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Abstract The problem of malware is greatly reduced if we can ensure that only
software from trusted providers is executed. In this paper, we have built a prototype
system on Windows which performs authentication of all binaries in Windows to

on Windows are made more complex because there are many kinds of binaries be-
sides executables, e.g. DLLs, drivers, ActiveX controls, etc. We combine this with a
simple software ID scheme for software management and vulnerability assessment
which leverages on trusted infrastructure such as DNS and Certificate Authorities.
Our prototype is lightweight and does not need to rely on PKI infrastructure; it does
however take advantage of binaries with existing digital signatures. We provide a
detailed security analysis of our authentication scheme. We demonstrate that our
prototype has low overhead, around 2%, even when all binary code is authenticated.

1 Introduction

Malware such as viruses, trojan horses, worms, remote attacks, are a critical secu-
rity threat today. A successful malware attack usually also modifies the environment
(e.g. file system) of the compromised host. Many of the system security problems
such as malware stem from the fact that untrusted code is executed on the system.
We can mitigate many of these problems by ensuring that code which is executed
only comes from trusted software providers/vendors and the code is executed in the
correct context. In this paper, we show that this can be efficiently achieved even
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ensure that only trusted software is executed and from the correct path. Binaries



on complex operating systems such as Windows. Our system provides two guaran-
tees: (i) we only allow the execution of binaries (in the rest of the paper, we refer to
any executable code stored in the file system as a binary) whose contents are already
known and trusted — we call this authenticating binary integrity; and (ii) as binaries
are kept in files, the pathname of the file must match its content — we call this au-
thenticating binary location. Binary integrity authentication ensures that the binary
has not been tampered with, e.g. cmd.exe is not a trojan. Binary location authen-
tication ensures that we are executing the correct executable content. A following
extreme example illustrates location authentication. Suppose the binary integrity of
the shell and the file system format executables are verified. If an attacker swaps
their pathnames, then running a shell would cause the file system to be formatted.
In this paper, we refer to binary authentication to mean when both the binary’s data
integrity and location are verified.

Most operating systems can prevent execution of code on the stack due to buffer
overflow, e.g. NX protection. Combining stack protection with binary authentication
makes the remaining avenues for attack smaller and more difficult. Binary authenti-
cation is also beneficial because it is even more important for the operating system
to be protected against malicious drivers and the loading of malware into the kernel.

Most work on binary integrity authentication is on Unix/Linux [1, 2, 3]. How-
ever, the problem of malware is more acute in Windows. There are also many types
of executable code, e.g. executables (.exe), dynamic linked libraries (.dll), ActiveX
controls, control panel applets, and drivers. In this paper, we focus on mandatory
binary authentication of all forms of executables in Windows. Binaries which fail
authentication cannot be loaded, thus, cannot be executed. We argue that binary au-
thentication together with execute protection of memory regions (e.g. Windows data
execution prevention) provides protection against most of the malware on Windows.

A binary authentication needs to be flexible to operate under different scenar-
ios. Our prototype signs binaries using a HMAC [4] which is more lightweight than
having to rely on PKI infrastructure, although it can also make use of it. The au-
thentication scheme additionally allows for other security benefits. Not only is it
important to authenticate software on a system but one also needs to deal with the
maintenance of the software over time. Nowadays, the number of discovered vul-
nerabilities grows rapidly [5]. This means that binaries on a system (even if they
are authenticated) may be vulnerable. This leads to a vulnerability management
and patching problems. We propose a simple software ID system leveraging on the
binary authentication infrastructure and existing infrastructures such as DNS and
certificae authorities to handle this problem.

Windows has the Authenticode mechanism [6]. In Windows XP version and ear-
lier, it alerts the users of the results of signature verification under a few situations.
However, it is not mandatory, and can be bypassed. The Windows Vista UAC mech-
anism makes use of signed binaries but it only deals with EXE binaries. It is also
limited to privilege escalation situations. One common drawback of existing Win-
dows mechanisms is that they do not authenticate the binary location. Moreover,
requiring PKI infrastructure and certificates, we believe, is too heavy for a general
purpose mechanism.
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The main contribution of this paper is that we believe that it provides the first
comprehensive infrastructure for trusted binaries for Windows. This is significant
given that much of the problems of security on Windows stems from inability to
distinguish between trusted and untrusted software. It provides mandatory authenti-
cation for the full range of binaries under Windows, and goes beyond authenticated
code in XP and Vista. We also protect driver loading which gives increased ker-
nel protection. Our scheme provides mandatory driver authentication which 32-bit
Windows does not, and can be integrated with more flexible policies which 64-bit
Windows does not support. We also analyze the security of our system. Our bench-
marking shows that the overhead of comprehensive binary authentication can be
quite low, around 2%, with a caching strategy.

