inputs to
the model is 2*R = 26. The PSDs used for building the model were restricted to be
only unimodals and with a fixed log-normal shape, given by:

f (Di) =
1

Diσ
√

2π
exp
[
− [ln(Di/Dg)]2

2σ2

]
; i = 1,2, . . . ,N (6)

where Di, i = 1,2, . . . ,211 represents the discrete diameter; Dg is the geometric
mean diameter; and σ is the standard deviation of the PSD.

For generating the learning set, Dg was varied in the range [100-1000] nm, at
intervals of 5 nm. For each Dg, 20 distributions were generated, with standard devi-
ations in the range [0.01-0.20] nm, at intervals of 0.01 nm. Hence, 181 different Dg
values were considered, with 20 PSDs of different standard deviations for each ge-
ometric mean, thus yielding a total of K = 3620 learning patterns. All patterns were
normalized to fall in the range [0,1]. The network perfectly learned the data, with an
approximate root mean square error (RMSE) of 10−5. Note that all the PSDs used
during the definition of the GRNN model were simulated on the basis of the same
distribution shape; and therefore no outlier was generated.

4 GRNN model validation

Two kind of validations were implemented. First, the GRNN was validated through
simulated (or synthetic) examples, since in these cases the solutions are a priori
known, and therefore the NN performance can be clearly evaluated. Then, the model
was tested through an experimental example that involves a polystyrene (PS) latex of
narrow PSD and known nominal diameter. In this case, the true PSD is unknown; but
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the best approximation is given by an independent PSD measurement as obtained
from transmission electron microscopy (TEM) [24].

Fig. 2 Two simulation examples for validating the GRNN model: a) a log-normal PSD, f1(D), and
b) an EMG PSD, f2(D). Comparison with the corresponding GRNN model estimates, f̂1(D) and
f̂2(D), respectively.

4.1 GRNN model validation with simulated data

Two asymmetric and unimodal PSDs of a PS latex were simulated. The first PSD,
f1(D), follows a log-normal distribution, with Dg,1 = 205 nm, and σ1 = 0.115
nm. The second PSD, f2(D), was assumed as an exponentially-modified Gaussian
(EMG) distribution, obtained by convoluting a Gaussian distribution (of mean di-
ameter Dg,2 = 340 nm and standard deviation σ2 = 20 nm), with a decreasing expo-
nential function (of decay constant τ = 10 nm).

The selected ”true” PSDs are represented in Figure 2 (in continuous lines). No-
tice that f1(D) presents the same shape used for creating the GRNN model, and for
this reason it will be useful for evaluating the model interpolation ability. In con-
trast, f2(D) exhibits a higher asymmetry than any log-normal distribution, and it
was selected to evaluate the ability of the GRNN model for estimating PSDs with
different shapes than those used during the model creation. The corresponding es-
timates are also represented in Figure 2 (in dashed curves). In the case of f1(D)),
its estimation is almost perfect. On the contrary, in the case of f2(D), its estimation
is broader than the true PSD; however, the solution is smooth and acceptably close
to f2(D). Additionally, both estimates exhibits only positive values, which is practi-
cally impossible to be obtained when traditional regularization routines are used to
solve the ill-conditioned inverse problem.

4.2 GRNN model validation with experimental data

A commercial latex standard of PS (from Duke Scientific) of nominal diameter 111
nm was measured through the following independent techniques: 1) DLS; 2) ELS;

261Estimation of the PSD of a Latex using a GRNN



and 3) TEM. For the light scattering measurements, a Brookhaven instrument was
used. The TEM measurement was obtained after counting about 500 particles, in a
Hitachi H-7000 equipment [24].

Fig. 3 Experimental example for validating the GRNN model. Comparison of the TEM measure-
ment, fexp(D), with the GRNN model estimate, f̂exp(D).

