Skip to main content

Other Proteins Interacting with XP Proteins

  • Chapter
Molecular Mechanisms of Xeroderma Pigmentosum

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 637))

Abstract

Genetic defects in Nucleotide excision repair (NER) lead to the clinical disorder xeroderma pigmentosum (XP) in humans which is characterized by dramatically increased sensitivity to UV light and a predisposition to development of skin cancers.1,2 NER is a major mechanism of DNA repair in cells for the removal of a large variety of bulky DNA lesions induced by environmental genotoxic agents and chemicals. The molecular basis of XP has been attributed to mutations in any of the eight XP genes, XPA through G whose products are required for NER-mediated removal of DNA damage and XP-variant (XPV). The XP proteins involved in NER can be divided into three groups based on their activity in the NER process. XPA, XPC and XPE are required for sensing DNA damage and initiating the repair process. XPB and XPD, components of the basal transcription factor TFIIH, are helicases that create a DNA strand opening surrounding the adducted base(s) during NER. XPG and XPF are the endonucleases that perform the dual incisions to release the damaged strand and allow resynthesis using the nondamaged strand as a template.35 Protein-protein interactions are integral for the correct assembly of the pre-incision complex and for the positioning of the nucleases prior to incision. However, these proteins have been found to form complexes with other proteins not directly involved in the NER mechanism. This chapter describes these proteins and their interactions and discusses their effects on the XP proteins, DNA repair, and genome stability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kraemer KH, Lee MM, Andrews AD et al. The role of sunlight and DNA repair in melanoma and nonmelanoma skin cancer. The Xeroderma pigmentosum paradigm. Arch Dermatol 1994; 130:1018–1021.

    Article  PubMed  CAS  Google Scholar 

  2. Kraemer KH, Lee MM, Scotto J. Xeroderma pigmentosum. Cutaneous, ocular and neurologic abnormalities in 830 published cases. Arch Dermato 1987; 123:241–250.

    Article  CAS  Google Scholar 

  3. Lehmann AR. DNA repair-deficient diseases, Xeroderma pigmentosum, Cockayne syndrome and trichothiodystrophy. Biochimie 2003; 85:1101–1111.

    Article  PubMed  CAS  Google Scholar 

  4. Park CJ and Choi BS. The protein shuffle. Sequential interactions among components of the human nucleotide excision repair pathway. FEBS J 2006; 273:1600–1608.

    Article  PubMed  CAS  Google Scholar 

  5. Riedl T, Hanaoka F and Egly JM. The comings and goings of nucleotide excision repair factors on damaged DNA. EMBO J 2003; 22:5293–5303.

    Article  PubMed  CAS  Google Scholar 

  6. Masutani C, Sugasawa K, Yanagisawa J et al. Purification and cloning of a nucleotide excision repair complex involving the Xeroderma pigmentosum group C protein and a human homologue of yeast RAD23. EMBOJ 1994; 13:1831–1843.

    CAS  Google Scholar 

  7. Yokoi M, Masutani C, Maekawa T et al. The Xeroderma pigmentosum group C protein complex XPC-HR23B plays an important role in the recruitment of transcription factor IIH to damaged DNA. J Biol Chem 2000; 275:9870–9875.

    Article  PubMed  CAS  Google Scholar 

  8. Araki M, Masutani C, Takemura M et al. Centrosome protein centrin 2/caltractin 1 is part of the Xeroderma pigmentosum group C complex that initiates global genome nucleotide excision repair. J Biol Chem 2001; 276:18665–18672.

    Article  PubMed  CAS  Google Scholar 

  9. Popescu A, Miron S, Blouquit Y et al. Xeroderma pigmentosum group C protein possesses a high affinity binding site to human centrin 2 and calmodulin. J Biol Chem 2003; 278:40252–40261.

    Article  PubMed  CAS  Google Scholar 

  10. Wijnhoven SW, Hoogervorst EM, de Waard H et al. Tissue specific mutagenic and carcinogenic responses in NER defective mouse models. Mut Res 2006; 614:77–94.

