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Abstract In this work concepts of division of labor in social insects and emergent
self-organization are used to design a very efficient heuristic for clustering wireless
sensor networks. Differently from previous approaches, we aim at creating clus-
ters with a minimum amount of resources and good intra-cluster connectivity. Our
heuristic has two steps. First, we elect the most suitable clusterheads that have the
extra responsibility of leading and representing the cluster. Afterwards, the heuris-
tic selects the respective members of the clusters. These processes are guided by a
response function that determines the suitability of each node to a given task (role).
For example, nodes with good connectivity and high energy level are good can-
didates for being clusterheads. In addition to the division of labor, we are using
a positive/negative feedback mechanism to control the stimulus for attracting new
members. Until having enough resources, the positive feedback acts in order to re-
cruit new members. After gathering enough resources, the negative feedback starts
to play a major role. Simulations showed that for 80% of cases the proposed heuris-
tic could find results which are below 2.3 times the theoretical optimal solution,
define as the sum of the intracommunication cost of the clusters.

1 Introduction

Wireless sensor networks (WSN) are constantly gaining popularity and attracting
more research over the years. One of the reasons is a myriad of novel applications
that can be implemented with them. The applications range from human-embedded
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sensing and ocean data monitoring to collaborative space exploration. Nevertheless,
because of current hardware limitations of wireless nodes, e.g. commercial off-the-
shelf sensor nodes, approaches for the management of WSN have to be designed to
work using only a low amount of resources and low communication overhead.

In general, two heuristic design approaches for management of sensor networks
at different levels (e.g. topology control, network layer, application) are prevalently
used. The first method has in all nodes the knowledge of the (entire) network and let
they manage themselves. This circumvents the need for a more advanced organiza-
tion. Nevertheless, this generates overhead in terms of communication and memory
at each node. Each node must, for example, maintain routes to the other nodes in
the network. In large networks, the number of messages needed to maintain routing
tables may cause congestion in the network and depletes the energy of the nodes.
Ultimately, the need of individual self-management will generate a huge exchange
of messages and overhead.

The second method identifies a subset of nodes within the network and vest them
with the extra responsibility of being a leader (clusterhead) of certain nodes in their
proximity. The clusterheads are normally responsible for managing communications
between nodes in their own neighborhood as well as routing information to other
clusterheads in other neighborhoods [1]. This creates a hierarchy in the network.
Clustering in large-scale networks was proposed as a means of achieving scalability
through a hierarchical approach [11]. Some examples of clustering benefits can be
found at the medium access layer, where clustering helps to increase system capacity
due to the promotion of the spatial reuse of the wireless channel, and at the network
layer, where it helps to reduce the size of routing tables. Sensor networks and, more
generally, wireless ad hoc networks largely benefit from clustering.

In this paper, we present a new heuristic that organizes a WSN into clusters.
Differently from previous approaches, our proposal addresses the problem of parti-
tioning the nodes of the network in multi-hop groups with a guaranteed minimum
amount of resources q (or budget) in each one of them. This kind of clustering is
useful in various scenarios. In our case, the clustering heuristic is used in the devel-
opment of an efficient service distribution in our Operating System (OS).

In our OS for sensor networks, the application and OS services are distributed
among different nodes and services are called remotely by the applications. Sharing
the services in the network reduces the amount of resources required in each single
node. An instance of the OS with all required services should be placed inside each
cluster. This means that each cluster must have a minimum amount of resources.

An additional difference from our clustering heuristic to the existing ones is that
we are trying to minimize the total communication cost inside the clusters. This
communication cost is measured by means of a link metric that assigns a weight to
each link, thus modeling the quality of the link. Moreover, the heuristic is in several
aspects inspired by the behavior of various biological systems.

Our heuristic is very complex and was designed for a dynamically changing
topology. In this paper we focus on the part of heuristic that deals with static topolo-
gies.
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2 Related Work

In this section, a literature overview of clustering algorithms developed for sensor
and ad hoc networks is presented. Some approaches were originally proposed for ad
hoc networks but are also used in WSN (a subclass of ad hoc networks).

The idea of clustering is to decompose the nodes of a graph in subsets in a way
that the union of the subsets contains all nodes of the graph. For each subset (or
cluster), some conditions should hold.