The PSDs obtained from TEM, fexp(D), is shown in Figure 3 as a histogram,
and it is considered as a good approximation of the true (but unknown) PSD. The
DLS and ELS measurements were fed into the trained GRNN; and the resulting
estimated PSD is indicated as f̂exp(D) in Figure 3. The PSD estimate resulted some-
what broader than the TEM measurement. However, the average diameters of both
PSDs are quite similar.

4.3 Error Estimation Indexes

To evaluate the quality of the PSD estimates, the following performance indexes are
defined:

Jf =

(
∑N

i=1
[

f (Di)− f̂ (Di)
]2

∑N
i=1 [ f (Di)]

2

)0.5

(7)

ED =
Dn− D̂n

Dn
×100 (8)

where Dn is the number-average diameter of the PSD, that is defined as:

Dn = ∑N
i=1 f (Di)Di

∑N
i=1 f (Di)

(9)

Table 1 compares the different performance indexes for the 3 analyzed exam-
ples. In all cases, the mean diameters are accurately predicted. The experimental
case exhibits the highest Jf index. However, the comparison is against the TEM
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measurement, which is narrower than the “true” PSD as a consequence of the lim-
ited number of counted particles.

Table 1 Performance indexes for simulated and experimental examples.

f1(D) f̂1(D) f2(D) f̂2(D) fexp(D) f̂exp(D)

Dn 206.4 206.3 360.0 360.9 103.2 105.9
ED (%) - 0.05 - -0.25 - -2.62
Jf - 0.01 - 0.09 - 0.11

5 Conclusions

A method for estimating the particle size distribution of polymer latexes from com-
bined ELS and DLS measurements was developed. The proposed model utilizes
a general regression neural network, that was built on the basis of simulated log-
normal PSDs, with particles in a relatively broad diameter range [50-1100] nm. The
GRNN model building is straightforward and fast, because no training or validation
procedure is required. The proposed approach was successfully evaluated on the
basis of both simulated and experimental examples. It was observed that the result-
ing GRNN was able of accurately recuperating PSDs of log-normal distributions. In
principle, asymmetric EMG distributions can be adequately estimated too. Also, the
GRNN successfully estimated a narrow PSD of a commercial PS standard, yielding
a distribution close to that directly obtained by TEM. From a practical point of view,
the neural network constitutes a fast and robust tool, which additionally proved ade-
quate for the resolution of the involved ill-conditioning non-linear inverse problem.
With respect to the standard inversion techniques, the network presents the advan-
tages of not requiring any diameter range or numerical inversion method. Also, it has
proven to be insensitive to the standard noise measurements. The proposed method
has also proven to adequately predict the most difficult case of estimating narrow
PSDs.

Finally, the main limitation of the proposed approach is that it was developed
for unimodal PSDs. However, the network performance could be extended to more
general distributions, by including different PSD shapes during the GRNN model
definition. Also, an improved PSD resolution can be attained by reducing the dis-
cretization of the diameter axis, and/or by increasing the number of angles at which
the measurements are taken. As a future work, a more general tool will be presented
with reduced restrictions on the PSD shape.

263Estimation of the PSD of a Latex using a GRNN



References

1. Meyer, T., Keurentjes, J.: Polymer Reaction Engineering, an Integrated Approach. In: Hand-
book of Polymer Reaction Engineering. Chap. 1, pp. 1-15, Eds. Wiley-VCH (2005)

2. Richards, J., Congalidis, J.: Measurement and Control of Polymerization Reactors. In: Hand-
book of Polymer Reaction Engineering. Chap. 12, pp. 595-678, Eds. Wiley-VCH (2005)

3. Schoenmakers, P., Aarnoutse, P: Chemical Analysis for Polymer Engineers. In: Handbook of
Polymer Reaction Engineering. Chap. 20, pp. 1015-1046, Eds. Wiley-VCH (2005)

4. Gao, J., Penlidis, A.: Mathematical Modeling and Computer Simulator/Database for Emulsion
Polymerization. Progr. Polym. Sci., 27, pp. 403-535 (2002)

