
Towards The Evaluation of OSS
Trustworthiness: Lessons Learned From

The Observation of Relevant OSS Projects

Davide Taibi1, Vieri del Bianco1, Davide Dalle Carbonare2 ,
1 1

davide.taibi | vieri.delbianco | luigi.lavazza | sandro.morasca@uninsubria.it
WWW home page: http://www.uninsubria.it

davide.dallecarbonare@eng.it
WWW home page: http://www.eng.it

Abstract. To facilitate the adoption of open-source software (OSS) in
industry, it is important to provide potential users (i.e., those who could decide
to adopt OSS) with the means for evaluating the trustworthiness of OS
products. This paper presents part of the work done in the QualiPSo project for
this purpose. A set of factors that are believed to affect the perception of
trustworthiness are introduced. In order to test the feasibility of deriving a
correct, complete and reliable evaluation of trustworthiness on the basis of
these factors, a set of well-known OSS projects have been chosen. Then, the
possibility to assess the proposed factors on each project was verified: not all
the factors appear to be observable or measurable. The paper reports what
information is available to support the evaluation and what is not. This
knowledge is considered to be useful to users, who are warned that there are
still dark areas in the characterization of OSS products, and to developers, who
should provide more data and characteristics on their products in order to
support their adoption.

Keywords: OSS trustworthiness, OSS quality, OSS adoption

1 Introduction

The success of OSS is due to multiple reasons, ranging from technical qualities to
financial, ethical and political motivations. Nonetheless, the adoption of OSS is still
limited. The reason is that, in several cases, OSS fails to convince potential users that
its adoption is safe and poses no more risks than purchasing commercial software. In
this paper, we report on the initial work, carried out in the QualiPSo project, that
focuses specifically on the characteristics of OSS products and artefacts, in order to
identify the ones most closely related to trustworthiness. The QualiPSo (Quality
Platform for Open Source Software) project 0 is an ongoing initiative that proposes a

Please use the following format when citing this chapter:

Information Processing, Volume 275; Open Source Development, Communities and Quality; Barbara Russo, Ernesto
Damiani, Scott Hissam, Björn Lundell, Giancarlo Succi; (Boston: Springer), pp. 389–395.

Luigi Lavazza , and Sandro Morasca
1 University of Insubria

2 Engineering Ingegneria Informatica S.p.A.

Taibi, D., del Bianco, V., Carbonare, D.D., Lavazza, L. and Morasca, S., 2008, in IFIP International Federation for

390

coherent and systematic evaluation of the trustworthiness of OSS projects, and aims
at promoting the diffusion of OSS by focusing on OSS trustworthiness.

We name “trustworthiness” the set of qualities that are of interest for the users,
especially in the process of deciding whether a given OS program (or library, or
other piece of software) is “good enough” to be used in an industrial or professional
context.

Firstly, we defined the set of factors that were believed to be the most closely
related to the perceived trustworthiness 0; then we identified a set of OSS projects,
widely adopted and generally considered trustable, to be used as references.
Afterwards, a first quick analysis was carried out, checking which factors were
readily available on each project’s web site. The idea was to emulate the search for
information carried out by a potential user, who browses the project’s web sites, but
is not willing to spend too much effort and time in carrying out a complete analysis.
Since the view of trustworthiness factors emerging from the analysis seemed too
subjective, it was decided to precisely define measures specifying how to evaluate
the OSS characteristics, and how to collect data that could be effectively used in the
analysis phase, to be performed according to some statistical methods.

2

The selection of projects addressed different types of software applications, generally
considered stable and mature. The complete set of projects comprises 32 products,
different with respect to age, implementation language, size of developers and users
communities, etc.

Here the criteria used to select a representative set of OSS projects are reported.
Projects have a set of characterising attributes. The selection criteria aimed at:

Including a reasonably small set of projects.
Including at least a couple of projects for every possible value of any attribute.

For instance, an attribute is the size of the development team. Four possible
values were defined: 0 (inactive project), no more than ten people, up to 50 people,
more than 50 people. Therefore, we took care to include at least two projects for each
of the four mentioned classes. The complete set of attributes is reported in Table 1.

Attribute Possible values
Repository

ObjectWeb, Free Software Foundation, SourceKibitzer, other
Standalone
Type Web Server, Operating System, ERP, CSM, …
Developer organization type Sponsored/foundation, spontaneous, other
Cost Free; pay for services and features; pay for everything
Size of the development team 0 (abandoned/closed project), 1–10, 11–50, >50

Davide Taibi et al.

Project Selection and Analysis

Table 1. The projects’ attributes.