Given a graph G = (V,E) representing a communication network, where vertexes
are the nodes and edges the communication links, the clustering process constructs
subsets of nodes Vi, i = 1, ..,n where ∪i=1,..,nVi =V , such that each subset Vi induces
a connected sub-graph of G. These vertex subsets are clusters. Ideally, the size of the
clusters falls in a desired range. Moreover, for several approaches, a special vertex
in each cluster is elected to represent the cluster and is called clusterhead [5].

There are several design factors concerning heuristics for cluster construction
in ad hoc networks. A very important one is the maximal diameter of a cluster:
when constructed as a maximum independent set (or minimum dominating set),
clusters have the maximum diameter of 3. Nevertheless, we are interested in multi-
hop clusters with higher diameter. Different objectives may be pursued in multi-hop
clustering.

In [1], the issue of constructing the d-hop dominating set in an ad hoc network is
addressed. Because of the NP-completeness of the problem for unit disk graphs, a
heuristic called max-min d-cluster formation is presented. It can find good solutions
with relative low communication (O(d)) and generalizes the dominating set prob-
lem. Nevertheless, differently from our approach, the link quality is not considered
when selecting cluster members. Moreover, the size of the cluster is uncontrolled.
Dense network areas result in larger clusters than sparse ones.

In [10], an algorithm for bounded size clustering based on an expanding ring
search is presented. The algorithm relies on a sequence of rounds. In each round,
new members are recruited for the cluster in the n-hop neighborhood. n is incre-
mented in each round until the bound (number of nodes) of the cluster is reached.
If more nodes than necessary are in the cluster, the clusterhead simply discards the
excess. We compare our heuristic with a modified version of the expanding ring that
guarantees clusters with a given amount of resources.

Two algorithms improving the expanding ring approach are presented in [7, 8].
They are called Rapid and Persistent clustering. As in the expanding ring, a maxi-
mum determined size (i.e. number of member nodes) for the cluster is desired. The
algorithms are more efficient than the expanding ring. The cluster sizes produced
should be as close as possible to the specified bound (which we will call here B) in
order to limit the total number of clusters. Nevertheless, the bound should not be
exceeded.

The Rapid heuristic uses less messages than the Persistent one. Nevertheless, it
has a poor worst-case analytical performance. The Persistent heuristic persistently
tries to produce a cluster of the specified bound if possible. The proposed algorithms
do not violate the cluster size bound at any time. However, this bound is just given

47Resource-Aware Clustering of Wireless Sensor Networks



Tales Heimfarth, Dalimir Orfanus and Flávio Rech Wagner

in number of nodes and there is no way to differentiate nodes. In our approach,
a weight is associated to each node (representing the amount of resources of the
node), and the bound is related with this weight. Moreover, the clusters in the Rapid
and Persistent heuristics are always smaller than or equal to the given bound. In our
approach, all clusters have at least a specified amount of resources (as can be seen
in the next section).

In the Rapid and the Persistent algorithms, the clusterheads are elected in a com-
pletely random fashion, which leads to the selection of nodes that are not very suit-
able for the role. In our solutions we use the opposite approach: strongly connected
nodes plenty of energy have a higher probability to be selected as clusterheads. An-
other difference is related to the links: the Rapid and the Persistent heuristics do not
attempt to rank the member candidates (concerning, for example, the links) in order
to select the best connected nodes to form the cluster.

A clustering algorithm where a lower and a upper bound are used to control the
size of the clusters is presented in [2]. The algorithm is based on the idea of finding a
rooted spanning tree of the graph (using Breadth-First-Search) and to form clusters
from the subtrees that match the clustering constraints. The upper and lower bound
approach tries to keep the amount of nodes in the clusters inside a specified interval.
But differently from our approach, overlaps are allowed. Moreover, the link quality
is also not relevant to the heuristic.

Another very important difference between all existing approaches and the one
presented in this work is the fact that we try to minimize the communication over-
head among all nodes inside a cluster. For that, as it will be presented in the next
section, we use the smallest distance between each pair of nodes inside the clusters
for the objective function. This distance is calculated by means of our combined
link metric.

3 Problem Definition

In this section, a formal definition of our exact clustering problem is described.
We call our problem minimum intracommunication-cost clustering.
The ad hoc network is modeled as an undirected graph G = (V,E), where V is

the set of wireless nodes and an edge {u,v} ∈ E if and only if a communication
link is established between node u ∈ V and v ∈ V . The two nodes in this case are
neighbors. Each node v ∈V has a unique identifier (IDv).