2 Windows Issues

We discuss below the complexities and special problems of Windows which make
it more difficult to implement binary authentication than in other operating systems
such as Unix. Windows NT (Server 2000, XP, Server 2003, Vista) is a microkernel-
like operating system. Programs are usually written for the Win32 API but these
are decomposed into microkernel operations. However, Windows is closed source
— only the Win32 API is documented and not the microkernel API. Our prototype
makes use of both the documented and undocumented kernel infrastructure. How-
ever, it is not possible to make any guarantees on the completeness of the security
mechanisms (which would also be a challenge even if Windows was open source).
Some of the specific issues in Windows which we deal with are:

• Proliferation of Binary Types: It is not sufficient to ensure the integrity of EXE
files. In Windows, binaries can have any file name extension, or even no exten-
sion. Some of the most common extensions include EXE (regular executables),
DLL (dynamic linked libraries), OCX (ActiveX controls), SYS (drivers) and CPL
(control panel applets). Unlike Unix, binaries cannot be distinguised by an exe-
cution flag. Thus, without reading its contents, it is not possible to distinguish a
binary from any other file.

• Complex Process Execution: A process is created using CreateProcess()
which is a Win32 library function. However, this is not a system call since Win-
dows is a microkernel, and in reality this is broken up at the native API into:
NTCreateFile(), NTCreateSection(), NTMapViewOfSection(),

cess() at the microkernel level performs only a small part of what is needed to
run a process. Due to this, it is more complex to incorporate mandatory authen-
tication in Windows.

• DLL loading: To load a DLL, a process usually uses the Win32 API, LoadLib-
rary(). However, this is broken up in a similar way to process execution above.

• Execute Permissions: Many code signing systems, particularly those on Linux
[1, 3], implement binary loading by examining the execute permission bit in the
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access mode of file open system-call. The same mechanism, however, does not
work in Windows. Windows programs often set their file modes in a more per-
missive manner. Simply denying a file opening with execute mode set when its
authentication fails, will cause many programs to fail which are otherwise cor-
rect on Windows. Instead, we need to properly intercept the right API(s) with
correctly intended operation semantics to respect Windows behavior.

Compared to other open platforms, Windows potentially also makes the issue of
locating vulnerable software components more complicated. A great deal of binaries
created by Microsoft contain an internal file version, which is stored as the file’s
meta-data. The Windows update process does not indicate to the user which files
are modified. Moreover, meta data of the modified file might still be kept the same.
Thus, it is difficult to keep track of files changes in Windows. More precisely, one
cannot ensure whether a version of a program Pi remain vulnerable to an attack A. It
is rather difficult for a typical administrator who examines vulnerability information
from public advisories to trace through the system and pinpoint the exact affected
components. Our software naming scheme, associates binaries with their version
and simplifies software vulnerability management.

3 Related Work

Tripwire [9] is one of the first to do file integrity protection but is limited as it
in user-mode program and checks file integrity off-line. It does not provide any
mandatory form of integrity checking and there are many known attacks such as:
file modification in between authentication times, and attacks on system daemons
(e.g. cron and sendmail) and system files that it depends on [10, 11].

There a number of kernel level binary level authentication implementations.
These are mainly for Unix such as DigSig [1], Trojanproof [2] and SignedExec
[3], which modify the Unix kernel to verify the executable’s digital signature be-
fore program execution. DigSig and SignedExec embed signatures within the the
elf binaries. For efficiency, DigSig employs a caching mechanism to avoid checking
binaries which have been verified already. The mechanism is similar to ours here
but we need to handle the problems of Windows. It appears that DigSig provides
binary integrity authentication but not binary location authentication.1 In this paper,
we examine the implementation issues and tradeoffs for Windows which is more
complex and difficult than in Unix.

Authenticode [6] is Microsoft infrastructure for digitally signing binaries. In
Windows versions prior to Vista, such XP with SP2, it is used as follows:

1. During ActiveX installation: Internet Explorer uses Authenticode to examine the
ActiveX plugin and shows a prompt which contains the publisher’s information
including the result of the signature check.