    Google Scholar 

  11. Sugasawa K, Okuda Y, Saijo M et al. UV-induced ubiquitylation of XPC protein mediated by UV-DDB-ubiquitin ligase complex. Cell 2005; 121:387–400.

    Article  PubMed  CAS  Google Scholar 

  12. Hiyama H, Yokoi M, Masutani C et al. Interaction of hHR23 with S5a. The ubiquitin-like domain of hHR23 mediates interaction with S5a subunit of 26 S proteasome. J Biol Chem 1999; 274:28019–28025.

    Article  PubMed  CAS  Google Scholar 

  13. Wang QE, Zhu Q, Wani G et al. DNA repair factor XPC is modified by SUMO-1 and ubiquitin following UV irradiation. Nucleic Acids Research 2005; 33:4023–4034.

    Article  PubMed  CAS  Google Scholar 

  14. Colton SL, Xu XS, Wang YA et al. The involvement of ataxia-telangiectasia mutated protein activation in nucleotide excision repair-facilitated cell survival with cisplatin treatment. J Biol Chem 2006; 281:27117–27125.

    Article  PubMed  CAS  Google Scholar 

  15. Shimizu Y, Iwai S, Hanaoka F et al. Xeroderma pigmentosum group C protein interacts physically and functionally with thymine DNA glycosylase. EMBO J 2003; 22:164–173.

    Article  PubMed  CAS  Google Scholar 

  16. Patterson M, Chu G. Evidence that Xeroderma pigmentosum cells from complementation group E are deficient in a homolog of yeast photolyase. Mol Cell Biol 1989; 9:5105–5112.

    PubMed  CAS  Google Scholar 

  17. Datta A, Bagchi S, Nag A et al. The p48 subunit of the damaged-DNA binding protein DDB associates with the CBP/p300 family of histone acetyltransferase. Mutat Res 2001; 486:89–97.

    PubMed  CAS  Google Scholar 

  18. Kulaksiz G, Reardon JT, Sancar A. Xeroderma pigmentosum complementation group E protein (XPE/DDB2):purification of various complexes of XPE and analyses of their damaged DNA binding and putative DNA repair properties. Mol Cell Biol 2005; 25:9784–9792.

    Article  PubMed  CAS  Google Scholar 

  19. Martinez E, Palhan VB, Tjernberg A et al. Human STAGA complex is a chromatin-acetylating transcription coactivator that interacts with premRNA splicing and DNA damage-binding factors in vivo. Mol Cell Biol 2001; 21:6782–6795.

    Article  PubMed  CAS  Google Scholar 

  20. Kapetanaki MG, Guerrero-Santoro J, Bisi DC et al. The DDB1-CUL4ADDB2 ubiquitin ligase is deficient in Xeroderma pigmentosum group E and targets histone H2A at UV-damaged DNA sites. PNAS 2006; 103:2588–2593.

    Article  PubMed  CAS  Google Scholar 

  21. Hayes S, Shiyanov P, Chen X et al. DDB, a putative DNA repair protein, can function as a transcriptional partner of E2F1. Mol Cell Biol 1998; 18:240–249.

    PubMed  CAS  Google Scholar 

  22. Chen X, Zhang J, Lee J et al. A kinase-independent function of c-Abl in promoting proteolytic destruction of damaged DNA binding proteins. Mol Cell 2006; 22:489–499.

    Article  PubMed  Google Scholar 

  23. Chen X, Zhang Y, Douglas L et al. (2001) UV-damaged DNA-binding proteins are targets of CUL-4A-mediated ubiquitination and degradation. J Biol Chem 2001; 276:48175–48182.

    PubMed  CAS  Google Scholar 

  24. Groisman R, Polanowska J, Kuraoka I et al. The ubiquitin ligase activity in the DDB2 and CSA complexes is differentially regulated by the COP9 signalosome in response to DNA damage. Cell 2003; 113:357–367.