For each link, a weighing function assigns a positive weight. w : E → R
+. This

weight measures the quality (or goodness) of a wireless link. We define for each
edge that is not in the graph ({u,v} /∈V ), that w(u,v) = ¥.

The quality of the link is calculated combining the following parameters: trans-
mission success rate, received signal strength, and history of the link. The statistic-
based observation of transmission success is a good indication of the future success
rate. Nevertheless, it reacts slowly to changes, and at beginning there is no data to
calculate its value. The received signal strength indication makes possibly quick in-
dications, but it is not very precise. Therefore, the combined metric uses these two
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parameters. Moreover, in order to prioritize stable links, the history is also used. We
use normalized link metrics, where 0 means a very good link and 1 a very poor one.
We call the link metric virtual distance.

For each node, an additional weighing function r is responsible for characterizing
the amount of resources available in the node. r : E →R

+. This models the resource
capacity of the node.

The clustering process partitions the nodes into clusters, each one with a cluster-
head and possibly some ordinary nodes. As presented in the related work section,
there are several different types of clustering strategies pursuing different objectives.

In our problem, the objective is to get multihop clusters with enough resources for
the OS and application processing. Moreover, the minimization of the intra-cluster
communication cost is also desired.

This optimization problem is modeled as follows:

Input: A graph with weighted nodes and links (G,w,r) and a resource requirement
q∈R

+, where the sum of all node weights in each cluster must be higher or equal
to q.

Constraints: For every input instance (G,w,r,q), M (G,w,r,q) = {C1,C2, ..,Ck|Ck

is the kth cluster configuration}, where the following properties hold
Ck =

{
ck1,ck2, ..,ck(nk)

}
is the kth possible cluster configuration of the graph,

where k = {1,2, ..,n} (n is the number of possible configurations, nk is the num-
ber of clusters in the kth configuration, nk = |Ck |)

cki =
{

v1
ki,v

2
ki, ..,v

|cki|
ki

}
∈ Pot(V ) is the ith cluster of the kth configuration, where

v j
ki is the jth element of the cluster cki

For each configuration Ck, k = 1,2, ..,n, the following properties must hold:

1.
⋃

i=1,2,..,nk cki = V (cluster definition constraint)
2.

⋂
i=1,2,..,nk cki = /0 (no overlapping constraint)

3. Let P(u,v) =
{

p(u,v)
1 , p(u,v)

2 , .., p(u,v)
m

}
be the set of all possible paths between

nodes u and v. p(u,v)
h ∈ Pot(E) is the hth possible path where:

p(u,v)
h =

{
{u,xh

1},{xh
1,x

h
2}, ..,{xh

g−1,x
h
g},{xh

g,v}
}

, xh
f ∈V , f = 1,2, ..,g, g ∈ IN

For each {u,v} ∈ E ∧ u,v ∈ cki, i = 1,2, ...,nk, ∃p(u,v)
h ∈ P(u,v)|xh

f ∈ cki for
f = 1,2, ..,g. (Connectivity constraint)

4. å|cki|
j=1 r(v j

ki
) ≥ q, for each i = 1,2, ...,nk (minimum amount of resources per

cluster)

Costs: For every cluster configuration Ck = {ck1,ck2, ..,ck(nk)} ∈ M (G,w,r,q),
the cost is given by:

cost(Ck,(G,w,r,q)) =
nk

å
i=1

å
u,v∈cki

1
2
·Dcki(u,v) ·

(
a · r(u)+(1−a)

)
(1)

Where D(u,v) is the virtual distance between u,v ∈ V . Dcki(u,v) is the virtual
distance between u,v using just edges that are inside the cluster cki. Note that
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∀v,u∈ cki,Dcki(u,v) = D(u,v) iff the cluster cki is a convex cluster, i.e., the global
shortest path between any two nodes in the clustering must use only links inside
the cluster. a ∈ [0,1] controls how much the amount of resources influences the
distance metric. For a = 0, just the distances between cluster members enter into
the metric; a = 1 means that nodes with n times more resources have an n times
stronger influence.
Now, we define how the virtual distance is calculated. Firstly, we introduce the

cost of a path as PCost(p(u,v)
h ) = w(u,xh

1) +åg−1
f =1 w(xh

f ,x
h
f +1) + w(xh

g,v). The
virtual distance between u and v is the cost of the shortest path, gived by:

D(u,v) = PCost(p(u,v)
h ) = minb

(
PCost(p(u,v)

b )
)

, for b = 1,2, ..,m.

