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Abstract The widespread adoption of location-based services (LBS) raises increas-
ing concerns for the protection of personal location information. To protect loca-
tion privacy the usual strategy is to obfuscate the actual position of the user with a
coarse location and then forward the obfuscated location to the LBS provider. Ex-
isting techniques for location obfuscation are only based on geometric methods. We
state that such techniques do not protect against privacy attacks rooted in the knowl-
edge of the spatial context. We thus present a novel framework for the safeguard
of sensitive locations comprehensive of a privacy model and an algorithm for the
computation of obfuscated locations

1 Introduction

Location-based services (LBS) and in particular GPS-enabled location services are
gaining increasing popularity. Market studies [7] forecast that the number of GPS-
enabled mobile devices, including personal navigation devices, cellular handsets,
mobile PCs, and a variety of portable consumer electronics devices, will grow from
180 million units in 2006 to 720 million units in 2011.

Mobile users equipped with location-aware devices typically request a LBS ser-
vice by forwarding to the service provider a query along with the user’s position.
The service provider then answers the query based on the position. Unfortunately,
the communication of the user’s position to the service provider raises strong pri-
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vacy concerns because it may result in the unauthorized dissemination of personal
location data. Such data may in turn lead to the inference of sensitive information
about individuals. For example the health status of a service user can be inferred
from the nature of the clinics being visited.

Personal location data refers to the association (u, p) between user identifier u
and position information p. Protecting location privacy means thus preventing u
and p from being both disclosed without the consent of the user [2]. A well-known
approach to the protection of location privacy is to deliberately degrade the quality
of location information and forward to the LBS provider an imprecise position.
Imprecision may however compromise the quality of service because the answer to
the query may result too coarse. Therefore, the imprecise position must be defined at
aresolution which is acceptable for the user. We refer to an imprecise user’s position
as obfuscated location.

In general, obfuscated locations are computed using techniques, such as (loca-
tion) k-anonymity [6, 10, 8], based on geometric methods. We refer to these tech-
niques as geometry-based. We claim that geometry-based obfuscation techniques
do not protect against the following simple privacy attack.

Location privacy attack

Assume that John issues a LBS request from position p inside hospital Maggiore in
Figure 1 (a). John however does not want to disclose the fact of being inside the
hospital because that might reveal he has health problems. Now assume that location
p is obfuscated by region g using some geometry-based technique (Figure 1 (b)).
We can observe that if an adversary knows that John is in the obfuscated location g
and ¢ is entirely contained in the spatial extent of the hospital (the location of the
hospital is publicly known), then such adversary can immediately infer that John
is in the hospital. As a result, sensitive information is disclosed against the user
consent. Note however that if John would be a doctor, such a privacy concern would
not arise because the location would be related to the user’s professional activity.
We refer to this privacy attack as spatial knowledge attack.

The spatial knowledge attack arises because geometry-based obfuscation tech-
niques do not consider the actual semantics of space, namely the spatial entities
populating the reference space and their spatial relationships, in other terms the
spatial knowledge. Therefore those technique are unable to protect against the infer-
ences made by linking the geometric information with the location meaning which,
depending on the perceptions of user, may represent sensitive information. The pro-
tection of location privacy thus calls for techniques able to take into account the
qualitative context in which users are located as well as their privacy preferences.

To address those requirements, we propose a novel location obfuscation frame-
work, that we refer to as semantic-aware obfuscation system. The main contribution
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Fig. 1 Example of obfuscated location

of this paper is the definition of the core components of the obfuscation system, that
is:

e a privacy model supporting the obfuscation of sensitive locations based on user
preferences;

e an algorithm, called SensFlow (i.e. Sensitivity Flow), implementing the obfus-
cation strategy.

The remainder of the paper is structured as follows. Next section overviews re-
lated work. Then we present the outline of the approach and the privacy model.
The SensFlow algorithm and two alternative approaches to space subdivision are
discussed in the subsequent section. The final section reporting open issues and re-
search directions concludes the paper.

2 Related work

anonymity.