1 Mechanisms based solely on signatures embedded in the binaries do not have sufficient informa-
tion for binary location authentication.
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2. A user downloads a file using Internet Explorer: If this file is executed using
the Windows Explorer shell, a prompt is displayed giving the signed the pub-
lisher’s information. Internet Explorer uses an NTFS feature called Alternate
Data Streams to embed the Internet zone information –in this case, the Internet–
into the file. The Windows Explorer shell detects the zone information and dis-
plays the prompt. This mechanism is not mandatory and relies on the use of
zone-aware programs, the browser and GUI shell cooperating with each other.
Thus, it can be bypassed.

Since Authenticode runs in user space, it can be bypassed in a number of ways,
e.g. from the command shell. It is also limited to files downloaded using Internet Ex-
plorer. Only the EXE binary is examined by Authenticode, but DLLs are ignored.
One possible attack is then to put malware into a DLL and then execute it, e.g. with
rundll32.exe. Furthermore, Authenticode relies heavily on digital certificates.
Checking Certificate Revocation Lists (CRL) may add extra delay including time-
outs due to the need to contact CA. In some cases, this causes significant slowdown.

The latest Windows Vista improves on signed checking because User Account
Control (UAC) can be configured for mandatory checking of signed executables.
However, this is quite limited since the UAC mechanism only kicks in when a pro-
cess requests privileged elevation, and for certain operations on protected resources.
UAC is not user friendly since there is a need for constant interactive user approval.
Vista does not seem to prevent the loading of unsigned DLLs and other non EXE
binaries. The 32-bit versions of Windows (including Vista) do not checked whether
drivers are signed. However, the 64 bit versions (XP, Server 2003 and Vista) require
all drivers to be signed (this may be too strict and restrict hardware choices).

The closest work on binary authentication in Windows is the Emu system in by
Schmid et al. [13]. They intercept process creation by intercepting the NtCreatePro-
cess system call. It is unclear whether they are able authenticate all binary code
since trapping at NtCreateProcess is not sufficient to deal with DLLs. No perfor-
mance benchmarks are given, so it is unclear how if their system is efficient.

4 Binary Authentication and Software IDs

We want a lightweight binary authentication scheme which can work under many
settings without too much reliance on other infrastructure. Furthermore, it should
help in the management of binaries, and incurs low overhead. Management of bi-
naries includes determining which binaries should be authentic, dealing with issues
arising from disclosed vulnerabilities, and software patching.
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4.1 Software ID Scheme

We complement binary authentication with a software ID scheme meant to sim-
plify binary management issues. The idea is that a software ID associates a unique
string to a particular binary of a software product. The software ID should come
either from the software developer or alternatively be assigned by the system ad-
ministrator. The key to ensuring unique software ID, even among different software
developers, lies on the standardized format of the ID. We can define software ID as
follows:

Software ID ::= 〈 opcode tag || vendor ID || product ID || module ID || version ID〉. 2

Here, || denotes string concatenation. Opcode tag distinguishes different naming
convention, eg. So f tware ID and Custom ID defined below.

Ideally, we want to be able to uniquely assigning vendor IDs to producers of
software which can make the software ID unique. This problem in practice might
not be as difficult as it sounds since it is similar to domain name registration or the
assignment of Medium Access Control (MAC) addresses by network card manufac-
turers. One can leverage on existing trust infrastructures to do this. For example, the
responsibility for unique and well known software IDs can be assigned to a Certifi-
cate Authority (CA), which then define the vendor ID as 〈 CA ID || vendor name 〉.
Alternatively, one might be able to use the domain name of the software developer
as a proxy for the vendor ID.

A software ID gives a one to one mapping between the binary and its ID string.
This is useful for dealing with vulnerability management problems [15]. Suppose
a new vulnerability is known for a particular version of a software. This means
that certain binaries, providing that they correspond to that software version may
be vulnerable. However, there is no simple and standard way of automatically de-
termining this version information. Once we have software IDs associated with bi-
naries then one can check the software ID against vulnerability alerts. The advi-
sory may already contain the software ID. Automatic scanners can then be used to
tie-in this checking with the dissemination of vulnerability alerts to automatically
monitor/manage/patch the software in an operating system. General management of
patches in an operating system can also be done in much the same way.

In the case where no software ID comes with a software product, one can alter-
natively derive one. It can be constructed, for instance, using the following (coarse-
grained) string naming:

Custom ID ::= 〈 opcode tag || hash(vendor URL + product name + file name + salt) 〉.
The salt expands the name space to reduce the risk of a hash function collision.

