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Abstract: We present a way to mix the lower control of agents with the high level 
specifications of their goals. This paper addresses various topics required 10 
animate virtual humans in a distributed way such as combining primary 
actions into tasks, using verbal communication between virtual humans and 
directing them with high level orders. Dur models have been tested into a 
multi-Ianguages / multi-modules application as described below. 

1. INTRODUCTION 

During the last years, the entertainment industry have produced a lot of 
exciting movies, games or TV shows involving realistic virtual humans. 
However, most of the work is hardly designed by artists and these 
impressing animations still require huge efforts. Furthermore, since movies 
are now integrating more and more virtual humans, there is a need for 
authoring tools specifically decicated to autonomous agents animation. This 
has been clearly demonstrated by the famous Improv system [17] or similar 
commercial tools, such as Motion Faetory's Motivate [15] or Virtools' 
NeMo [19]. Efforts are eontinuously spent in order to obtain more and more 
realism: the use of speech, better animation, improved autonomy eontribute 
to go toward life-like eharaeters. Target applieations do not only include the 
entertainment industry, but any inhabited virtual world might benefit from 
this kind of work. For example, we are now working on a simulator into 
whieh policemen have to deal with panie situations, with virtual humans 
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running all around: this kind of training into a virtual environment is a good 
test for realistic autonomous agents. 

Unfortunately, the animation of a virtual human is not an easy process: it 
actually involves various topics such as: motion control, action selection and 
verbal communication. Consequently, the integration of these domains 
altogether is a motivating technical challenge. The work presented by 
Bindiganavale et al. [2] is a good illustration of this goal. Our research is 
focusing on the same topic, that is the animation of autonomous virtual 
humans which are able to communicate verbally as we do. We are now 
going to briefly summarise the contributions and previous research for these 
domains. 

From the animator' s point of view, it is difficult for one agent to handle 
concurrent motions at the same time: how can one walk while carrying a box 
and looking around? If we are able to do this everyday, the simulation of 
simultaneous gestures and motions is a particular research subject. Models 
have been proposed to deal with that, such as Granieri's Parallel Transition 
Networks [10]. For the specific case of gestures involved in virtual humans 
conversation, Cassel et al [8] studied an automatie generation of movements 
and facial expressions (during conversation), based on the content of the 
dialog itself. 

Regarding realistic verbal communication, we also need some sound 
propagation models. While Funkhouser, Min and Carlbom [9] introduced 
interesting algorithms for fast rendering of sound occlusion and diffraction 
effects, we think that simpler models simulating sound within a room and 
taking almost no CPU time have many useful applications in social 
simulations. A good example would be the simulation of a party, with many 
people speaking at the same time, and background music disturbing them. 
Our model is able to simulate such situations, without high computational 
cost. 

Finally, an autonomous agent has to select its actions by itself. Research 
has been driven by people from different areas: ethologists such as 
Tinbergen [20], and computer scientists such as Brooks [6], Maes [13] and 
Minsky [14] who lead the school of Behaviour-Based Artificial Intelligence 
(BBAn. Our model, as proposed in the BBAI, does not attempt to build 
models of the world, and the agent has to reevaluate its course of action on 
every slot of time. Some points are not directly addressed by the BBAI such 
as the interplay between internal factors (emotional levels) and external 
factors (common world situations). Other authors such as Travers [21] have 
modelled a behavioural system where the agents are described in terms of if­
then rules. However, we show in this paper that a simple predicate approach 
is not sufficient for modelling complex human behaviours based on different 
levels of emotions. 
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We are now going to present briefly our system and the various 
components embedded into it. We will continue with in section 3 with the 
agent's brain. Finally we describe in section 4 the agent's brain 
implementation in LISP, before conc1uding. 

2. AGENT COMMON ENVIRONMENT 

We have developed a system called: the Agent Common Environment 
(ACE) which animates virtual humans able to perceive their shared 
environment, perform different motions and have facial expressions. It also 
provides an easy way to plug-ins different behavioural modules. 

ACE understands a set of different commands to be able to control the 
simulations: (i) Creation and location of 3D objects, virtual humans, and 
smart objects [12], (ii) Performance of different motion motors and facial 
expression: playing key-frames animation, using inverse kinematics [1], 
walking actions, etc. (iii) Virtual human interactions with smart objects. 
And (iv) Query of perception pipelines for a given virtual human [4]. 