Recent work on privacy models in LBS comprises two sets of approaches, focused
respectively on the protection of location information and on the concept of k-

Privacy models for the protection of location information

The problem is to how to process the query without knowing the exact location of
the user. Atallah at al. [1] have proposed three methods of varying complexity to
process nearest-neighbor queries such as Where is the nearest hospital? The sim-
plest method is as follows: the client applies a geometric translation to the user’s
position and forwards the approximated position to the LBS provider. The database
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answers the query and returns an imprecise answer. The second method does not re-
sult in any accuracy loss but can potentially require more communication. The idea
is to subdivide space in a grid of cells. The client queries the database with the tile
that contains the client’s location. The database answers the query with all spatial
objects that are closest to at least one point in the query tile. Upon receiving these
objects the client determines which of them is closest to the actual position. The
third approach is more efficient and does not require any obfuscation of the user’s
position. The idea is to determine whether the user’s position is contained in a cell
of a space subdivision defined as Voronoi diagram without revealing to the database
anything other than the Yes/No answer to the question. If the answer is Yes then
the object associated with the cell is the one closest to the user. This mechanism,
which uses a secure multi-part protocol [4], can be only applied whenever space is
partitioned.

Another approach for processing nearest-neighbor queries is proposed by Duck-
ham and Kulik [5]. In such approach the client obfuscates position p by supplying
a set P of arbitrary positions including p. The database then answers the nearest-
neighbor query by determining the objects that are closest to any point in P. Then,
in the simplest case, the database returns the whole set of objects leaving the client
to choose among them.

Protection of user identity through k-anonymity

A significant number of proposals are based on k-anonymity. The concept of k-
anonymity has been originally defined for relational databases. A relational table
T is k-anonymous when for each record there are at least (k-1) other records
whose values, over a set of fields, referred to as quasi-identifier, are equal. A quasi-
identifier consists of one or more attributes which, though not containing an explicit
reference to the individuals identity, can be easily linked with external data sources
and in this way reveals who the individual is. K-anonymity can be achieved by gen-
eralization, that is replacing a quasi-identifier attribute value with a less specific but
semantically consistent value [13]. The concepts of k-anonymity are transposed in
the LBS context as follows. The location attribute is treated as a quasi-identifier.
Hence, a request is location k-anonymous if the user’s location is undistinguishable
form the location of other k-1 individuals. Finally a generalized location is a region
containing the position of k individuals. Location generalization techniques gener-
ate obfuscated locations independent of the query type. The first technique has been
proposed by Gruteser. The idea behind this scheme is to recursively subdivide space
in quadrants of a quadtree [6]. The quadtree is then traversed top down, thus from
the largest quadrant covering the whole space, until the smallest quadrant is found
which includes the requester and other k — 1 users. Such a final quadrant constitutes
the generalized location.

Another technique based on quadtrees has been proposed in the context of the
Casper system [10]. A hash table allows one to directly locate the user. Such table
contains the pointer to the lowest-level cell in the quadtree-based data structure in
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which each user is located and his privacy profile. A privacy profile is defined by the
pair (k,Auin) where k means that the user wishes to be k-anonymous, and Ayy;, is
the minimum acceptable resolution of the generalized location. The location gener-
alization algorithm works bottom-up: if a cell or combination of two adjacent cells
does not satisfy privacy preferences, then the algorithm is recursively executed with
the parent cell until a valid cell is returned. Kelnis et al. in [8] observe that location
k-anonymity algorithms may compromise location privacy if an attacker knows the
generalization algorithm, the value of k and the position of all users. Specifically,
this happens when a generalized location can univocally associated with a user. To
address this problem, Kelnis et al. present a new algorithm based on the use of a
linear ordering of locations.

Recent work on relational data privacy has pointed out that k-anonymity does
not ensure a sufficient protection against a number of privacy attacks. For example
k-anonymity can generate groups of records that leak information due to the lack of
diversity in the sensitive attribute. Such an information leak is called homogeneity
attack. Against this attack, a possible counter-measure is [-diversity. The main idea
behind I-diversity is the requirement that the values of the sensitive attributes must
be well represented in each group [9]. In its simpler form, I-diversity means that
each group should have at least / distinct values.