2 Module ID suffices to deal with software versioning. Having a separate version ID, however, is
useful to easily track different versions (or patched versions) of the same program.
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Fig. 1 SignatureToMac: Deriving the MAC

4.2 Binary Authentication System Architecture

In the following discussion, we assume here that binaries already come tagged with
a software ID. During the binary authentication set-up, preferably done immediately
after the targeted binary installation, we generate the MAC values for each binary.
In the case where binaries are digitally signed by its developer, then we verify the
signature and then generate the MAC for each binary. Thus, only one public-key
operation needs to be done at install time. We choose to use a keyed hash, the HMAC
algorithm [4], so there is a secret key for the administrator. This is mainly to increase
the security of the stored hashes. To authenticate binary integrity for any future
execution of the code, only the generated HMAC needs to be checked. In what
follows, we mostly write MAC which already covers the choice of HMAC.

One way of storing the generated MAC is by embedding it into the binary. How-
ever, doing so may interfere with file format of the signed binaries and may also
have other complications. We instead use an authentication repository file which
stores all the MAC values of authenticated binaries with their pathnames. During
the boot-up process, the kernel creates its own in-memory data structures for bi-
nary authentication from this file. We ensure that the repository file is protected
from further modification except under the control of the authentication system to
add/remove binaries.3 We can also customize binary authentication on a per user
basis rather than system-wide which is a white-list of binaries approved for execu-
tion. In the case, when the initial binary does not have a digital signature, then the
administrator can still choose to approve the binary and generate a MAC for it.

There are two main components of the system: the SignatureToMac and Veri-
fier. The SignatureToMac maintains the authentication repository, Digest file, con-
sisting of 〈path, MAC〉 tuples. The Verifier is a kernel driver which makes use of
Digest file and decides whether an execution is to be allowed.

4.2.1 SignatureToMac

Once software is installed on the system, Fig. 1 shows how SignatureToMac pro-
cesses the binaries:

3 Further security can be achieved by integrating binary authentication with a TPM infrastructure.
We do not do so in the prototype as that is somewhat orthogonal.
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Fig. 2 Verifier: The Verifier in-kernel authentication process

1. Checks the validity of the binary’s digital signature. If the signature is invalid,
then report failure.

2. It consults the user or system administrator whether the software is to be trusted
or not (this is similar to the Vista UAC dialog but only happens once). Other
policies (possibly mandatory) can also be implemented.

3. It generates the MAC of the binary (including software ID string) using a secret
key, Hashing key, to produce software digest. The Hashing key is only accessi-
ble by the authentication system, e.g. obtained on bootup.

4. It adds an entry for the binary as a tuple 〈path name, software digest〉 into the
Digest file repository and informs the Verifier. The repository is protected against
modification. Note that because the entries are signed, the repository can be read
for other uses, e.g. version control and vulnerability management.

4.2.2 Verifier

The Verifier performs mandatory binary authentication — it denies the execution of
any kind of Windows binary which fails to match the MAC and pathname. There
are two general approaches for the checking. One is cached MAC which avoids gen-
erating the MAC for previously authenticated binaries. The other is uncached MAC
which always checks the MAC. As we will see, they have various tradeoffs. The
cached MAC implementation needs to ensure that binaries are unmodified. Hence,
the Verifier monitors the usage of previously authenticated files on the cache, and
removes them from the cache if it can be potentially modified.

The core data structure of the Verifier component can be viewed as a table of
tuples in the form 〈Kernel path, FileID, MAC, Authenticated bit〉 representing the
allowed binaries. It is indexed on Kernel path and FileID for fast lookup. The fields
are as follows:

• The Kernel path is Windows kernel (internal) pathname representation of a file.
In Window’s user space, a file can have multiple absolute pathnames, due to: (i)

(iv) volume mount points; or (v) the SUBST and APPEND DOS commands. The
Kernel path is a unique representation for all the possible pathnames. When the
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system loads 〈path name, software digest〉 from Digest file during the startup,
path name is converted to Kernel path since all subsequent checks by Verifier in
the kernel all use the latter.