All these commands are easily accessible from Python scripts, where 
different behavioural libraries can be created and plugged into ACE. Those 
scripts are basically ensuring the low level 3D animation of the virtual 
humans, while the high level decisions and behaviours are selected by the 
external Intelligent Virtual Agent behavioural module (see seetion 5). 
Thanks to the available packages coming with Python, one can manage 
easily concurrent processes with threads (such as, walking while looking at 
something), while a TCP/IP connection is maintained between the scripts 
and the Intelligent Virtual Agent. We are now going to describe the Agent 
Common Environment in details. 

2.1 Agent design philosophy 

The behaviour of agents is decomposed into two modules: the low-level 
animation and the high-level decisions taking. As many 3D environments, 
ACE is mainly coded in C++ to ensure high performances. For convenient 
user-interaction, it also provides the Python layer which interprets on the fly 
commands and animates the virtual humans. Python is an all-purposes 
scripting langage that we have extended to fit our needs. More precisely, 
when the application is launched, a simple environment is created and 
displayed in a window, and a command shell is prompted, ready for entering 
commands in Python. ACE provides the basic commands for loading, 
moving, animating humans and objects, giving a powerful set of 
functionalities straight from the scripting language. It is very convenient 
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indeed to reuse a language and extend it to match our purposes, rather than 
developing a new syntax from scratch: this saves time and gives the 
opportunity to reuse third-party modules, which have been already 
implemented and tested by others. On the other hand, the Intelligent Virtual 
Agent (N A) is in charge of making decisions, e.g. choosing the next action 
to take place, deciding what are the new goals of the agent, managing the 
dynamics of the agent' s emotions during the simulation, and so on. 
Information is stored here in an abstract way, leaving the high to low level 
binding to the Python layer. For instance, to indicate a specific fumiture in 
an office, we will specify it as the chair next to the window rather than x, y 
and z coordinates: this mapping is handled direct1y in Python. To conclude, 
the NA can be consider as the agent' s brain. 

2.2 Multiple inheritance architecture 

Running into ACE, the script for each agent should handle various 
capabilities, such as: perception, verbal communication, performing actions 
and connecting to the NA behavioural module. Thus, we split each 
capability into one dass and merged all of them into the definition of what 
an agent should be able to do. Using UML [3], we present in Figure 1 the 
definition of the Agent dass, as implemented in Python. 

Figure 1. Multiple inheritance architecture defining ODe agent 

Since each agent has a unique ID, we start by defining the AgID dass as 
a super dass, sharing the ID among the inherited dasses. From this, we 
derive three basic dasses, for the various capabilities, as pointed out before: 
the AgPerceive dass encapsulates all the methods that allow the agent to 
visually perceive objects and remembers when objects get onlout of focus. 



Communicative Autonomous Agents 221 

AgTalking lets the agent communicate by speaking to and hearing other 
agents. AgThread is the basic dass for running one thread per agent, which 
means that each agent is running its own code in its thread (these 
functionalities are provided by the standard Thread dass). Each thread is 
registered into an AgController which is then in charge of monitoring them. 
1t also pro vi des a shared space for exchanging information between the 
threads. 

The final Agent dass inherits from these three basic dasses, which of 
course means that our Agent is able to speak to someone, hear when 
someone speaks and perceive the objects in the environment. But the Agent 
still needs to use some other modules: the TasksHandler which is in charge 
of handling parallel tasks like walking, looking, playing keyframes, applying 
facial expressions or interacting with objects and the AgSocket: each agent 
should be connected in some way to its IV A behavioural module and this is 
achieved by this dass. The AgSocket dass is able to decode orders coming 
for the IV A or send stimuli like visual perception back to the it. By using 
sockets and TCPIIP connection, the system can run in a distributed way, 
reducing the CPU cost on the machine which is responsible of the 3D 
environment display. The communication between the Agent object and the 
corresponding IV A is summarised in Figure 2. 

ACE Agenl Commoo Environment 

1 001 
I Olsplay J 
I P)1rIoninl.erpre/jng , 

Figure 2. ACE system and connections to the Intelligent Virtual Agent (IV A) 

2.3 The use of threads 

One major improvement in adding the Python interpreter is the easy way 
of creating threads within it. Threads all run in parallel and efficient 
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synchronisation primitives are available, such as events. This is a very 
convenient way to perform actions in parallel. Blocking actions such as 
waiting for data or event (for instance, a task to finish) could easily be 
handled by such threads. While it is very tempting to use threads to mimic 
human capabilities of performing various actions at the same time, one 
should take care of not creating too many threads (let's say, one per action), 
since it might take too much epu time. That is why we are concemed in the 
next sections by simulating parallel behaviours within non-concurrent 
instructions too. 