Another criticism against k-anonymity is that it does not take into account per-
sonal anonymity requirements on the acceptable values of sensitive attributes. To
address this requirement, Xian and Tao [14] introduces the concept of personalized
anonymity. The main idea is to organize the values of the sensitive attribute in a
taxonomy and then let each user specify through a guarding node the most specific
value of the attribute that the user wants to disclose. Interestingly, this approach
attempts to protect the association between a user and the meaning of the sensi-
tive attribute, which is close to what we propose. The approach of Xian and Tao,
however, only works for categorical attributes.

3 Outline of the approach

The basic idea is to collect users’ preferences about sensitive places and the desired
degree of location privacy in privacy profiles and then carry out the process of loca-
tion obfuscation in two steps. Such a process is described below. Consider a privacy
profile v.

(1)The first step is to obfuscate the sensitive places specified in v based on the user’s
desired degree of privacy. This operation, that we call obfuscated space genera-
tion, results in the generation of a set of coarse locations hiding the actual extent
of sensitive places in compliance with user preferences. We can abstractly think
of obfuscated space generation as the function Obf:

Obf(v)=s
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which maps profile v onto the set s of regions enclosing sensitive places.

(2)The second step is carried out upon a user’s LBS request. Consider a user with
privacy profile v in position p . The operation that we call obfuscation enforce-
ment can be abstractly represented by the function Oe:

Oe(p,v) =q

mapping position p and profile v onto a location g where ¢ € Obf(v) if p is
contained in ¢ and ¢ = p otherwise. As a result, when the location is obfuscated,
an adversary cannot infer with certainty that the user is inside a sensitive (for the
user) place. At most one can infer that the position may be in a sensitive place.

A naive implementation of the function Obf is to define, for each sensitive place, a
region containing the place of interest. This solution has however important draw-
back: first if the sensitive place has a large extent, the obfuscated location may result
too broad and thus compromise the quality of service. By contrast, if the obfuscated
location is not large enough the probability of being located inside a sensitive place
may be very high and thus obfuscation is ineffective. To overcome these drawbacks
we subdivide sensitive regions in cells. Each cell has a sensitivity which depends
on the user preferences in the privacy profile. Each cell is thus obfuscated sepa-
rately through an obfuscation algorithm. To represent user preferences, we define a
privacy model, called obfuscation model, centered on the following concepts.

e Properties of places. Places as classified into types. Users specify in their privacy
profiles which types of places are sensitive, non-sensitive or unreachable. A place
is sensitive when the user does not want to reveal to be in it; a place is unreachable
when the user cannot be located in it; a place is non-sensitive otherwise.

e The level of sensitivity quantifies the degree of sensitivity of a region for a user.
For example a region entirely occupied by a hospital has a high level of sensitiv-
ity, if hospital is sensitive for the user. We emphasize that the level of sensitivity
depends on the extent and nature of the objects located in the region as well as
the privacy concerns of the user.

e An obfuscated space is a set of obfuscated locations associated with a privacy
profile. Specifically, the locations of an obfuscated space have a level of sensi-
tivity less or equal than a sensitivity threshold value. The sensitivity threshold
value is the maximum acceptable sensitivity of a location for the user. Since the
threshold value is user-dependent, its value is specified in the privacy profile.

4 The obfuscation model

We first introduce the basic nomenclature used in the rest of the paper. A position is
a point in a two-dimensional space S; region is a polygon; location broadly denotes
a portion of space containing the user’s position. Places are represented as simple
features. A feature has an unique name, say Milano, and a unique feature type, say
City. Furthermore, a feature has a spatial extent of geometric type [12] that, without
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significant loss of generality, consists of a region. Features extents are spatially dis-
joint. Consider the case of two overlapping places, for example a restaurant within
a park: the extent of the park feature must be defined in such a way that it does not
contain the extent of the restaurant feature.

An advantage of our approach is that spatial features can be stored in commercial
spatial DBMSs and easily displayed as maps. We denote with FT and F respectively
the set of features types and the set of corresponding features. Hereinafter we refer
to the pair (FT,F) as the geographical database of the application.