• The FileID is a pair of 〈device name, NTFS object ID〉. The device name is a
Windows internal name to identify a disk or partition volume. For instance, the
device name HarddiskVolume1 usually refers to C:\. The NTFS object ID
is a 128-bit length number uniquely identifying a file in the file system volume
(this is not the same as Unix inode numbers) The Verifier uses the FileID to
identify the same file given more than one hard link. This prevents an attacker
from creating a hard link for modifying a binary without invalidating the binary
cache. The FileID values will be queried from the system and filled into the table
during system boot.

• The MAC is same as a software digest entry in Digest file. Our prototype im-
plements the HMAC-MD5 [4], HMAC-SHA-1 and HMAC-SHA-256 [16] hash
algorithms.4

• The Authenticated bit remembers whether the binary has been previously authen-
ticated. It is initially set to false, and set to true after successful authentication.

Fig. 2 shows the authentication process when a binary executes/loads:

1. It checks if the binary’s Kernel pathname exists in the table. If not, then deny the
execution and optionally log the event. A notification is accordingly sent to the
user.

2. It the file is on a network shared drive, goto step 4. The MAC is always recom-
puted as we cannot keep track of modification to files on network shares.

3. If the Authenticated bit is set go to step 7.
4. It performs MAC algorithm operation on the binary.
5. If the resulting MAC doesn’t match with the MAC stored in the table, execution

is denied.
6. It sets the Authenticated bit of the binary.
7. It passes the control to the kernel to continue the execution.

Section() system call) which is better than:

• Intercepting file opening (NtCreateFile() and NtOpenFile()). This
would need to authenticate any file opened with with execute access mode. As
discussed in Sec. 2, however, this introduces unnecessary overheads and can
cause some correct programs to fail if the files do not pass authentication. There
are also technical difficulties to distinguish between process creation and regular
file IO operations, which is not always easy given its microkernel nature.

• Intercepting process creation (NtCreateProcess()). This method is not ef-
fective for our purpose. Firstly, we cannot use it to control DLL loading. Sec-
ondly, it is more difficult to get the pathname of the binary because process cre-
ating is broken down into microkernel operations.

4 Due to recent concerns which show weaknesses and attacks against MD5 [17], we also have
stronger hash functions, namely SHA-1 and the stronger SHA-256.
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It turns out that since all code from any kind of binary needs to have a memory
section to execute, it suffices to intercept NTCreateSection().

The cached MAC verifier needs to ensure that binaries which have been already
authenticated are not modified. However, the uncached verifier will not need to per-
form file monitoring. A binary with pathname P is considered modified, if the fol-
lowing occurs:

• P is created: Hence, we monitor system call NtCreateFile() and NtOpen-
File().

• P is opened with write access mode: the previous two system calls are also inter-
cepted for this purpose. 5

•
File(FileRenameInformation)) system call.

• A drive containing P is mounted: We monitor drive mounting IRP MJ VOLUME-
MOUNT.

Note that we do not need to monitor file deletion since we only care about executing
correct files but not missing files. The details of file modification monitoring are
given in Fig. 3.

Upon modification of P, we reset the Authenticated bit of binary P, and update
the FileID in the table if it is changed. Should FAT file system be used, pathname
is used to identify the binary as FileID is not supported but neither are hard and
soft links. Since FileID is optional and can be removed, we monitor FileID removal
(NtFsControlFile(FSCTL DELETE OBJECT ID)) and deny the removal if
the FileID is in the table. Dut to the semantics of NTFS, our use of FileID can
coexist with other applications using it.

If additional hardware and infrastructure is available to support secure booting,
such as the Trusted Platform Module (TPM) initiative, the system can benefit from
increased security. Offline attacks would have to first attack the TPM. The Hash-
ing key can also be stored securely by the TPM.

4.3 Security Analysis

The security of binary authentication relies on the strength of the chosen hash func-
tions (MD5, SHA-1, SHA-256) as well as the HMAC algorithm. Thus, we assume
that any change in a binary can be detected through a changed MAC.