    Article  PubMed  CAS  Google Scholar 

  25. Batty DP, Wood RD. Damage recognition in nucleotide excision repair of DNA. Gene 2000; 41:193–204.

    Article  Google Scholar 

  26. Cleaver JE, States JC. The DNA damage-recognition problem in human and other eukaryotic cells:the XPA damage binding protein. Biochem J 1997; 328:1–12.

    PubMed  CAS  Google Scholar 

  27. Lee SH, Kim DK, Drissi R. Human Xeroderma pigmentosum group A protein interacts with human replication protein A and inhibits DNA replication. J Biol Chem 1995; 270:21800–21805.

    Article  PubMed  CAS  Google Scholar 

  28. Mer G, Bochkarev A, Gupta R et al. Structural basis for the recognition of DNA repair proteins UNG2, XPA and RAD52 by replication factor RPA. Cell 2000; 103:449–456.

    Article  PubMed  CAS  Google Scholar 

  29. Zou Y, Liu Y, Wu X et al. Functions of human replication protein A (RPA):from DNA replication to DNA damage and stress responses. J Cell Physiol 2006; 208:267–273.

    Article  PubMed  CAS  Google Scholar 

  30. Guzder SN, Sommers CH, Prakash L et al. Complex formation with damage recognition protein Rad14 is essential for Saccharomyces cerevisiae Rad1-Rad10 nuclease to perform its function in nucleotide excision repair in vivo. Mol Cell Biol 2006; 26:1135–1141.

    Article  PubMed  CAS  Google Scholar 

  31. Yang Z, Roginskaya M, Colis LC et al. Specific and Efficient Binding of Xeroderma Pigmentosum Complementation Group A to Double-Strand/Single-Strand DNA Junctions with 3′-and/or 5′-ssDNA Branches. Biochemistry 2006; 45:15921–15930.

    Article  PubMed  CAS  Google Scholar 

  32. Missura M, Buterin T, Hindges R et al. Double-check probing of DNA bending and unwinding by XPA-RPA: an architectural function in DNA repair. EMBO J 2001; 20:3554–3564.

    Article  PubMed  CAS  Google Scholar 

  33. Wu X, Shell SM, Yang Z et al. Phosphorylation of nucleotide excision repair factor Xeroderma pigmentosum group A by ataxia telangiectasia mutated and Rad3-related-dependent checkpoint pathway promotes cell survival in response to UV irradiation. Cancer Res 2006; 66:2997–3005.

    Article  PubMed  CAS  Google Scholar 

  34. Lembo F, Pero R, Angrisano T et al. MBDin, a novel MBD2-interacting protein, relieves MBD2 repression potential and reactivates transcription from methylated promoters. Mol Cell Biol 2003; 23:1656–1665.

    Article  PubMed  CAS  Google Scholar 

  35. Nitta M, Saijo M, Kodo N et al. A novel cytoplasmic GTPase XAB1 interacts with DNA repair protein XPA. Nucleic Acids Res 2000; 28:4212–4218.

    Article  PubMed  CAS  Google Scholar 

  36. Nakatsu Y, Asahina H, Citterio E et al. XAB2, a novel tetratricopeptide repeat protein involved in transcription-coupled DNA repair and transcription. J Biol Chem 2000; 275:34931–34937.

    Article  PubMed  CAS  Google Scholar 

  37. Yonemasu R, Minami M, Nakatsu Y et al. Disruption of mouse XAB2 gene involved in premRNA splicing, transcription and transcription-coupled DNA repair results in preimplantation lethality. DNA Repair 2005; 4:479–491.

    Article  PubMed  CAS  Google Scholar 

  38. Wu X, Shell SM, Liu Y et al. ATR-dependent checkpoint modulates XPA nuclear import in response to UV irradiation. Oncogene 2007; 26:757–764.

    Article  PubMed  CAS  Google Scholar 

  39. Dip R, Camenisch U, Naegeli H. Mechanisms of DNA damage recognition and strand discrimination in human nucleotide excision repair. DNA Repair 2004; 3:1409–1423.