Sensitive and unreachable feature types

In a privacy profile a user specifies the feature types which are considered sensitive
and unreachable. A feature type is sensitive when it denotes a set of sensitive places.
For example if Religious Building is a sensitive feature type, then Duomo di Milano,
an instance of Religious Building, is a sensitive feature. Instead a features type is
non-reachable when it denotes a set of places which for various reasons, such as
physical impediment, cannot be accessed by the user. For example, the feature type
MilitaryZone may be non-reachable if the user is a common citizen. A feature type
which is neither sensitive or unreachable is non-sensitive. In principle, a user can
define multiple privacy profiles.

Quantifying the level of sensitivity of a region

We introduce first the concept of sensitivity score (simply score). The score of a
feature type ft is a value which is assigned to ft to specify “how much sensitive”
ft is for the user. For example the score of the restaurant feature type is typically
lower than the score of hospital because an individual is usually more concerned
with privacy of medical information than with information about his/her preferred
restaurants. Formally, the score of feature type f7 is defined by the function Score(ft)
ranging between O and 1: value 0 means that the feature type is not sensitive or
unreachable while a value 1 means that the feature type has the highest sensitivity.
The concept of score captures the subjective perception of the degree of sensitivity.
The score of each sensitive feature type is thus specified directly in the privacy
profile. The score function is used for computing the sensitivity level of a region.

The sensitivity level (SL) of a region r, written as SLgeg(7), quantifies how much
sensitive r is for the user. In particular, SL is defined as sum of the ratios of weighted
sensitive area to the relevant area in the region. The weighted sensitive area is the
surface in r occupied by sensitive features weighted with respect to the sensitiv-
ity score of each feature type. The relevant area of r is the portion of region not
occupied by unreachable features.

To formally define SL, we introduce the following notation:

e F is the set of regions in the reference space
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e (FT,F) is the geographical database, namely the set of features types and fea-
tures

o FTs.,s C FT is the set of sensitive feature types and F Tyeqcn € FT is the set of
non-reachable features, with F Ty, each [V F Tsens = 0

e The functions: Areag,,(r) and Arear.,(r, ft) compute, respectively, the whole
area of r and the area of r covered by features of type f. In the latter case, only
the portions of features which are contained in r are considered.

Definition 1 (Sensitivity level of a region). The sensitivity level of a region is de-
fined by the function: SLgee : E — [0, 1] such that, given a region r:

A t
SLreg(r) = >, Score(ft)w
fIEFTSens AreaRel (r)

where Areag,(r) = Areageo(r) — X 1e FTyreach Areage,(r, ft). If r only contains non-
reachable features, we define SLye(r) = 0. ©

Example 1. Consider a space consisting of four regions ¢y, c1,c2,c3; the set of sen-
sitive feature types is FTy,s = {ft0, 11, f13} and the set of non-reachable feature
types is FTyreach = {ft2}. Table 1 reports, for each feature type f7; and region c;j,
the area occupied by f#; in ¢;, with i, j ranging over {0,1,2,3}. In addition, the row
NS reports the non-sensitive area in each region. For example, region c¢; includes
sensitive features (or portion ) of type f#y and of type ft3 both covering an area of
100 units; non-reachable features (or portion) of type f, covering an area of 1000
units; and a non-sensitive area of 100 units. The row Tot,ejepans reports the relevant
area in each region, that is the area not covered by unreachable features. For exam-
ple the relevant area in region ¢, has an extent of 300 units. The last column on the
right reports the sensitivity score assigned to each feature type.

Area(c, ft)| co | c1 | ca | e3 ||Score(ft)
fto 200 0 [100] O 0.5
ft 1001 0 | O |100 0.7
ft 300 | 50 |1000{400 0
JiE] 0 |100{ 100 {100 0.9
NS 0 |0([100]| 0 -

Totoromam 1300 100] 300 [200 -
SLyee 10.57{0.9/0.47(0.8 -

Table 1 Area and sensitivity scores of feature types

The sensitivity level for regions cp and ¢y is:

- SLyeg(co) =0.5-330 +0.7- 199 = 0.57

100
SLreg(Cl) = 09 “ 100 = 09
It results that region ¢ is more sensitive than cg. The motivation is that users located
in region ¢ are certainly located in the extent of a feature of type fr3, which has a

high sensitivity score.
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Obfuscated space

Finally we introduce the concept of obfuscated space. An obfuscated space is a
space partition consisting of regions which are privacy-preserving. We say that a
region r is privacy-preserving when the level of sensitivity of 7, SLgee(r) is equal or
below a threshold value. The threshold value is the maximum acceptable sensitivity
of locations for the user. Its value ranges in the interval (0,1]. A value equal to 1
means that the user does not care of location privacy in any point of space. We rule
out the value 0 because it would be satisfied only if there were no sensitive locations
(against the initial assumption). The threshold value is another parameter specified
in the privacy profile. We formally define the notion of obfuscated space and of
privacy profile in the definition below.