The virtual distance using only nodes inside the cluster is defined by:

Dcki(u,v) = PCost(p(u,v)
h ), where p(u,v)

h ∈ P(u,v)|xh
f ∈ cki and PCost(p(u,v)

h ) =

minb

(
PCost(p(u,v)

b )
)

, for b = 1,2, ..,m

Goal: Minimum, i.e. mink{cost(Ck,(G,w,r)) , for k = 1,2, ..,n}

The minimum intracommunication-cost clustering is an NP-complete problem.
The proof can be performed by means of reducing the partition problem to our
clustering problem (partition problem ≤p minimum intracommunication-cost clus-
tering). The complete proof can be seen in [6].

4 The Emergent Clustering Heuristic

Our heuristic cluster construction process consists of two subparts: (1) The clus-
terhead election, responsible for selecting a subset of nodes and vesting them with
the extra responsibility of leading and representing the cluster; (2) The member-
ship selection, responsible for selecting the members of a cluster. Both subparts use
behaviors and principles observed in the nature.

Clusterhead election (Section 4.2) is inspired by division of labor and task allo-
cation in swarms of social insects, described in detail by Bonabeau et al. [3]. The
possible tasks (or roles) that a node can assume are:

Clusterhead (CH): The clusterhead nodes are the representatives of the clusters.
The identification of the cluster is given by the clusterhead. Moreover, special
tasks are assigned to the clusterhead. Once the clusterhead is not present in a
cluster anymore, the cluster ends its existence.

Member (Me): The members of the cluster are the nodes that have decided which
cluster they belong to.

Ordinary Node (Not member, Nm): Nodes that neither decide to enter a cluster
nor become clusterhead.

In the case of membership selection (Section 4.3), we are combining division of
labor with the concept of emergence of self-organization. Self-organizing systems

50



acquire structure by themselves and are normally composed by a large number of
locally interacting components. [4] presents two basic modes of interaction among
the components: positive and negative feedback. Our emergent clustering heuris-
tic is specifically inspired on the behavior of the male bluegill sunfish (Lepomis
macrochirus), which uses for nesting these two modes of interaction.

Positive feedback can be simplified as the behavioral rule “I nest where others
nest”. The nesting pattern appears in a large lake with an initial homogeneous struc-
ture due to the amplification of fluctuations: if the density of bluegills is sufficient,
through a random process, several nesting sites will be occasionally close enough
to provide a sufficient attraction that stimulates even more bluegills to nest nearby.
This random pattern of nest sites now becomes unstable and a cluster of nest sites
will grow. A process like this, with positive feedback, is also called an autocatalytic
process.

The negative feedback is responsible for controlling and shaping the system
in a particular pattern. Without it, a potential destructive explosion may be easily
reached. The feedback can be rephrased as “I nest where others nest, unless the area
is overcrowded”. Physical constraints like depletion of the building blocks can be
also included in the negative feedback.

As the result of the interplay of these modes of interaction, a nice-shaped cluster
of nests emerges at the bottom of a lake. This happens without any central control
or blueprint, exactly like in our heuristic.

4.1 Overview of the Approach

The first task of the heuristic is to elect the clusterheads of the network using the
response function Tqchv

:

qch v
returns the prob-

ability of a nonmember v to become a clusterhead. The function is responsible for
modeling the emergence of clusterheads in areas of the WSN where no clustering
is already taking place.

A clusterhead is now a unitary cluster with some resource (Ri = r(v), v is the
clusterhead of cluster i). When a clusterhead is elected in some part of the network,
as a consequence of missing resources it starts to “attract” new members with help
of the response function Tqrecrv,i

:

qrecrv,i
)

models the recruiting of new cluster members through a positive feedback pro-
cess. It provides the probability that node v will enter into the cluster ID = i.

The idea is that a cluster incrementally grows until it achieves at least the re-
quirement q of resources. The intensity of the attraction force (and consequently
the stimulus to enter into the cluster) is regulated by the amount of resources al-
ready in the cluster. A growing cluster exercises an attraction force to the nodes
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that are in the vicinity. This attraction force is expressed by a higher stimulus s in
the Tqrecrv,i

response function (positive feedback). Then, when a cluster attracts nodes
that bring enough resources, the attraction force becomes much smaller (negative
feedback).