    Article  PubMed  CAS  Google Scholar 

  40. Sandrock B, Egly JM. A yeast four-hybrid system identifies Cdk-activating kinase as a regulator of the XPD helicase, a subunit of transcription factor IIH. J Biol Chem 2001; 276:35328–35333.

    Article  PubMed  CAS  Google Scholar 

  41. Coin F, Marinoni JC, Rodolfo C et al. Mutations in the XPD helicase gene result in XP and TTD phenotypes, preventing interaction between XPD and the p44 subunit of TFIIH. Nat Genet 1998; 20:184–188.

    Article  PubMed  CAS  Google Scholar 

  42. Kellenberger E, Dominguez C, Fribourg S et al. Solution structure of the C-terminal domain of TFIIH P44 subunit reveals a novel type of C4C4 ring domain involved in protein-protein interactions. J Biol Chem 2005; 280:20785–20792.

    Article  PubMed  CAS  Google Scholar 

  43. Seroz T, Winkler GS, Auriol J et al. Cloning of a human homolog of the yeast nucleotide excision repair gene MMS19 and interaction with transcription repair factor TFIIH via the XPB and XPD helicases. Nucleic Acids Res 2000; 28:4506–4513.

    Article  PubMed  CAS  Google Scholar 

  44. Wu X, Li H, Chen JD. The human homologue of the yeast DNA repair and TFIIH regulator MMS19 is an AF-1-specific coactivator of estrogen receptor. J Biol Chem 2001; 276:23962–23968.

    Article  PubMed  CAS  Google Scholar 

  45. Robles AI, Harris CC. p53-mediated apoptosis and genomic instability diseases. Acta oncologica (Stockholm, Sweden) 2001; 40:696–701.

    Article  PubMed  CAS  Google Scholar 

  46. Spillare EA, Wang XW, von Kobbe C et al. Redundancy of DNA helicases in p53-mediated apoptosis. Oncogene 2006; 25:2119–2123.

    Article  PubMed  CAS  Google Scholar 

  47. Jaitovich-Groisman I, Benlimame N, Slagle BL et al. Transcriptional regulation of the TFIIH transcription repair components XPB and XPD by the hepatitis B virus x protein in liver cells and transgenic liver tissue. J Biol Chem 2001; 276:14124–14132.

    PubMed  CAS  Google Scholar 

  48. Leveillard T, Andera L, Bissonnette N et al. Functional interactions between p53 and the TFIIH complex are affected by tumour-associated mutations. EMBO J 1996; 15:1615–1624.

    PubMed  CAS  Google Scholar 

  49. Wang XW, Forrester K, Yeh H et al. Hepatitis B virus X protein inhibits p53 sequence-specific DNA binding, transcriptional activity and association with transcription factor ERCC3. PNAS 1994; 91:2230–2234.

    Article  PubMed  CAS  Google Scholar 

  50. Coin F, Proietti De Santis L, Nardo T et al. p8/TTD-A as a repair-specific TFIIH subunit. Mol Cell 2006; 21:215–226.

    Article  PubMed  CAS  Google Scholar 

  51. Hall H, Gursky J, Nicodcmou A et al. Characterization of ERCC3 mutations in the Chinese hamster ovary 27-1, UV24 and MMC-2 cell lines. Mutat Res 2006; 593:177–186.

    PubMed  CAS  Google Scholar 

  52. Jawhari A, Laine JP, Dubaele S et al. p52 Mediates XPB function within the transcription/repair factor TFIIH. J Biol Chem 2002; 277:31761–31767.

    Article  PubMed  CAS  Google Scholar 

  53. Lin YC, Gralla JD. Stimulation of the XPB ATP-dependent helicase by the beta subunit of TFIIE. Nucleic Acids Res 2005; 33:3072–3081.

    Article  PubMed  CAS  Google Scholar 

  54. Coin F, Auriol J, Tapias A et al. Phosphorylation of XPB helicase regulates TFIIH nucleotide excision repair activity. EMBO J 2004; 23:4835–4846.

