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Abstract As technology scaling approaches to the nanometer, leakage power has
become a significant component of the total power consumption. In this paper, we
develop a novel leakage-aware modulo scheduling algorithm to achieve leakage en-
ergy savings for DSP applications with loops on VLIW architecture. The proposed
algorithm is designed to maximize the idleness of function units integrating with
leakage management scheme [9], and reduce the number of transitions between ac-
tive and sleep modes. We have implemented our technique into the Trimaran com-
piler [1] and conducted experiments using a set of benchmarks from DSPstone [11]
and Mibench [7] on the VLIW simulator of Trimaran. The results show that our
algorithm achieves significant leakage energy savings compared with the leakage-
aware scheduling algorithm [8].

1 Introduction

As technology feature size continues to shrink, leakage power is becoming com-
parable to dynamic power in the current generation of technology [3, 6, 10], and
it will further dominate the overall energy consumption in future technologies [4].
High performance DSP (Digital Signal Processing) needs to be performed not only
with high data throughput but also with low power consumption in embedded sys-
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tems. VLIW (Very Long Instruction Word) architecture that has multiple functional
units (FUs) and can process several instructions simultaneously is widely adopted
in high-end DSP. While this multiple-FUs architecture can be exploited to increase
instruction-level parallelism and improve time performance, it causes more leakage
power consumption. Therefore, it becomes an important problem to reduce the leak-
age energy of a DSP application on VLIW architecture. Since loops are usually the
most critical parts in a DSP application, we develop a loop scheduling technique to
reduce the leakage energy of an application on VLIW architecture.

A lot of research efforts have been put to characterize cost models for analyzing
static power [3] and evaluate techniques for leakage power reduction [9]. The archi-
tecture level model in [3] confirms that the functional units contribute to a notice-
able fraction of leakage power despite having relatively fewer transistors compared
to caches. A hardware based leakage energy management scheme is proposed in [9]
for short idle periods. In their scheme, the dual-threshold domino logic with sleep
mode that can transit between active mode and sleep mode is utilized.

Many techniques [8, 5] are proposed to reduce leakage energy consumption of
functional units for VLIW architecture. Nagpal et al. [8] proposed a leakage-aware
instruction scheduling algorithm for VLIW and clustered VLIW architectures to re-
duce leakage energy by exploiting the scheduling slacks of instructions. In most of
the above work, the instruction scheduling for reducing leakage power is based on
DAG (Directed Acyclic Graph) scheduling in which only intra-iteration dependen-
cies are considered. In this paper, we show that we can significantly improve the
leakage energy by carefully exploiting inter-iteration dependencies.

In this paper, we propose a leakage-aware modulo scheduling algorithm that as-
sists the hardware based leakage energy management scheme [9] to achieve leak-
age savings for DSP applications in the context of VLIW architecture. Our basic
idea is to schedule nodes into better locations in order to maximize the idleness of
function units integrating with leakage reduction control, and reduce the number
of transitions between active and sleep modes. We implement our technique into
the Trimaran compiler [1] and conduct experiments on a set of benchmarks from
DSPstone [11] and Mibench [7] based on the power model in [9]. The results show
that our algorithm achieves significant leakage energy savings compared with the
leakage-aware scheduling algorithm [8]. On average, our technique contributes to
14.73% reduction in the leakage energy consumption with only 1.74% decrement
in the performance.

The rest of the paper is organized as follows. Motivational examples are shown
in Section 2. The basic concepts are introduced in Section 3. The scheduling algo-
rithm is proposed in Section 4. The experimental results and analysis are provided
in Section 5, and the conclusion is given in Section 6.
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2 Motivational Examples

In order to show how our approach works, we present an example in this section.
We use Trimaran compiler [1] to generate the Data Flow Graph for this example
and perform modulo scheduling on it. We compare the scheduling generated by the
traditional modulo scheduling and our technique. The energy model to calculate the
leakage energy is introduced in Section 3.2.

Fig. 1 The FIR program and its corresponding data flow graph.