Our Agent has mainly three threads: the Agent itself, the Tasks 
Handler, and the Agent Socket. The main task of the Agent is to be alert of 
what he sees, or hears, and to give the appropriate response when one of 
these events happens. Even if the agent is managing socket connections and 
parallel tasks, it has not to worry about this matters, because this is 
continuously handled by separated threads. The Tasks Handler is a thread 
that is managing the stacked tasks performed or to be performed by the 
Agent. This thread is in charge of choosing the tasks that will be triggered in 
the next time slot. The Agent Socket monitors the activity of the socket, this 
means, is in charge of reading from the socket the incoming data, and 
writing the outgoing data or feedback data to the IV A brain. 

3. INTERCONNECTING THE ANIMATION AND 
BEHAVIOURAL MODULES 

As we have already mentioned earlier, the agent' s animation in handled 
by Python scripts (and by the Agent dass) while behaviour selection and 
decisions are chosen into the Intelligent Virtual Agent. Both are connected 
through sockets, and the Agent Socket (defined in Python)n is in charge of 
interconnecting the high level orders coming from the IV A with orders 
understandable by the Agent defined in Python, and vice-versa. We can 
basically distinguish three kinds of communications: 

Figure 3. Communication between the Agent Python class and the IV A 
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1. Perceiving an object or another agent: whenever any new object is 
perceived, the method newPereeived inherited from AgPerceive returns 
true, and a message is created for the AgSocket (see Figure 3a). This 
message consists of a short description of what happened, and the ID of 
the perceived object. The AgSocket receives this message and translates 
it for the IV A brain, which finaly maps the ID to the corresponding 
object name. Similarly, the method newPereeived is also used to update 
the objects that are not visible anymore. 

2. Speaking to and hearing another agent: when someone starts to speak, 
the method ean-hear inherited from AgTalking returns true, and the 
Agent receives the incoming message. The is-speaking and the end-of­
message messages are ignored, because these ones are just used for 
synchronisation purposes. The AgSocket again is in charge of extracting 
the relevant information for the IV A brain, and creates a new message 
that contains the name of the agent who spoke, and the utterance. The 
speaking process is a little bit different, because it is the IV A this time 
which starts the conversation, as presented in Figure 3b. The message 
consists of the action that will take place (in that case, the action say), the 
agent receiver's name, and the text that the agent wants to say. The 
AgSocket receives this message and generates three new 
SpokenMessages: is-speaking, message-interehange (which carries the 
semantic) and end-of-message to finish the communication [16]. 

3. Walking, looking, playing keyframes or applying face actions: these 
tasks are treated in the same way by the Agent in Python, specifically by 
the Agent's Tasks Handler. Again, the IV A brain triggers the need of 
performing one of these tasks, sending a message to the AgSocket, which 
then activates the corresponding task callback associated with the task 
and push it into its Tasks Stack. The Tasks Handler keeps checking for 
the termination callback of all the tasks inside the Tasks Handler, and 
when the termination callback is triggered, a new message is sent to 
AgSocket to reflect the changes into the Agent's brain (see Figure 3e). 

4. THE IVA BRAIN: INTELLIGENT VIRTUAL 
AGENT 

The Intelligent Virtual Agent is based on a BDI architecture (Beliefs, 
desires and intentions), widely described by Georgeff [18]. This architecture 
is promising but needs some extensions for achieving our goal: giving to the 
virtual human the ability to act by itself in a dynamic environment relying on 
its beliefs, internal states, current state of the surrounded wOrld and 
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assumptions about other agents. It should also allow us to control it in real 
time [7]. 

4.1 IV A's components 

An IV A has all its knowledge organised into sets, which are distributed 
according to their functionality (Figure 4): the set of Beliefs, the set of 
Goals, the set of Competing Plans, the set of Internal states, the set of 
Beliefs About Others. Based on all its knowledge, the IV Ais able to select 
the correct action to perform, in order to achieve its goal. This process is 
done by the Behavioural Engine which will be explained later in this paper. 

Set of plans 

Plans 10 steal something 
Plans 10 have a rest 

Plans for hobbies 

t 
L..---''-'---''--'---' ~Iaire , 

-
Beliefs aboul others 

I John is my frien<! 

Beliefs 

I'mawoman 
I'm a stealer 

I don't know where 

Sratics 

can I foun<! information DynBrrW; 
I'm in lIG area 

Emotional states 

Tiredness 0 100 80 DSC 
Anxiety 0 100 30 DSC 

Figure 4. The Intelligent Virtual Agent (IV A) 

1. Beliefs are a set of statements that the IV A believes to be true. The 
agent' s beliefs are organised to let us simulate short term memory by the 
Short term beliefs (STB) , and everlasting memory by the Long term 
beliefs (LTB). 