    Article  PubMed  CAS  Google Scholar 

  55. Lommel L, Chen L, Madura K et al. The 26S proteasome negatively regulates the level of overall genomic nucleotide excision repair. Nucleic Acids Res 2000; 28:4839–4845.

    Article  PubMed  CAS  Google Scholar 

  56. Weeda G, Rossignol M, Fraser RA et al. The XPB subunit of repair/transcription factor TFIIH directly interacts with SUG1, a subunit of the 26S proteasome and putative transcription factor. Nucleic Acids Res 1997; 25:2274–2283.

    Article  PubMed  CAS  Google Scholar 

  57. Liu J, Meng X and Shen Z. Association of human RAD52 protein with transcription factors. Biochem Biophys Res Commun 2002; 297:1191–1196.

    Article  PubMed  CAS  Google Scholar 

  58. Canitrot Y, Falinski R, Louat T et al. p210 BCR/ABL kinase regulates nucleotide excision repair (NER) and resistance to UV radiation. Blood 2003; 102:2632–2637.

    Article  PubMed  CAS  Google Scholar 

  59. Dunand-Sauthier I, Hohl M, Thorel F et al. The spacer region of XPG mediates recruitment to nucleotide excision repair complexes and determines substrate specificity. J Biol Chem 2005; 280:7030–7037.

    Article  PubMed  CAS  Google Scholar 

  60. Lieber MR. The FEN-1 family of structure-specific nucleases in eukaryotic DNA replication, recombination and repair. Bioessays 1997; 19:233–240.

    Article  PubMed  CAS  Google Scholar 

  61. Thorel F, Constantinou A, Dunand-Sauthier I et al. Definition of a short region of XPG necessary for TFIIH interaction and stable recruitment to sites of UV damage. Mol Cell Biol 2004; 24:10670–10680.

    Article  PubMed  CAS  Google Scholar 

  62. Iyer N, Reagan MS, Wu KJ et al. Interactions involving the human RNA polymerase II transcription/nucleotide excision repair complex TFIIH, the nucleotide excision repair protein XPG and Cockayne syndrome group B (CSB) protein. Biochemistry 1996; 35:2157–2167.

    Article  PubMed  CAS  Google Scholar 

  63. Zotter A, Luijsterburg MS, Warmerdam DO et al. Recruitment of the nucleotide excision repair endonuclease XPG to sites of UV-induced dna damage depends on functional TFIIH. Mol Cell Biol 2006; 26:8868–8879.

    Article  PubMed  CAS  Google Scholar 

  64. Gervais V, Lamour V, Jawhari A et al. TFIIH contains a PH domain involved in DNA nucleotide excision repair. Nat Struct Mol Biol 2004; 11:616–622.

    Article  PubMed  CAS  Google Scholar 

  65. Gary R, Ludwig DL, Cornelius HL et al. The DNA repair endonuclease XPG binds to proliferating cell nuclear antigen (PCNA) and shares sequence elements with the PCNA-binding regions of FEN-1 and cyclin-dependent kinase inhibitor p21. J Biol Chem 1997; 272:24522–24529.

    Article  PubMed  CAS  Google Scholar 

  66. Sarker AH, Tsutakawa SE, Kostek S et al. Recognition of RNA polymerase II and transcription bubbles by XPG, CSB and TFIIH: insights for transcription-coupled repair and Cockayne Syndrome. Mol Cell 2005; 20:187–198.

    Article  PubMed  CAS  Google Scholar 

  67. Bessho T. Nucleotide excision repair 3′ endonuclease XPG stimulates the activity of base excision repair enzyme thymine glycol DNA glycosylase. Nucleic Acids Res 1999; 27:979–983.

    Article  PubMed  CAS  Google Scholar 

  68. Klungland A, Hoss M, Gunz D et al. Base excision repair of oxidative DNA damage activated by XPG protein. Mol Cell 1999; 3:33–42.