A real DSP application, the FIR program and the Data Flow Graph of the inner-
most loop is shown in Figure 1. In the graph, each node denotes a computational
task in the loop, and there are 7 integer ALU operations, 4 memory operations, 1
floating ALU operation and 1 branch for this particular example. The edge without
delay represents the intra-iteration data dependency (e.g. A→D), and the edge with
delays represents the inter-iteration data dependency (e.g. J → A has an edge with
one delay which is denoted by one bar), in which the number of delays represents
the number of iterations involved.

Assume that we want to schedule the graph in Figure 1 to the VLIW architecture
with 7 FUs which are fully pipelined. And let FU1 and FU2 be integer ALUs,
FU3 and FU4 be floating-point ALUs, FU5 and FU6 be memory units and FU7
be the branch unit. Note that we assume the integer operations A, B, C, H, J, K,
L take 1 cycle for execution, the load operations D, E, F take 2 cycles, the store
operation I takes 1 cycle, and the floating multiplication node G takes 2 cycles to
finish execution in this example.

The schedule generated by the traditional modulo scheduling is shown in Fig-
ure 2. Based on the power model in [9], for integer ALUs which are most heavily
utilized, the dual-threshold domino logic with sleep mode can transit between ac-
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Time IALU FALU Memory Units BRANCH
FU1 FU2 FU3 FU4 FU5 FU6 FU7

0 A B I
1 C H D E
2 J K F
3 L
4 G
5 Branch

Fig. 2 The schedule generated by performance-oriented modulo scheduling.

Time IALU FALU Memory Units BRANCH
FU1 FU2 FU3 FU4 FU5 FU6 FU7

0 A I
1 B
2 C D E
3 H F
4 J
5 K G
6 L Branch

Fig. 3 The schedule generated by our technique.

tive mode and sleep mode after one cycle of idleness. The circuit expends very little
leakage energy in the sleep mode. However, the energy savings of this schedule
are severely affected by frequent transitions from active mode to sleep mode and
vice-versa because of many short idle periods.

The schedule generated by our technique is shown in Figure 3. For this exam-
ple, the schedule generated by our technique has little performance loss than the
traditional modulo scheduling algorithm. In this schedule, FU2 is totally unused,
so we can put FU2 into the sleep mode before entering the loop body. Thus, our
technique achieves big leakage savings compared with the performance-oriented
modulo scheduling.

3 Basic Concepts

3.1 Modulo Scheduling Overview

The objective of modulo scheduling [2] is to engineer a schedule for one iteration
of the loop such that when this same schedule is repeated at regular intervals, no
intra- or inter-iteration dependence is violated, and no resource usage conflict arises
between operations of either the same or distinct iterations. This constant interval
between the start of successive iterations is termed the initiation interval (II). The
repetitive portion can be re-rolled to yield a new loop which is termed the kernel.
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The prologue is the code that precedes the repetitive part and the epilogue is the
code following the repetitive part. The minimum initiation interval (MII) is a lower
bound on the smallest possible value of II for which a modulo schedule exists. The
MII must be equal to or greater than both the resource-constrained MII (ResMII)
and the recurrence-constrained MII (RecMII). The candidate II is initially set to the
MII and increased until a legal modulo schedule is found.

3.2 Energy Model

The energy model used in this paper is based on [9]. The total energy in a functional
unit in this model is determined as follows:
Etotal = Dyn Energy + Leak Energy + Trans Energy + Sleep Energy
Etotal = nA (αEA+(1-D)ES1)+(nAD+nUI)(αES0 +(1-α)ES1) +MZ((1-α)EA+ESleep)
+nZES0

Here, nA is the number of active cycles, nUI is the number of uncontrolled idle
cycles, nZ is the number of sleep mode cycles and MZ is the number of transitions
between different modes. ES0 and ES1 are low and high leakage energy consumption,
respectively.

4 Leakage-Aware Modulo Scheduling Algorithm

In this section, we first propose the leakage-aware modulo scheduling algorithm in
Sections 4.1. Then we discuss its key functions in Section 4.2.