SourceForge, Apache, Java.net, FreshMeat, Rubyforge,

Yes/No (Part of a Project family)

Towards the evaluation of OSS trustworthiness 391

User community size Small (<51), Medium (51–250), Large (>250)
Programming language Java, C#, C/C++, scripting languages, Visual Basic, other
Tool support(*) little use of tools (0-4 tools used); extensive use of tools (5-7)
Innovation Traditional application (existing before 2003); Emerging

application (only proprietary solutions before 2003)
Age Project started before 1998; between 1998 and 2003; after

2003
(*) the potentially supported activities are: continuous integration (supported by Cruise
Control, Damage Control, Continuum, …), building (Ant, make, …), code documentation
(Doxygen, Javadoc, …), testing (JUnit/NUnit/PhpUnit, …), version control (CVS, Subversion,
…), bug tracking (Jira, Bugzilla, …), static code analysis (Spoon, Checkstyle,…).

We analyzed the 32 selected projects, considering the information concerning the
trustworthiness factors. The analysis was carried out by looking for information that
was readily available in the project web sites.

Table 2 lists the factors that are believed to determine trustworthiness, and
reports, for each factor, how many projects provided (in the official web site) enough
information to evaluate the factor.

Table 2. Number of projects that provide data about the considered factors

Factor N° of projects supporting
the evaluation of the factor

Type of licenses used 32
Facilities for developing modifying... 10
Technical manual 2
Mid/long term existence of a user community Not Found
Existence of a sufficiently large community Not Found
Short term support Not Found
Mid/long term existence of a maintainer organization Not Found
Use of standard architecture 11
Usage of patterns 6
Programming language uniformity 25*
Complexity Not Found
Size Not Found
Reliability 8
Maintainability 7
Modularity 18
Usability 9
Portability 15
Performances 8
Functional requirements satisfaction 11
Customer satisfaction Not Found

10Interoperability with external systems/integration ease

392

Availability of user manual 30
Standard compliance 10
Availability of best practices 17
Human interface language/localization 15
Self containedness 15
Existence of benchmarks or test suites that witness quality 5
Availability of training, guidelines, use cases, tutorial 20
Distribution channel 31
Number of downloads 32

* Only a few of these projects explicitly declare to use one language for the whole project.

3 Factor Refinement

The experience of the quick project analysis showed that for several factors it was
necessary to define more precise and specific measures. The need to base evaluations
on more objective data also emerged. Accordingly, whenever a factor proved not to
be directly measurable, a set of ‘proxies’ was defined. Some proxies can be assessed
in a simple and direct manner, while others need specific tools. Table 3 reports both
the new measures and the unchanged ones defined for OSS product trustworthiness.
The idea is that for each OSS project the factors are evaluated according to these
measurement definitions.

Table 3. New criteria for the evaluation of trustworthiness factors

Functional requirements
satisfaction degree

Availability of: feature list, free text description, release notes,
product example/demo

Customer Satisfaction List of organizations, testimonials and other projects using this
software, case studies, usage histories
User community satisfaction (according to forums, blogs,
mailing lists, newsgroups, magazine/scientific articles)

Interoperability Communication with other systems supported by suitable
mechanisms (SOAP, Web services, protocols, public
interfaces, …); Ease of integration with other products and
possibility to migrate to other product with little effort

Reliability Development status, frequency of patches, average bug time
solving

Maintainability Existence of a guide to extend/adapt the OSS product,
maintenance releases and architectural documentation.
Coherent usage of coding guidelines/standard, source code
quality and programming language uniformity

Modularity The product provides plug-in interface(s)
Standard Architecture Availability of architectural documentation and usage of

architectural standard/pattern

Davide Taibi et al.

Factor Basic indicators

Towards the evaluation of OSS trustworthiness 393

Mid Long Term Existence
of a User Community

Project Age; Trend of the number of users;
Number of patches/releases in the last 6 month;
Number of developers involved; Average bug solving time

Availability of technical and
user documentation

Availability of: up to date technical/user manual, getting
started guide, installation guide, Technical/User related
F.A.Q., Technical/user forum and mailing list

Standard Compliance Any information about standard implemented (like HTTP 1.0,
SQL 97...) and coding standards

Existence of a sufficiently
large community of users

Number of posts available on forums/blogs/newsgroups and
related activity

Performance Existence of performance tests and/or scenarios, specific
performance-related documentation
Implementation -Any best practices, concerning design and
product construction, aimed at boosting performance.

Type of License Main and sub license used
Short Term Support Bug number, bug removal rate, availability of professional

services
Availability of facilities for
developing, modifying, and
customizing the product

General purpose build tools applicable to the product, build
script, built-in customization facility (configuration API, …)

Usability Detailed feature description and user manual
Ease of installation/configuration, ease of use.