    Article  PubMed  CAS  Google Scholar 

  69. Oyama M, Wakasugi M, Hama T et al. Human NTH1 physically interacts with p53 and proliferating cell nuclear antigen. Biochem Biophys Res Commun 2004; 321:183–191.

    Article  PubMed  CAS  Google Scholar 

  70. Park CH, Bessho T, Matsunaga T et al. Purification and characterization of the XPF-ERCC1 complex of human DNA repair excision nuclease. J Biol Chem 1995; 270:22657–22660.

    Article  PubMed  CAS  Google Scholar 

  71. Volker M, Mone MJ, Karmakar P et al. Sequential assembly of the nucleotide excision repair factors in vivo. Mol Cell 2001; 8:213–224.

    Article  PubMed  CAS  Google Scholar 

  72. de Laat WL, Appeldoorn E, Sugasawa K et al. DNA-binding polarity of human replication protein A positions nucleases in nucleotide excision repair. Genes Dev 1998; 12:2598–2609.

    Article  PubMed  Google Scholar 

  73. Cummings M, Higginbottom K, McGurk CJ et al. XPA versus ERCC1 as chemosensitising agents to cisplatin and mitomycin C in prostate cancer cells: role of ERCC1 in homologous recombination repair. Biochem Pharmacol 2006; 72:166–175.

    Article  PubMed  CAS  Google Scholar 

  74. Motycka TA, Bessho T, Post SM et al. Physical and functional interaction between the XPF/ERCC1 endonuclease and hRad,52. J Biol Chem 2004; 279:13634–13639.

    Article  PubMed  CAS  Google Scholar 

  75. Lan L, Hayashi T, Rabeya RM et al. Functional and physical interactions between ERCC1 and MSH2 complexes for resistance to cis-diamminedichloroplatinum(II) in mammalian cells. DNA Repair 2004; 3:135–143.

    Article  PubMed  CAS  Google Scholar 

  76. Sridharan D, Brown M, Lambert WC et al. Nonerythroid alphaII spectrin is required for recruitment of FANCA and XPF to nuclear foci induced by DNA interstrand cross-links. J Cell Sci 2003; 116:823–835.

    Article  PubMed  CAS  Google Scholar 

  77. Thompson LH, Hinz JM, Yamada, N. A et al. How Fanconi anemia proteins promote the four Rs: replication, recombination, repair and recovery. Environ Mol Mutagen 2005; 45:128–142.

    Article  PubMed  CAS  Google Scholar 

  78. Zhang N, Kaur R, Lu X et al. The Pso4 mRNA splicing and DNA repair complex interacts with WRN for processing of DNA interstrand cross-links. J Biol Chem 2005; 280:40559–40567.

    Article  PubMed  CAS  Google Scholar 

  79. Bradshaw PS, Stavropoulos DJ and Meyn MS. Human telomeric proetin TRF2 associates with genomic double-strand breaks as an early response to DNA damage. Nat Gen 2005; 37:193–197.

    Article  CAS  Google Scholar 

  80. McDaniel LD, Schultz RA and Friedberg EC. TERF2-XPF: caught in the middle; beginnings from the end. DNA Repair 2006; 5:868–872.

    Article  PubMed  CAS  Google Scholar 

  81. Munoz P, Blanco R, Flores JM et al. XPF nuclease-dependent telomere loss and increased DNA damage in mice overexpressing TRF2 result in premature aging and cancer. Nat Genet 2005; 37:1063–1071.

    Article  PubMed  CAS  Google Scholar 

  82. Masutani C, Kusumoto R, Yamada A et al. The XPV (Xeroderma pigmentosum variant) gene encodes human DNA polymerase eta. Nature 1999; 399:700–704.

    Article  PubMed  CAS  Google Scholar 

  83. Lehmann AR, Kirk-Bell S, Arlett CF et al. Xeroderma pigmentosum cells with normal levels of excision repair have a defect in DNA synthesis after UV-irradiation. PNAS 1975; 72:219–223.

    Article  PubMed  CAS  Google Scholar 

  84. Johnson RE, Prakash S and Prakash L. Efficient Bypass of a Thymine-Thymine Dimer by Yeast DNA Polymerase, Poleta. Science 1999; 283:1001–1004.