In our authentication on binary with digital signature, the subsequent invoca-
tions using MAC verification is sufficient to ensure the authenticity of the binary. In
other words, MAC authentications “preserve” the previously established properties
of binary authentication derived from digital signature. A subtlety comes when the

5 An alternative way is to monitor the file (block) writing operation (NtWriteFile()). However,
it is less efficient because file block writings take place more frequently than file openings as one
opened file for modification might be subject to multiple block writings. Furthermore, it cannot
capture file-memory mapping.
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procedure UponModification (FilePath)
if (FS is NTFS)

FileID := GetFileID(FilePath) # FileID can be NULL
if (FilePath is in the table)

Entry := LookupTableByPath(FilePath)
if (FileID == NULL)

# this can happen when the file is deleted and created again.
# generate a new FileID and update the table
Entry.FileID := CreateFileID(FilePath)

else if ( FileID != Entry.FileID in the table)
# this can happen when the drive is unmounted,
# id changed off-line and re-mounted
Entry.FileID := FileID

end if
Entry.Authenticated := false

else if ((FileID != NULL) AND (FileID is in the table))
Entry := LookupTableByID(FileID)
Entry.Authenticated := false

end if
else if ((FS is FAT) AND (FilePath is in table))

Entry := LookupTableByPath(FilePath)
Entry.Authenticated := false

end if
end procedure

Fig. 3 Pseudo code of file modification monitor

certificate expires or is revoked at some point in time after SignatureToMac. We
view that the question of whether one should keep trusting the binary for execution
depends on one’s level of trust on certificate expiration/revocation. If the certificate
expiration or revocation means that the public key must no longer be used, but the
fact that previously established goodness binary properties still hold, then we can
keep trusting the binary for execution (as long as we still believe the issuer).

Here we discuss some possible attacks to the authentication system. All the at-
tacks except the last two target the caching system. More precisely, the attacker
attempts to modify an already authenticated binary without causing the Authenti-
cated bit to be set to false.

• Manipulating symbolic links: The attacker can use the path S which is a sym-
bolic link of an authenticated P to indirectly modify P and subsequently execute
P. However, the modified file will not be executed successfully, because Win-
dows kernel resolves symbolic links to real paths. More precisely, the symbolic
link S is resolved to the real path P. As a result, the Authenticated bit of P will
be set to false. When P is executed, its MAC will be recalculated and it will not
pass the authentication.

• Manipulating hard links: The attacker can create a hard link H on an already
authenticated file P and then modifies the file using path H. This attack will not
succeed because we use FileID to identify files. H has the same FileID as P, thus
the Authenticated bit will be set to false. Note that this attack will not succeed in
FAT file system either, even though we cannot use FileID. This is because hard
link is not supported in FAT.

• Manipulating FileID: Recall that FileID consists of device name and NTFS
object ID. The latter is optional and thus can be removed. The attacker can re-
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move the NTFS object ID, and then performs the previous attack. We handle this
attack by denying NTFS object ID removal on authenticated files. This is imple-

• Remote File Systems: Since we cannot keep track of modification on a network
shared file system, we do not cache the authentication. More precisely, the MAC
of the binary is always calculated upon loading. Same applies to removable media
such as floppy in which we can not keep track of modification of files.

• TOCTTOU: TOCTTOU stands for Time-Of-Check-To-Time-Of-Use. It refers
to a race condition bug of an access control system where the resource is changed
during the time of checking the resource to the time of using the resource. In
the binary authentication context, the binary may be modified after the time it
is authenticated and before the time it is executed. However, we observed that
all binaries are exclusive-write-locked when it is opened. That means binaries
cannot be modified from the time it is opened to the time it is closed. Also note
that the file is authenticated after it is opened and before it is executed. As a
result, binaries cannot be modified during TOCTTOU.
When the binary is in a network shared volume, i.e. SMB share, and the write-
lock is not properly implemented in the SMB server, an attacker is able to modify
the binary after authentication. However, we have observed that both Windows
and Samba implement write-lock properly. Thus the attack is only possible when
the SMB server is compromised. One way to prevent this is to disallow binary
loading from SMB share.

• Driver Loading: The binary authentication system authenticates all binaries in-
cluding kernel driver. This means all drivers are authenticated thus driver attacks
such as kernel rootkits and malware drivers can be prevented.

• Offline Attack: Offline attack means modification of the file system when Win-
dows is not in control. For example, boot another OS or remove the disk drive
for modification elsewhere. Such an attack will require physical access to the
machine. Offline attack can corrupt data or change programs/files and affect the
general functioning and we cannot prevent that. What we can do is to ensure the
integrity of executable code and other data loaded in memory for processes.
We assume that the kernel is still secure, i.e. authentication occurs early in the
boot. We also assume that kernel functioning is not impaired, e.g. deleting some
system files does not cause the kernel to have an exploitable vulnerability.
Since the hashing key is not stored in the machine, it is not available to the at-
tacker. The attacker can still change the digest file and the binaries, however,
MACs of modified binaries cannot be produced without the hashing key. Thus
modified binaries cannot be executed when the system is online.