4.1 The Proposed Algorithm

In the proposed algorithm, our basic idea is to schedule nodes of a loop to better
locations in order to enlarge the idleness in FUs which can be exploited to apply
leakage energy control mechanism. In most of the previous work, loop is modeled
as the DAG part of a DFG in which only intra-iteration dependencies are considered.
As shown in Section 2, by exploring inter-iteration dependencies, we can get more
opportunities to schedule nodes of DFG to better locations in a schedule to achieve
more leakage energy saving. The leakage-aware modulo scheduling algorithm is
shown in Algorithm 4.1.

In the algorithm, G is the data flow graph of the loop, TC is the timing constraint
and the BudgetRatio is the ratio of the maximum number of operation scheduling
steps attempted before giving up to the number of operations in the loop. This pa-
rameter determines how hard the function IterativeSchedule() tries to find a legal
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Algorithm 4.1 The leakage-aware modulo scheduling algorithm.
Require: The data flow graph G=〈V, E, d, t〉, the timing constraint TC, BudgetRatio.
Ensure: A schedule S with minimum leakage energy Min Energy.

// Initialize the value of II to the Minimum Initiation Interval
1: II := MII();
2: Min Energy← ∞;
3: while II < TC do
4: Budget := BudgetRatio * NumberofOperations;
5: while IterativeSchedule( II, Budget)!= SUCCESS do
6: II := II+1;

// Calculate the leakage energy based on the power model [9]
7: S′ := The generated legal schedule;
8: ES′ := CalculateEnergy(S′);
9: if Min Energy > ES′ then

10: S← S′ and Min Energy← ES′
11: end if
12: end while
13: end while

schedule for a candidate II before giving up. The output of the algorithm is a legal
schedule S with minimum leakage energy Min Energy.

In the algorithm, we first initialize the value of II to the minimum initiation in-
terval. Then, function IterativeSchedule() is used to perform the actual scheduling
as shown in Algorithm 4.2. After all operations have been scheduled and a legal
schedule is generated, we record the energy of it and compare it with Min Energy.
The algorithm terminates when the timing constraint is achieved.

4.2 Function IterativeSchedule()

In function IterativeSchedule(), we first calculate the priority for each operation
based on the height-based priority function ComputePriority() of modulo schedul-
ing, and pick up the operation with highest priority to be scheduled. In function
ComputePriority(), we calculate the longest path from the node to the end of the
data flow graph. This function gives higher priority to operations on the critical path
in order to achieve a good schedule.

Then, the schedule time bounds for the current operation are calculated according
to the data dependence constraint. We use function FindTimeSlot() to find a legal
time slot for the current operation within the range (MinTime, MaxTime). MinTime
is the earliest start time for an operation as constrained by its dependences on its
predecessors. MaxTime equals to MinTime + II−1 since each iteration in modulo
scheduling begins exactly II cycles after the previous one.

In function FindTimeSlot(), the goal is to find an empty block to put the operation
CurrOper in. We first calculate the start time and the end time of each empty block
in each functional unit.
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Algorithm 4.2 Function IterativeSchedule().
Require: Graph G, the initiation interval II and the Budget.
Ensure: A schedule S or failure information.

// Calculate the schedule time bounds for the current operation
1: ComputePriority();
2: while (the list of unscheduled operations is not empty) & (Budget > 0) do
3: CurrOper = HighestPriority();

// Calculate the schedule time bounds for the current operation
4: (MinTime,MaxTime) = ComputeSlack(CurrOper);

// Select the time slot for leakage energy optimization
5: SchedSlot = FindTimeSlot(CurrOper,MinTime,MaxTime);

// Perform the actual scheduling
6: Schedule(CurrOper,SchedSlot);
7: Budget–;
8: end while
9: if all operations are scheduled then

10: return SUCCESS;
11: else
12: return FAILURE
13: end if

In order to enlarge the idleness in FUs, we always start to search from FU1 and
try to find the earliest empty block on it. If we can not find an empty block in FU1,
FU2 will be tried next time; then we try FU3, · · · ,FUn, until we can find such an
empty block. In this way, we can schedule operations onto one functional unit as
much as possible. And thus, we can enlarge the idleness of FUs and increase the
number of unused FUs. The benefit is that we have more chance to put the total
unused functional units into low leakage mode before entering the loop body. It
is possible that we can not find any empty block to put the operation in. In this
case, we employ the same backtracking method as that of Rau’s modulo scheduling
algorithm [2].