    Article  PubMed  CAS  Google Scholar 

  85. Kannouche P, Fernandez de Henestrosa AR, Coull B et al. Localization of DNA polymerases eta and iota to the replication machinery is tightly co-ordinated in human cells. EMBO J 2002; 21:6246–6256.

    Article  PubMed  CAS  Google Scholar 

  86. Kannouche PL, Wing J and Lehmann AR. Interaction of human DNA polymerase eta with monoubiquitinated PCNA: a possible mechanism for the polymerase switch in response to DNA damage. Mol Cell 2004; 14:491–500.

    Article  PubMed  CAS  Google Scholar 

  87. Bienko M, Green CM, Crosetto N et al. Ubiquitin-binding domains in Y-family polymerases regulate translesion synthesis. Science 2005; 310:1821–1824.

    Article  PubMed  CAS  Google Scholar 

  88. Maga G and Hubscher U. Proliferating cell nuclear antigen(PCNA): a dancer with many partners. J Cell Sci 2003; 116:3051–3060.

    Article  PubMed  CAS  Google Scholar 

  89. Vidal AE, Kannouche P, Podust VN et al. Proliferating cell nuclear antigen-dependent coordination of the biological functions of human DNA polymerase iota. J Biol Chem 2004; 279:48360–48368.

    Article  PubMed  CAS  Google Scholar 

  90. Watanabe K, Tateishi S, Kawasuji M et al. Rad18 guides pol eta to replication stalling sites through physical interaction and PCNA monoubiquitination. EMBO J 2004; 23:3886–3896.

    Article  PubMed  CAS  Google Scholar 

  91. Lawrence CW, Gibbs PE, Murante RS et al. Roles of DNA polymerase zeta and Revl protein in eukaryotic mutagenesis and translesion replication. Cold Spring Harb Symp Quant Biol 2000; 65:61–69.

    Article  PubMed  CAS  Google Scholar 

  92. Tissier A, Kannouche P, Reck MP et al. colocalization in replication foci and interaction of human Y-family members, DNA polymerase pol eta and REV1 protein. DNA Repair 2004; 3:1503–1514.

    Article  PubMed  CAS  Google Scholar 

  93. McIlwraith MJ, Vaisman A, Liu Y et al. Human DNA polymerase eta promotes DNA synthesis from strand invasion intermediates of homologous recombination. Mol Cell 2005; 20:783–792.

    Article  PubMed  CAS  Google Scholar 

  94. Rademakers S, Volker M, Hoogstraten D et al. Xeroderma pigmentosum group A protein loads as a separate factor onto DNA lesions. Mol Cell Biol 2003; 23:57555767.

    Article  Google Scholar 

  95. Nishi R, Okuda Y, Watanabe E et al. Centrin 2 stimulates nucleotide excision repair by interacting with Xeroderma pigmentosum group C protein. Mol Cell Biol 2005; 25:5664–5674.

    Article  PubMed  CAS  Google Scholar 

  96. Araujo SJ, Nigg EA, Wood RD. Strong functional interactions of TFIIH with XPC and XPG in human DNA nucleotide excision repair, without a preassembled repairosome. Mol Cell Biol 2001; 21:2281–2291.

    Article  PubMed  CAS  Google Scholar 

  97. Seroz T, Perez C, Bergmann E et al. p44/SSLl, the regulatory subunit of the XPD/RAD3 helicase, plays a crucial role in the transcriptional activity of TFIIH. J Biol Chem 2000; 275:33260–33266.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Shell, S.M., Zou, Y. (2008). Other Proteins Interacting with XP Proteins. In: Ahmad, S.I., Hanaoka, F. (eds) Molecular Mechanisms of Xeroderma Pigmentosum. Advances in Experimental Medicine and Biology, vol 637. Springer, New York, NY. https://doi.org/10.1007/978-0-387-09599-8_11

Download citation

Publish with us

Policies and ethics