2. IV As have one main Goal and one or several Subgoals. The main goal is 
the objective that the IV A is trying to achieve at a certain moment. 
During this process, an IV A has to deal with smaller subgoals on which 
the outcome of the larger one relies on. 

3. Internal states: The agent stores a set of internal states representing 
physiological or psychological variables of the virtual human. Internal 
state act as stimulus for the agent, i.e. a high hunger level will stimulate 
the agent to eat. An internal state iSi is described as a tuple: ( ni, mini, 
maxi,ci, cati ), where for any given intern al statei: ni is its name, mini 
is its minimum accepted value, maxi, the maximum accepted value, Ci 
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the current value, and cati is its category. Internal states are constantly 
being adjusted, as the simulation evolves and plans are adopted. Changes 
in the internal state are consequences of: the autonomous growth or 
damping associated with the internal state and the side-effects of an 
active behaviour. We categorise the internal states as ascendant (the 
higher the level the better), descendants and not categorised. 

4. Competing plans: An NA uses a set of competing plans that specified a 
sequence of actions required to reach its main goal. A competing plan Pi 
is described as: Pi = ( iSi' pCi, efi) , where: iSi is a list of internal states to 
be checked before the plan can be executed. Each of the internal states 
has an associated valid value or range. pCi is a list of preconditions 
which have to be true before the competing plan Can be triggered. The 
preconditions belong either to the agent' s beliefs or to the general 
knowledge stored in the world. efi is a list which contains the effects of a 
plan execution. When a plan is selected, changes at agent or world level 
will occur (new knowledge will be added and old one will be deleted). 
These changes are consequences of the plan' s effects. 

5. Beliefs about others: In our model each NA is autonomous, and Can 
accept or reject an order coming from the user or from another agent. 
Each NA inc1udes a set of Beliefs about others into which it stores the 
trust levels associated with them. An NA sees the user as another agent, 
and depending on the user' s category it will accept an order or not. The 
levels of trust will evolve during the simulation [7], following the Rinde 
statement: "Trust, once established in some degree, is often self­
reinforcing because individuals have stronger tendencies to confirm their 
prior beliefs than to disprove them." [11]. All N AS contain the name of 
the other agents and the level of trust associated to them. The value of 
acceptance for any order coming from a user is handled so that the 
higher/lower the trust level, the higher/lower the possibility of accepting 
the order. 

4.2 The Behavioural Engine (BE) 

The behavioural engine is in charge of updating the internal states of the 
NA and selecting its next action. It is composed of some controllers as 
shown in Figure 5. First the Event Controller checks in the pending events 
list for those events that trigger in a specific time slot to be integrated in the 
N A's knowledge. Then the Plan Seeker sequentially passes the plans to the 
Plan Controller which verifies if the plan will be trigger or not. A plan to be 
triggered needs to have the suitable internal states levels and to full-fill all 
the preconditions. The State Controller checks the internal states levels and 
if all of them have the appropriate values it will give the control to the 
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Precondition Controller, otherwise the Plan Seeker will search for the next 
plan to evaluate. The Precondition Controller searches if a11 the 
preconditions are full-filled from its local knowledge, or from the extemal 
knowledge (World Agent). If the Precondition Controller agrees with a11 the 
preconditions the Effects Performer will be ca11ed, in order to perform all the 
necessaries updates inside the IV A or in the World Agent, and send the 
selected action (if there is one) to the Virtual Human. 

Acho" '-'-.--'_ .•. __ .• _._._ .•.. _._._._._._ .... _._._, .. , .... 
'~--~-+----~~ i 

WolICI A 

~E,en~!$ +-c~PIan~ .... ~r - -'~!- •. ..(::l 
.- Event Controht -L..::...J 

t-_...1 . Behavloral Englne ! 
L ________ . ______ . __ . __ ~_._._ .. _. ____ .!Y~ 

Figure 5. Behavioural Engine 

5. CONCLUSION 

We have presented in this paper various requirements to go toward life­
like agents: our system has a multi-Iayered and distributed multi-Ianguages 
architecture. We used Tasks to combine primary actions altogether, and we 
have presented a model for simulating verbal communication. The high level 
IV A brain, independent of graphics specification, is able to intelligently 
interact with a lower level module to create one single unit: the Agent. 
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