After finding the suitable empty block, we compare the earliest schedule time of
the operation and the start time of the empty block in order to determine whether the
operation should be scheduled at the beginning or at the end of this empty block.
By scheduling the nodes into locations close to each other, we can maximize the
consecutive idle period in functional units.

5 Experiments

We have implemented our technique into the Trimaran compiler [1] and conduct
experiments using a set of benchmarks from DSPstone [11] and MiBench [7] on
the cycle-accurate VLIW simulator of Trimaran. In this section, we first discuss the
setup of our experiments in Section 5.1, and then present experimental results in
section 5.2.
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5.1 Experimental Environment

To compare our technique with the leakage-aware scheduling technique [8], we use
the VLIW simulator of Trimaran [1] as our test platform. The configuration for the
VLIW Trimaran simulator is shown in Table 1.

Table 1 The configurations of Trimaran.

Parameter Configuration
Functional Units 4 integer ALU, 2 floating point ALU, 2 load-store units

1 branch unit, 5 issue slots
Instruction Latency 1cycle for integer ALU, 1 cycle for floating point ALU

2 cycles for load in cache, 1 cycle for store, 1 cycle for branch
Register file 32 integer registers, 32 floating point registers

5.2 Results and Discussion

In the experiment, we obtain the results of the leakage energy reduction of Inte-
ger ALUs and performance penalty on the code generated by our technique. We
compare the energy results with that of the code generated by the leakage-aware
scheduling algorithm [8] with leakage management scheme [9]. We compare the
performance penalty results with that of the code generated by the modulo schedul-
ing [2].

We assume that the technology is 65nm and 50% of the total energy of the VLIW
processor is the leakage energy. In the following, we present and analyze the results
in terms of leakage energy reduction and performance penalty.

5.2.1 Leakage Energy Reduction

We compare our algorithm with leakage-aware scheduling technique [8] in Trimaran
[1], the percentage of reduction in the leakage energy consumption is shown in Fig-
ure 4. In Figure 4, the results for Nagpal’s technique and our technique are presented
in bars with different color, and the right-most bar ”AV G.” is the average result.

Our algorithm reduces leakage consumption in the functional units by schedul-
ing operations using less functional units to maximize the idleness of the functional
units. Moreover, in the loop-level granularity, our technique minimizes the number
of transition time between low level and high level leakage mode by turning off
the totally unused functional units before entering the loop body. The experimen-
tal results show that our algorithm significantly reduces the leakage energy of the
processor. Compared with leakage-aware scheduling technique [8], on average, our
algorithm achieves 14.73% reduction for the benchmarks.
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Fig. 4 Leakage energy reduction due to our leakage-aware scheduling algorithm compared with
leakage-aware scheduling technique [8].

5.2.2 Performance Penalty

We compare our technique with the performance-oriented modulo scheduling [2],

and the percentage of performance penalty is shown in Figure 5. On average, the

results show that our technique leads to a 1.74% performance penalty for the bench-

marks.
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Fig. 5 Performance penalty.

The reason of the performance loss is that our technique may use less functional

units to schedule the operations and try to schedule them close to each other. Thus,

it may enlarge the schedule length to achieve the goal of maximizing the idleness of

functional units. However, in our technique, the performance penalty is controlled

by the timing constraint that determines whether employing our technique or not.

In the experiment, the maximum number of delays is set as 1.3 * MII (Minimum

Initiation Interval). Therefore, the performance penalty is very small. With such

small performance loss, our technique is suitable for embedded systems.
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6 Conclusion

In this paper, we proposed a leakage-aware modulo scheduling algorithm to re-
duce leakage energy for DSP applications with loops on VLIW architectures. The
proposed algorithm is designed to maximize the idleness of function units integrat-
ing with leakage management scheme [9], and reduce the number of transitions
between active and sleep modes. We have implemented our technique into the Tri-
maran compiler [1] and conducted experiments using a set of embedded bench-
marks from DSPstone [11] and Mibench [7] on the cycle-accurate VLIW simulator
of Trimaran. The results show that our algorithm achieves significant leakage energy
savings compared with the leakage-aware scheduling technique [8].
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