5. Kirsch, A.: An Introduction to the Mathematical Problem of Inverse Problems, Springer-Verlag,
New York (1996)

6. Stegmayer, G., Chiotti, O.: Neural Networks applied to wireless communications, In: in IFIP
International Federation for Information Processing, Volume 217, Artificial Intelligence in The-
ory and Practice, ed. M. Bramer, (Boston: Springer), pp. 129-138 (2006)

7. Minari, R. et al.: Industrial SBR Process: Computer Simulation Study for Online Estimation
of Steady-State Variables Using Neural Networks, Macromolecular Reaction Engineering, 1(3),
pp. 405-412 (2007)

8. Gilbert, R.: Emulsion Polymerization. A Mechanistic Approach, Academic Press, London
(1995)

9. Bohren, C., Huffman, D.: Absorption and Scattering of Light by Small Particles, J. Wiley &
Sons, New York (1983)

10. Tikhonov, A., Arsenin, V.: Solutions of Ill-posed Problems, Wiley, Washington (1977)
11. Vega, J. et al.: Latex Particle Size Distribution by Dynamic Light Scattering. A Novel Data

Processing for Multi-Angle Measurements. J. Coll. and Int. Sci., 261, pp. 74-81 (2003)
12. Vega, J. et al.: A Method for Solving an Inverse Problem with Unknown Parameters from Two

Sets of Relative Measurements. Lat. Amer. Appl. Res., 35, pp. 149-154 (2005)
13. Zhao, R. et al.: Application of an Artificial Neural Network in Chromatography - Retention

Behavior Prediction and Pattern Recognition. Chem. & Intell. Lab. Syst., 45, pp. 163-170 (1999)
14. Ulanowski, A. et al.: Application of neural networks to the inverse light scattering problem

for spheres. Appl. Optics, 37(18), pp. 4027-4033 (1998)
15. Guardani, R., Nascimento, C., Onimaru, R.: Use of Neural Networks in the Analysis of Parti-

cle Size Distribution by Laser Diffraction: Tests with Different particle Systems. Powder Tech.,
126, pp. 42-50 (2002)

16.
Measurement of Scattered Light Intensity: Application of Neural Networks. J. Quantit. Spectr.
& Radiat. Transfer, 91, pp. 1-10 (2005)

17.
18. Scheffold, F. et al.: PCS Particle Sizing in Turbid Suspensions: Scope and Limitations; In:

Particle Sizing and Characterization, Eds. T. Provder and J. Texter (2004)
19. Glatter, O. et al.: Interpretation of Elastic Light-Scattering Data in Real Space. J. of Col. and

Int. Sci. 105, pp. 577-586 (1985)
20. Vega, J. et al.: Particle Size Distribution by Combined Elastic Light Scattering and Turbidity

Measurements. A Novel Method to Estimate the Required Normalization Factor. Part. & Part.
Syst. Charact. 20, pp. 361-369 (2003)

21. Gonzalez, V. et al.: Contamination by Larger Particles of Two Almost-Uniform Latexes: Anal-
ysis by Combined Dynamic Light Scattering and Turbidimetry. J. of Colloid and Int. Sci., 285(2),
pp. 581-589 (2005)

22.
568-576 (1991)

23. Wasserman, P.: Advanced methods in neural computing, Van Nostrand Reinhold, New York
(1993)

24.
sions: A Comparative Study, Particle & Particle Systems Characterization, 17(6), pp. 236-243
(2000)

264 G. Stegmayer et al.

Berdnik, V., Loiko, V.: Sizing of Spheroidal and Cylindrical Particles in a Binary Mixture by

Chu, B.: Laser Light Scattering, Academic Press, New York (1991)

Specht, D.: A generalized regression neural network, IEEE Trans. Neural Networks, 2, pp.

Elizalde, O., Leal, G., Leiza, J.: Particle Size Distribution Measurements of Polymeric Disper-