4.2 Clusterhead Election

As we mentioned before, the clusterhead has an extra responsibility of represent-
ing the cluster and leading the selection of members. Nodes have different pre-
dispositions to be a clusterhead, i.e. they have distinct connectivity and distinct
amounts of energy. It is obvious that the clusterhead should have good connectivity
to other nodes and enough energy to cover the extra activity due to the leadership
(build-up and maintenance of a cluster). The opposite is also true: nodes with poor
connectivity and an almost depleted source of energy are not good candidates. This
concept is derived from the division of labor of social insects. Instead of having
just a certain number of fixed morphology agents (like the majors and minors in the
Pheidole genus), we have here the complete spectrum of nodes: from nodes very ca-
pable of assuming the clusterhead role to nodes not suitable at all for this task. We
model the probability of node v to become a clusterhead with the response function

TqCHv
(sCHv) =

sbCHv

sbCHv
+qbCHv

.

The fitness of the node to the role of clusterhead is modeled in the response func-
tion with the threshold (qCH ). A small threshold means that the node is very suitable
to be a clusterhead. Parameter sCH models the stimulus to become a clusterhead. For
a given threshold, a high stimulus increases the probability of the node to become a
clusterhead.

The definition of threshold is in Equation 2.

qCHv = k1

(
åu∈NgbNm(v) w(u,v)

|NgbNm(v)|

)
+ k2(1−Ev)+ k3

(
1−min

(
1,

|NgbNm(v)|
Max_Neighb

))
(2)

Where NgbNm(v) is the set of all neighbor nodes which are in nonmember state,
w(u,v) measures the quality of the link between two nodes, and Ev describes the
energy level of the node.

As we said before, factors that influence the threshold are good connectivity (the
first and the third term) and amount of energy (the second term). Each factor has a
different importance for the overall threshold, which is captured with weights (k1,
k2, k3). Weights range from 0.0 to 1.0, and the sum of them is 1.0.

The stimulus function is given by sCHv = k1
telapsed
trequired

+k2

(
1− |NgbMe(v)|+|NgbCH(v)|

|Ngb(v)|

)
.

Where telapsed is the elapsed time since the clustering heuristic has started and
trequired is the maximum running time of the algorithm. Ngb(v) is the set of all neigh-
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bors of the node v, NgbMe(v) is the set of nodes in member state and is subset of
Ngb(v), the same for NgbCH(v).

As we can see, there are two factors that stimulates a node to become a cluster-
head: (1) nodes that for a long time did not belong to any cluster (first term); and (2)
nodes without clusters in the vicinity (second term).

Based on the response function presented, each node periodically tests whether
it should become a clusterhead. Initially, all nodes are nonmembers. With time,
clusterheads will emerge and attract other nodes to be a member of their clusters.

If a clusterhead, after a certain number of attempts, could not keep the require-
ment q of resources per cluster, then the (incomplete) cluster will cease its existence
and the current members will be free to join other existing clusters.

4.3 Member Selection

Once clusterheads emerge, they start to send messages to attract new members. Each
nonmember that receives this message will evaluate its probability of assuming the
task of member of the cluster using the response function: Tqrecrv,i

=
srecrv,i

srecrv,i+qrecrv,i
.

Where the threshold and the stimulus have the following meaning:

Threshold qrecrv,i : measures how connected the node v is to the cluster i. A small
value means high suitability to be a member.

Stimulus srecrv,i : represents the volition of a cluster to attract new members. Here
the positive and negative feedback act.

The threshold function for node v is defined by:

qrecrv,i = k1 ·D
v
i +k2 · min

{
D(v,Clusterheadi)

Max_dist
,1

}
+k3 ·min

{
Cnv

i

Max_connect
,1

}
+k4 ·

r(v)
q

(3)

Where Dv
i i

is the distance to the clusterhead. Cnb
i = åe∈{Ngb(b)∩ci}(1−w(b,e)) measures the

connectivity to the neighbors that are already in the cluster using the link metric w.
The first factor that influences the threshold (first term) reduces the distance

among members of the cluster. The factor that influences the shape of the cluster
is captured in the second term. Advantage is given to flat configurations (small clus-
ter diameter).

The selection of nodes that are well connected to members of the cluster increases
the probability of reducing the cluster cost. This idea is reflected in the third term.