5 Empirical Results

Our authentication system can detect when a modified binary is loaded or run from
the wrong pathname. In this section, we examine the three factors which impact on
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system performance: (i) Verifier checking upon binary loading (execution); (ii) file
modification monitoring; and (iii) binary set-up during the SignatureToMac process.
The first two above are the most important as they directly affect user’s waiting time
for process execution and affect overall system operation. The tests here are meant
to determine the worst case overhead as well as average overheads.

The benchmarks are run on a Core 2 Duo with 2GB of ram running Windows XP
with SP2. Each benchmark is run five times. As we want to investigate the effect
of the cached Verifier, each benchmark is run with caching and without caching.
When caching is enabled, we ignore the result of the first run because the overhead
of authentication overhead is already shown in the uncached case. Even if we count
the first run, its impact will be very small because some of the microbenchmarks
run for 10K times, so the authentication overhead becomes negligible.

To see the difference of using different hashing algorithms, we implement and
benchmark three algorithms: MD5, SHA-1 and SHA-256. Only MD5 and SHA-
256 are shown in Table 1 as the results of SHA-1 are always between these. When
caching is enabled, results of different hashing algorithms are not distinguished
(shown as Cached-MAC in the table), because binaries are not require MAC check-
ing during the benchmark. The reason is that the first run is ignored, and the binaries
are not modified during the benchmark.

To see the difference with digital signature based authentication system, we also
compare the performances of our scheme against the Microsoft official Authenti-
code utility called Sign Tool [18], and another Sysinternals (now acquired by
Microsoft) Authenticode utility Sigcheck [19]. Note that two tools are user-mode
programs. They are there to illustrate the difference between non-mandatory strate-
gies used with Authenticode with our in-kernel mandatory authentication.

The first two benchmarks investigate system performance under two scenarios:

1. Micro-benchmark: The micro-benchmark aims to measure the worst case per-
formance overhead incurred by the scheme. Note that this is primarily intended
to measure the authentication cost but not other overhead, which is done by the
last file modification microbenchmark. Here, we have two micro-benchmark sce-
narios.

a. EXE Loading: This executes the noop.exe program, a dummy program
that immediately exits, for 10K times. This scenario measures the over-
head for authenticating the EXE file. The benchmark program first calls
CreateProcess(), and waits for the child process’ termination using
the WaitForSingleObject() function. We use different binary sizes
(40KB, 400KB, 4MB and 40MB, only the 40K and 40MB results are dis-
played) for noop.exe to see how executable size impacts performance.

b. Loading DLL: The second scenario executes the load-dll.exe pro-
gram for 100 times. This scenario is used to find out how the number of
loaded DLLs impacts the performance. Program load-dll.exe loads 278
standard Microsoft DLLs with a total file size of ∼75MB. The size of the
load-dll.exe itself is 60KB. Note that in Windows, the bulk of code is
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Micro-Benchmark Macro-
Benchmark

Authentication noop 40K noop 40M load-dll build
System time slowdown time slowdown time slowdown time slowdown
Clean 22.76 − 30.07 − 45.32 − 66.26 −
EXE Only:
Signtool 2822 11637% 4850 16033% 73.49 62.16% 97.00 46.39%
Sigcheck 1720 7457% 5629 18623% 62.82 38.62% 110.5 66.72%
Uncached-MD5 25.96 14.08% 2150 7052% 45.34 0.05% 70.85 6.93%
Uncached-SHA256 30.29 33.07% 9005 29851% 45.34 0.05% 71.79 8.35%
Cached-MAC 23.20 1.93% 30.63 1.88% 45.33 0.02% 67.62 2.06%
All Binaries:
Signtool 11867 52043% 14030 46565% 16018 35244% − −
Sigcheck 4283 18772% 6186 20478% 12548 27587% − −
Uncached-MD5 26.10 14.67% 3881 12811% 128.8 184.1% 79.31 19.69%
Uncached-SHA256 30.42 33.67% 9302 30839% 201.3 344.0% 91.80 38.55%
Cached-MAC 23.25 2.14% 30.58 1.72% 45.35 0.07% 67.88 2.45%

Table 1 Benchmark results showing times (in seconds) and slowdown factors. The worst slow-
down factors for each benchmark scenario are shown with underline, whereas the best are in bold.
We define slowdownx = (timex− timeclean)/timeclean.

often in DLLs which is why the EXE file may be small, e.g. Open Office has
over 300 DLLs.