Definition 2 (Obfuscated space). Let (FT,F) be the geographical database. More-
over let:

- FTs.ns C FT be a set of sensitive feature types.

- FTyreach C FT be a set of non-reachable feature types.
- Score be the score function.

- Ogens € (0, 1) be the sensitivity threshold value.

Then:

(1)An obfuscated space OS is a space partition such that:

max SLreg(¢) < Ogens
ce0S

(2)The privacy profile associated with OS is the tuple
< FTsens, FInreach, Score, Ogens >

Example 2. With reference to example 1, consider the profile:

- FTsens = {ft0, ft1,ft3} where fto represents night clubs, f#; religious buildings
and ft3 clinics.

- FTyyeach = {ft2} where ft, represents a military zone

- Score(fty) = 0.5, Score(ft;) = 0.7, Score(fty) =0, Score(ft3) = 0.9

- Bsens =0.9

Consider the four regions {cop,c1,c2,c3} and the sensitivity level of each of them
(reported in Table 1). It can be noticed that such value, in all cases, is less or equal
than 6y,,,s. Thus, the set of regions is an obfuscated space.

5 Computing the obfuscated spaces

After presenting the privacy model, the next step is to define how to compute an
obfuscated space. Our strategy consists of two main steps:
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1. Specification of the initial partition. The reference space is subdivided in a set of
small regions, referred to as cells, which constitute the initial partition denoted
as Cj,,. The granularity of the initial partition, that is, how small the cells are, is
application-dependent.

2. Iteration method. The current partition is checked to verify whether the set of
cells is an obfuscated space. If not, it means that at least one cell is not privacy
preserving. A cell ¢ is thus selected among those cells which are not privacy-
preserving and merged with an adjacent cell to obtain a coarser cell. The result
is a new partition. This step is iterated until the solution is found, and thus all
privacy preferences are satisfied or the partition degenerates into the whole space.

In the following we describe these two steps, starting from the latter.

5.1 The iteration method

Consider a partition % of the reference space. Given two adjacent cells ¢y, ¢, € €,
the merge of the two cells generates a new partition 4” in which cells ¢ and ¢, are
replaced by cell ¢ = ¢; US ¢, with US denoting the operation of spatial union. We say
that partition 6” is derived from partition ¢, written as ¢” = ¢. Consider the set
Py, of partitions derived directly or indirectly from the initial partition %, through
subsequent merge operations. The poset H = (P, , =) is a bounded lattice in which
the least element is the initial partition while the greatest element is the partition
consisting of a unique element, that is, the whole space (called maximal partition).

It can be shown that an obfuscated space, if it exists, can be generated by pro-
gressively aggregating cells in coarser locations and thus by deriving subsequent
partitions. The demonstration, that we omit, is articulated in two steps. First it is
shown that the SL (i.e. sensitivity level) of the cell resulting from a merge operation
is less or equal the sensitivity level of the starting cells. Then it is shown that the
sensitivity level of the partition (i.e. the maximum sensitivity value of cells) result-
ing from subsequent merge operations is less or equal than the sensitivity level of
the starting partition.