The fourth term covers the idea that nodes with higher resource availability will
potentially reduce the cost of the cluster because they reduce the necessity of taking
additional nodes.

The stimulus of a node to belong to the cluster i is given by srecrv,i = k ·
(p(Ri) ·g(Ri)).
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If two clusters are trying at the same time to attract the node, this equation is used
with the higher stimulus. The stimulus is the combination of positive and negative
feedbacks.
Aggregation Through Positive Feedback

Positive feedback is used to control the stimulus of neighboring nodes to enter a
determined cluster. It is performed by considering the attraction force (or stimulus in
the response function) to be proportional to the amount of resources Ri of the cluster
i plus some bias, i.e., p(Ri) = k1 + k2 ·Ri. This equation denotes the relationship
between the amount of resources and the “force” (that is reflected in the stimulus)
to attract new nodes to the cluster.
Creating Structure Through Negative Feedback

The negative feedback is responsible for “controlling” the explosive nature of
the positive feedback and to shape the emergent structures in the self-organizing

process. In our case, we use Equation g(Ri) = 1−
(

Ri
k1·q

)b
as negative feedback.
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Fig. 1 Resulting attraction force after combination of the positive and the negative feedback

It is important to remark that the negative feedback in our case controls how
much the positive feedback takes effect, i.e., the result stimulus is given by the
multiplication of the feedbacks, a fact that is shown in Figure 1.

4.4 Cluster Construction Process

In this section we will present the steps performed by the heuristic to build the
clusters based on the concepts presented in the previous sections.

At the beginning, there is no cluster in the network. Every node tests periodi-
cally whether it should become clusterhead (using the response function Tqchv

). An
information flow based on beacons is used to provide the nodes with the necessary
knowledge for the response function.

When the node v decides to become clusterhead, a new cluster (we call it cluster i,
i = clusterID) comes into existence. Initially, this cluster has the resource Ri = r(v).

Now, it starts to broadcast to the neighborhood periodically its current resource
state (Ri). The message is called clusteringForward. The basic function of the clus-
teringForward message is to inform all members of the cluster and nearby neigh-
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bors the actual amount of resources of the cluster. This is used by the nodes to cal-
culate the current attraction force of the cluster. The clusteringForward message
is forwarded by the members of the cluster until arriving at nodes outside the clus-
ter. During this phase, a spanning tree having the clusterhead as root is generated.
Nodes outside the cluster that receive a clusteringForward message will generate
the clusteringBackward message that travels back to the clusterhead, gathering in-
formation about nodes with intention to enter or leave the cluster. Each node that is
not a leaf of the spanning tree waits until receiving the clusteringBackward mes-
sage from its children before sending a fused clusteringBackward message to its
own parent.

We will call this process of sending the clusteringForward message and gath-
ering information through the clusteringBackward message a cluster construction
round.

As already said, the cluster construction round is started by the clusteringFor-
ward message issued by the clusterhead. When receiving this message, a node u
stores it temporarily in order to select the message with the smallest link metric to
the clusterhead. This is used to build a good spanning tree with the clusterhead as
root.

The way of responding to the incoming message varies depending on the current
status of the node u:
Node u is not a member of cluster i: The first action of the node is to determine

whether it should enter the cluster i. This is done using the response function
Tqrecrv,i

(recruitment function) to evaluate whether the node u wishes to enter the
cluster (recruitment function). This response function uses the connectivity to
the cluster as threshold (good connected nodes have less threshold to enter the
cluster), and the stimulus is given by the combination of the positive/negative
feedback presented in Section 4.3. If the test of the recruitment function returns
positive, the clusteringBackward message will carry the membership intention
of the node u. The next clusteringForward message will confirm (or not, if the
cluster is overcrowded) the acceptance of the node u in the cluster.

Node u is a member of cluster i: The node will test whether it should leave the
cluster using the response function Tqleavev

. If the test returns negative, the node
just retransmits (forwards) the message clusteringForward in order to continue
the construction of the spanning tree. If the node is willing to leave the clus-
ter (because its connection is getting loose), it also forwards the clusteringFor-
ward message, but indicating this intention of leaving the cluster. This will force
previous children to select another parent because this node is going to be dis-
connected from the cluster. If they could not find another parent, they must also
disconnect themselves from the cluster.