2. Macro-benchmark: The macro-benchmark measures overhead under a typical
usage scenario. Our benchmark is to create the Windows DDK sample projects
using the build command. In each test run, 482 C/C++ source files in 43
projects are built. This benchmark is chosen as it is deterministic, non-interactive,
creates many processes and uses many files.

We benchmark Sign Tool and Sigcheck in the following fashion. We
first sign noop.exe and load-dll.exe using Sign Tool’s signing oper-
ation. We then measure the execution time of authenticating and executing the
two programs. For the macro-benchmark, we replace each development tool in the
DDK (i.e. build.exe, nmake.exe, cl.exe and link.exe) with a wrapper program which
first authenticates the actual development tool and then invokes it. For the micro-
benchmark, we consider two settings: (i) EXE only; and (ii) all binaries (EXE +
DLL). The macro-benchmark, however, only tests the EXE case. This is because,
during the macro-benchmark, many programs are invoked, and each program each
invocation may dynamically load a different set of DLLs. Thus, it is hard to keep
track of what DLLs are loaded, and it is unfair to simulate with all DLLs used.

The results are given in Table 1 but we have not shown “noop 400K” and “noop
4M” because they are bounded by the results of “noop 40K” and “noop 40M”.
Other results not shown are that the overhead is approximately linear with respect
to the file size, e.g. the results of the All-binaries/Uncached/SHA-256 benchmarks
are 40K:30.42s, 400K:85.43s, 4M:598.0s, 40M:9302s.

We can see that the overhead of Signtool and Sigcheckmakes it unusable if
DLLs are to be checked (352x slower on load-dll). If only EXE are checked, then
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at least 40% overhead and based on the load-dll benchmark, one could expect
about an order of magnitude worse if all DLLS are checked. Of course, using these
tools would incur additional overhead from creating a process and the main purpose
is just to show the difference between what can be done in user-mode versus in-
kernel. We can see that all the uncached-MD5/SHA256 are considerably faster than
Signtool and Sigcheck.

Authenticating only EXE, the difference between uncached has overheads around
8% while cached brings this down to very small, around 2%x and almost neglible in
the load-dll benchmark (0.02%). Note that as uncached overhead is quite small,
the results are dominated by non-determinism in timing measurements. Moving to
all DLLs (EXE + DLL), we can see the effect of Windows programs using many
DLLs (more code in DLL than EXE). The overhead incurred by caching is still small
while uncached can grow to between 20-40% depending on the hash algorithm. Note
that the uncached overhead is applicable for files which cannot be cached.

The final microbenchmark investigates the tradeoffs between cached and un-
cached verification. Caching means that MAC verification is amortized over exe-
cutions but has added overhead from monitoring file modification, while uncached
is the opposite. Our micro-benchmark opens a file for writing 100K times to mea-
sure the worst case overhead incurred by file modification monitoring. We have 3
experiments: (i) a clean system without binary authentication; (ii) binary authenti-
cation with cache and the modified file is a binary; and (iii) binary authentication
with cache and the modified file is not a binary.

The results for the file modification micro-benchmark show that for binary au-
thentication with a cache, it doesn’t matter whether the file being written to is a
binary or not. Both cases incur about 60% overhead compared to a clean system.
Since binary authentication with no-cache has no overheads for file modifications,
this means that under some usage scenarios where file modification is very high,
the uncached strategy may be preferable over cached even when Verifier overhead
is higher.

6 Conclusion

We have shown a comprehensive system which authenticates both content and path-
name for Windows to ensure that only trusted binaries are executed. Unlike other
operating systems, Windows poses significant challenges. We show that it is possi-
ble to ensure that only trusted binaries can be loaded from files for execution. This
can also be combined with a simple software ID scheme which simplifies binary
version management, and dealing with vulnerability alerts and patches. Our system
is lightweight and integrates well with PKI and trust mechanisms without having to
rely on them. The overheads of our prototype are quite low when caching is is used.
In the case of workloads with heavy file modifications, an uncached strategy might
be preferable. The overheads are still low in this case, since the system overhead will
be dominated by I/O rather than binary authentication, so the overall binary authen-
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tication would still be low as a percentage of overall system overhead. In summary,
although this is a prototype, it significantly adds to the security of any Windows sys-
tem but at the same time is sufficiently flexible so that it can be tailored for different
usage scenarios.
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