The algorithm

The algorithm computes the obfuscated space by progressively merging adjacent
cells. In general, for the same privacy profile, multiple obfuscated spaces can be
generated. We consider optimal the obfuscated space with the maximum cardinality,
thus possibly consisting of the finest-grained regions. The problem of finding the
optimal obfuscated space can be formulated as follows:

Given an initial partition €,, determine, if it exists, the sequence of merge oper-
ations such that the resulting partition € is the obfuscated space with the maximum
number of cells
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In this paper, we present an algorithm which computes an approximated solution
to the problem. The idea is to progressively expand each cell which is not privacy
preserving until a terminating condition is met. This approach raises a number of is-
sues. The first issue is how to choose the cells to be merged. We adopt the following
heuristic: we select the adjacent cell which determines the most sensible reduction
of sensitivity of the aggregated cell. A second issue concerns the criteria for the ex-
pansion of cells. To address such issues, we have identified two basic strategies: the
first strategy is to expand one over-sensitive cell (i.e. a non-privacy-preserving cell)
at a time, until the level of sensitivity is below the threshold; the second strategy is
to expand “in parallel” all cells which are over-sensitive. The second strategy is the
one which has been adopted because it allows one to better control the size of the
aggregated cells.

Insights on the SensFlow algorithm

We represent a space partition through a Region Adjacency Graph (RAG)[11]. In
general a RAG is defined from a partition by associating one vertex with each cell
and by creating an edge between two vertices if the associated cells share a common
boundary. Within this framework, the edge information is interpreted as possibility
of merging the two cells identified by the vertices incident to the edge. Such a merge
operation implies to collapse the two vertices incident to the edge into one vertex
and to remove this edge together with any double edge between the newly created
vertex and the remaining vertices [3].

The input parameters of the algorithm are: 1) the initial RAG built on the ini-
tial partition; 2) the privacy profile. The algorithm returns an obfuscated space if it
exists, an error otherwise. Starting from the RAG corresponding to the initial par-
tition, the algorithm shrinks the graph by merging adjacent cells until all privacy
constraints are satisfied or a solution cannot be found. At each iteration, the algo-
rithm looks for non-privacy preserving cells; then each of such cells is merged with
at most one adjacent cell. Among the cells in the neighborhood, merging is exe-
cuted with the cell which determines the most significant reduction in the sensitivity
of the resulting aggregated region. After the merge, the algorithm proceeds to scan
the remaining cells, and the whole loop is repeated until no cell is modified. The
complexity of the algorithm, evaluated with respect to the two key operations, that
is (a) merge operations, (b) number of edges analyzed, is O(n?).

5.2 The specification of the initial partition

The above algorithm is applied to an initial space partition which is then mapped
onto a graph. Now a key design issue is to define how to build the initial parti-
tion and how to specify sensitive and unreachable cells in such a partition. In other
words, given a map of space, what kind of partition can be generated? And how
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can the sensitivity level of the initial partition be computed? We have investigated
two approaches: a) To subdivide space into a regular grid of cells. Cells have thus
equal shapes and sizes. b) To subdivide space into a set of irregular tiles based on a
natural subdivision of territory. Each tile represents a real world entity, for example
a census block.
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Fig. 2 Sensitive cells in the initial partition

We now discuss the experiments carried out using these two approaches. The
adopted software platform consists of a Java implementation of the SensFlow al-
gorithm, the system Intergraph Geomedia for the visualization of spatial data and
Oracle Spatial for the construction of the RAG.

We present first the experiment with the irregular tessellation of space. Seemingly
the advantage of the irregular tessellation against grid is that tiles may represent
physical entities. Therefore, since sensitive places, such clinics or religious places,
have well-known boundaries, they likely correspond to tiles and thus can be more
easily identified. Creating a space tessellation at very high resolution is, however,
extremely costly. A more practical solution is to use publicly available datasets,
albeit at lower resolution. A typical dataset representing a space partition is the US
Census data.

We have thus run the algorithm on an initial partition obtained from US Census
Block dataset. The data set consists of 15000 polygons representing Census Block
Groups, that is, aggregation of census blocks. Each polygon is a cell of the partition.
We assume:

e A unique feature type fr with score = 1 thus at the highest sensitivity.

e The density s of sensitive cells is a parameter of the experiment. For example
s=0.05 means that 5% of cells contain sensitive features.

e The percentage of area which is sensitive in a cell is assigned randomly. Figure 2
shows a portion of the initial partition with s = 0.05: the black cells are sensitive,
whereas the white cells are non-sensitive.
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Fig. 3 Visual representation of two obfuscated spaces relative to area in Figure 2 (s = 0.05)

The SensFlow algorithm has been run using different values of the sensitivity
threshold. The experimental results are shown in the maps in Figure 3. The gener-
alized regions are represented by polygons of different color, based on the number
of aggregations: the color is darker for the more aggregated regions; white space
denotes the original space. We can observe that the granularity of the obfuscated
space is coarser for lower values of the sensitivity threshold.