Portability Supported environments, usage of a portable language (like
Java), environment-dependent implementation (e.g., usage of
hardware/software dependent libraries)

OSS Provider Reputation Opinion and feedback from other users
Best Practices Availability of best practices, code examples/tutorials
Programming language
uniformity

Number of languages used in the project

Complexity McCabe complexity number or any related information
available on the web site

Human Interface Language
Localization

Localization support availability (e.g., are language files
provided?)

Self Containedness Can the product be installed and executed “out of the box” or
does it require other software?
Are dependencies documented?

Existence of
benchmarks/test suites that
witness for the quality

Availability of test suites/benchmarks, Usage of a test
framework (JUnit, DejaGNU,…), results of tests published (on
the project site), existence of initiatives to encourage the
community to contribute to quality efforts

Mid/long term existence of
a maintainer / sponsor

Active maintainer organization / sponsor

Availability of training,
guidelines, use cases,
tutorial etc.

Up to date training materials, manuals and guidelines available
free of charge
Availability of official training courses

The distribution media Source code download; Binaries download
Access to the project repository; CD/DVD distribution

Size Number of Lines of code, source files and functions (or classes

394

and methods, for object oriented code)
Popularity of the product Number of downloads

The main areas that could not be covered in the previous analysis were those
related to the quality of the product and the user community. In no project website
we found any indication about the user community size, the internal software quality
and complexity, or the vitality of the project.

Proxy definitions were conceived to make the assessment as easy and objective
as possible. The possibility of employing tools –possibly specifically developed for
this purpose– was also taken into account. Considering for instance the evaluation of
the mid/long term existence of a user community, we suggest checking the following
indicators: the growth rate of the community, the number of patches/releases during
the last 6 months, the number of developers involved, the average bug solving time
and the project age. In order to assess the growth trend of the user community we
shall develop a specific tool, which –by digging into the web portals, official forums
and blogs– computes the number of unique users in the last months.

Unfortunately, some information considered important is never exposed on the
project websites; therefore we wish to throw a suggestion to the Open Source
community, recommending the leaders of OSS projects who would like to publicize
the trustworthiness of their products to publish all the useful data. In any case, there
are some factors that are inherently difficult to evaluate: for instance, it is quite hard
to evaluate the quality of the supplied user manual. This task could be made much
easier if it were possible to collect feedback from users: it is thus important to make
the users aware that the usage of some feedback collector would be beneficial to the
whole user community.

4 Conclusions

In order to favour the adoption of OSS, it is necessary to assure the potential users
that the OSS products do meet their expectations under several respects. In the
QualiPSo project, the notion of “trustworthiness” is meant to include several
qualities of the OSS, ranging from training support to the possibility of
modifying/adapting the programs, to the availability of support from the producer,
etc. Since the notion of trustworthiness is quite broad, it is necessary to fully
understand what factors contribute to making a product trustworthy. For this
purpose, in the QualiPSo project several OSS products have been examined: a set of
factors that are believed to affect the perceived trustworthiness were identified, a set
of outstanding OSS project were selected and are being analysed with respect to the
mentioned factors.

Here we reported the preliminary results of the analysis of OSS products and
artifacts. Next steps will include a second analysis round, based on the usage of the
newly defined measures, possibly along with a campaign, addressed to OSS

Davide Taibi et al.

Towards the evaluation of OSS trustworthiness 395

developers, to provide more information on the characteristics that affect the
trustworthiness of their products. A number of OSS code repositories will also be
analyzed, with the aid of automated tools.

The collected data will be analyzed, with the objective of identifying
commonalities and differences in the characteristics and usage of OSS products, to
prepare the ground for the creation of a trustworthiness model encompassing the
characteristics and factors that have been observed to actually affect the perception
of trustworthiness in OSS products and artifacts.

Although the analysis is not yet complete, we were able to make some
preliminary observations. A first result is that by browsing the information provided
by the projects’ web sites, only a relatively small set of the interesting factors could
be evaluated: several factors appear not to be observable or measurable. The paper
reports what information is not available: developers should provide the missing
information in order to support the adoption of their products. Since some of the
trustworthiness factors could not be evaluated because of their subjectivity, we began
a more precise definition of the measures – illustrated in Table 3 – that should be
used to capture these factors.

References

1. V. del Bianco, M. Chinosi, L. Lavazza, S. Morasca, D. Taibi, “How European software
industry perceives OSS trustworthiness and what are the specific criteria to establish trust

2. QualiPSo project web site: http://www.qualipso.eu

in OSS”, October 2007, available on-line at http://qualipso.semanticdesktop.org/xwiki/bin/
view/Wiki/WP51.