The clusteringBackward message is used to inform the clusterhead about nodes
with intention to enter the cluster and nodes willing to leave. Moreover, the id of
all members of the cluster is collected in this message. Therefore, the clusterhead
can re-check the complete membership of the cluster to see if some node has for
example disappeared due to failure or a drastic topology change.
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When the clusterhead receives the clusteringBackward message from all its
direct children, it can decide which nodes that are willing to enter the cluster will be
accepted. This decision is based on their thresholds to enter the cluster: nodes with
less threshold have higher priority.

It is important to state here that after the cluster is complete, the clusterhead
ceases to start new rounds. When some member of the cluster detects a large topol-
ogy change, the clusterhead is informed and a new round is started to re-check the
complete cluster (reactive response to topology changes).

An example of the cluster construction round is shown in Figure 2.

Fig. 2 Example of cluster construction round. (a) Clusterhead starts the round sending the message
clusteringBackward with the current amount of resources of the cluster. (b) When arriving at
nodes outside the cluster, they decide whether they are willing to join the cluster. This information

The first purpose of the positive/negative feedback is to reduce the amount of in-
formation aggregated in the clusteringBackward message. Nodes badly connected
to the cluster will decide not to enter the cluster, thus reducing the amount of infor-
mation that the clusteringBackward message must carry.

The second purpose of the positive/negative feedback mechanism is to control
the competition among neighboring clusters and belongs to the dynamic part of our
heuristic (which is not the main focus of this paper). The feedback curves are de-
signed in such a way that an already formed cluster may just loose some members
till the q limit is achieved, because, when this limit is achieved, the desire to attract
new members is at maximum. In the same way, if there are two clusters under con-
struction, this method avoids that one cluster steals members from the other one,
reaching the state where no cluster has fulfilled its requirement on resources.

5 Results

We implemented our emergent clustering heuristic using an event-based wireless ad
hoc simulator called ShoX [9]. Some parts of the heuristic were also implemented
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in the specification and modeling language AsmL. As input, we generated 35



were generated by random selection of the node positions.
We used the received signal strength (RSSI) for the free space model with

isotropic point sources as link metric. We decided to test our heuristic for dense
networks, therefore the radio range was 70m, covering the complete field.

In this paper, we evaluate our heuristic for static networks and for networks of
homogeneous devices (i.e., each node has a unit of resource). We run our algorithm,
let it converge to a stable configuration, and compare the heuristic result with the
optimal one and also with an existing heuristic called expanding ring [10]. In order
to calculate the optimal result, we model our minimum intracommunication-cost
clustering as an integer linear programming model and, for each simulated instance,
we find the optimal solution for that configuration with the lp_solve program.

Figure 3 shows results of performed experiments. In average, the cost of our
heuristic was 1.98 times higher than the optimal solution and the expanding ring
was about 4.29 times higher. To run the simulation of the complete network, it took
10 seconds while the optimal solution needed more than 10 hours in Intel Core Duo
2.7 GHz computers.

Fig. 3 Normalized results of performed experi-
ments

Fig. 4 Cumulative distribution of normalized
simulation results

In Figure 4, the cumulative distribution of the normalized results can be seen. It is
possible to notice that for more than 80% of all simulations, the emergent clustering
heuristic could find results that were below 2.3 times the optimal one. In the case of
the expanding ring, results were below 5.2 times the optimal one.

6 Conclusion

In this paper, we introduce a useful clustering problem and develop an efficient
heuristic inspired by biological systems to solve it. The heuristic has two parts: the
clusterhead election, which is responsible for selecting a subset of nodes and vest-
ing them with extra responsibility of representation of the cluster, and membership
selection, which is responsible for selecting members in order to fulfill the resource
requirements of each cluster.
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The selection of the task for a node is based on its suitability for that task. In the
same way that ants with different morphology have tendency to perform different
tasks, different nodes have different probabilities of assuming the clusterhead or
cluster member roles. This concept is combined with a positive/negative feedback
stimulus, which is responsible to shape the size and form of the cluster.

The results of the simulations show that the heuristic performs well, with cost in
average just 1.98 times the optimal one. This was achieved in a distributed manner
and using only locally available information to make decisions. This makes this
heuristic suitable for ad hoc networks with resource-constrained devices or sensor
networks.

The results obtained here re-enforces our confidence that methods found in nature
can be successfully transferred to computer systems.

In the future, we plan to simulate the heuristic in networks with moderate topol-
ogy changes, evaluating our approach with dynamic scenarios.
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