The main limitation of this approach is that the publicly available data set is not
sufficiently precise. Cells are generally too broad, especially in rural areas and that
compromises the quality of service.

We have thus evaluated the grid-based approach to space subdivision. Space is
subdivided into a grid of regular cells. Features do not have any physical correspon-
dence with cells. Features are thus contained in a cell or overlap multiple cells. The
sensitive area in the cell results from the spatial intersection of the feature extent
with the cell. We have run the algorithm over a grid of 100 squared cells, assuming
again a unique feature type with maximum score.

exenx =0.5 sens — Y- Bsens =03

Fig. 4 Visual representation of the cell aggregation for different values of the sensitivity threshold
Oyens. Merged cells are indicated using both the same number and the same color

Figure 4 shows the obfuscated spaces generated for different values of the sen-
sitivity threshold. The result is visualized as follows: adjacent cells which have not
been merged are assigned different gray tones; merged cells have an identical gray



244 M. L. Damiani et al.

tone and are labeled by the same number. We can observe how the granularity of
obfuscated locations (i.e. a set of cells with identical label) changes for different
values of O.,s. From the experiments it turns out that the grid-based approach is
more flexible because the granularity of partition can be defined based on applica-
tion needs. On the other hand, the whole process of discretization of features in cells
is much more complex.

6 Open issues and conclusions

In this paper we have presented a comprehensive framework for the protection of
privacy of sensitive locations. Because of the novelty of the approach a number of
important issues are still open, pertaining various aspects concerning: the privacy
model, the computational complexity and the system architecture respectively. As
concerns the privacy model, one could observe that the sensitivity of a place may
vary depending on the context, such as time. Indeed in our approach the user is
allowed to specify multiple profiles and thus, ideally, one could select the privacy
profile based on the contextual conditions. Unfortunately this solution may result
into an excessive burden for the user. Some mechanism for a context-driven selec-
tion of privacy profiles would thus be desirable. Another observation is that our
privacy model requires detailed knowledge of the extents of sensitive places, while
such a knowledge is difficult and costly to acquire. We believe that in the next few
years high quality spatial data will become increasingly available under the push
of the growing LBS market and thus the development of obfuscation services by
LBS providers or third parties will become affordable. Our privacy model can be
improved in several ways. First, we observe that the notion of threshold value may
be not so intuitive for the user. As a consequence, the specification of the privacy
profile may be complex. Second, in our model we assume that mobile users have
equal probability of being located in any point outside an unreachable area, while
that contrasts with the evidence that some areas are more frequented than others and
thus an individual is more likely in those places than in others. The investigation of
a probabilistic model is a major effort of the future activity.

A distinct class of issues are about the computational cost of obfuscated map
generation. The present algorithm has a quadratic complexity. For an effective de-
ployment of the system, a more efficient algorithm is needed. A related aspect is the
development of a suitable platform for the experimental evaluation of the algorithms
including a generator of initial partitions. Another major class of issues concerns the
specification of a distributed system architecture. We envisage two main architec-
tural solutions. The straightforward approach is to use a trusted Obfuscation Server
as an intermediary between the client and the LBS provider. The TOS creates the ob-
fuscated spaces and stores them along with the associated privacy profile in a local
repository. At run time, the user’s request is forwarded to the Obfuscation Server
which applies the obfuscation enforcement. This scheme has a main drawback in
that it requires a dedicated and trusted server. This may result into a bottleneck;
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further the trustworthiness of the server is costly to ensure. To overcome this limi-
tation, an alternative approach is to base the architecture on the following idea. The
Obfuscator Server is still used but exclusively to generate obfuscated maps upon
user’s requests. Once generated, the map is then transferred back to the requesting
client which stores it locally. Finally, the obfuscation enforcement is then carried
out on the client. Because of the storage limitations of mobile devices, the gener-
ated map should be not only generated in an acceptable time for the user but also
have a reasonable size.
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