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Abstract We approach the problem of example-based motion synthesis by trans­
forming motion data into a vector space representation. This allows 
many techniques successful for stationary object synthesis applicable to 
that of motion. Especially, by separating generation of motion into a 
time-consuming preprocess and a fast process, it lets on-the-fly motion 
synthesis able to use a rich set of examplar motions and handle motion 
attributes invariant for each individual, both of which are difficult to be 
addressed by previous approaches based on interpolation. 

1. INTRODUCTION 
Motion control of articulated figures such as humans has been a chal­

lenging task in computer animation [BPW93]. Once an acceptable mo­
tion segment has been created, either from key-framing, motion capture 
or physical simulations, reuse of it is important. 

This article describes example-based motion synthesis with paramet­
ric manipulation of motion attributes. This is done by transforming 
motion data into a vector space representation based on a linear combi­
nation of prototypical motions in fuH correspondencejalignment. This 
representation allows those techniques successful far the synthesis of sta­
tionary objects such as 2D images and 3D shapes applicable to motion. 

*This work is supported in part by PAVR under the EU Training and MobiJity of Researchers 
program. 
tThanks to Norman Badler for helpful discussions. 
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By separating motion generation into a time-consuming preprocess and 
a fast process, it also fits weIl to real-time animation for applications 
such as game and virtual reality while taking advantage of a rich set of 
examplar motions. 

In the foIIowing sections, we first describe related work of editing and 
reuse of motion data. A vector-space representation of stationary objects 
is briefty reviewed. We present its extension to motion data. Taking 
advantage of the representation, manipulation of motion attributes is 
introduced. First results of our approach with hand-crafted motion data 
follow it. We condude with discussions comparing ours with some of 
previous works. 

2. RELATED WORK 

Much of the recent research in computer animation has been directed 
towards editing and reuse of existing motion data. 8tylistic variations 
are learned from a training set of very long unsegmented motion-capture 
sequences [BHOO]. An interactive multi-resolution motion editing is pro­
posed for fast and fine-scale control of the motion [L899]. Whereas most 
of other methods may produce results violating the laws of mechanics 
[WP95], an editing method maintaining physical validity is suggested 
[PW99]. Motion editing is also done in frequency-domains [BW95] 
[U AT95]. Interpolation of existing motion data is employed for the on­
the-fty synthesis [RCB98] [WH97]. 

3. LINEAR COMBINATIONS OF 
STATIONARY OBJECTS 

The basic idea of the vector space representation by a linear combina­
tion of stationary objects can be described as foIIows, first proposed by 
Ulman and Basri [UB91] and foIIowed up for 2D images [BP96][VP97] 
and 3D geometries [BV99] [8heOO]. It is based on a data set of stationary 
objects in a same dass. All of these exemplar objects are assumed in fuII 
correspondence, which can be done using techniques based on optic ftow 
algorithms [BP96][BV99][VP97]. Given a set of m exemplar objects in 
fuII correspondence, characterized by feature vectors Xl, ... , X m such as 
pixels for 2D images or vertices for 3D geometries, a linear combination 
of them produces a new object in the same dass: 

m 

This linear combination is meaningful or valid since all the examples are 
in full correspondence: unless the 2D images align pixel-to-pixel, for ex-
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ample, a simple linear combination of them would look like a transparent 
superposition of different images rather than a new image in the same 
dass. The vectors Xi comprise the basis of a linear vector space. The 
method parametrizes a continuous dass of objects and the weight vector 
W = (WI, ... , wm ) characterizes each object of this dass in a compact 
way. Object transformations, like view point changes in 2D images of 
an object [UB91] or attribute manipulation in 3D faces [BV99], can be 
expressed in terms of changes in the weight vector. 

4. LINEAR COMBINATIONS OF MOTIONS 
Motion can be described by a set of motion curves each giving the 

value of one of the model's parameters as a function of time, e.g. joint 
angles over time for articulated objects such as human figures. 

For instructional purposes, we start with motion data of just a sin­
gle curve O(t). We represent the motion data with a shape-vector S = 
(OI, ... ,On) E ~n and a timing-vector T = (tI, ... , tn) E ~n where Oj 
giving the value of 0 at time tj, i.e. Oj = O(tj). Given m exemplar 
motions, each represented by its shape-vector and timing-vector, an ar­
bitrary motion among them is chosen as a reference motion, Sref and 
T ref. Correspondence between all other motions and this reference is 
computed, which can be done automatically by a time-warp algorithm 
[BW95]: each shape-vector is warped into the reference Sref and its cor­
responding timing-vector is accordingly recomputed. New shapes Smod 

and new timings T mod can be expressed as a linear combination of the 
shapes and timings of the m exemplar motions in full correspondence: 

m m 

Smod = 2: aiSi, Tmod = 2: biTi . 

i=1 i=1 

For motion data consisting of a set of motion curves O(1)(t), ... , O(k) (t) 
for articulated bodies such as human figures, a shape-vector and a timing­
vector can be straightforwardly extended by concatenating those of the 
. _ ( (1) (1) (k) (k») nk smgle curves such as S - 01 , ... , On , ... ,01 , ... , On E ~ and 

T - ( (1) (1) (k) (k») IOnk T' . - t 1 , ... , t n , ... , t 1 , ... , t n E::J1.. hIS representatlOn para-
metrizes a continuous dass of motions by the weight vectors a: = 

-77 
(a1, ... , am ) and b = (bI, ... , bm ) in a compact way and motion ma-
nipulation / transformation can be expressed in terms of changes in the 
weight vectors, analogous to that of stationary objects as above. 

Principal Component Analysis (PCA) [Jac91] can be employed for a 
basis transformation to an orthogonal coordinate system with the eigen­
vectors of the covariance matrices computed over the shape and timing 
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differences with their averages S and T, respectively. This will lead to 
further data compression and level-of-details as explored for stationary 
objects [AMOO] [BHOO] [PW89]. 

5. MOTION ATTRIBUTES 

For the functional relationship between the weight vectors and the 
continuous parameters of interest, we adopt the technique used for geo­
metrie models of 3D faces [BV99]: radial basis functions network [Bis95] 
[GJP95] are often used for the similar purposes [BP96][SheOO]. Based 
on a set of motions (Si, Ti) with labels f.1i describing the markedness of 
the attribute, we compute the weighted sums 

m m 

6S = L f.1i (Si - S), 6 T = L f.1i (Ti - T) . 
i=l i=l 

Multiples of (6S,6T) can now be added to or subtracted from any 
individual motion generated by the motion model, which will manipu­
late a specific attribute while keeping all other attributes as constant as 
possible. Motion caricature is also possible, analogous to that of a face 
[Bre85] [BV99]. Individual motions are caricatured by increasing their 
distance from the average motion. 

6. RESULTS 
We performed experiments with hand-crafted motion data of ten ex­

amples similar but distinct (Figure 1). The key-framed data were re­
sampled densely, 64 samplings over 2 seconds or so for each of 75 degree­
of-freedom as if simulated/captured data: a vector of 4800 dimension. 
These examples went through a basis transformation by PCA (Figure 
2). To illustrate the manipulation of motion attributes, two attributes 
vectors were extracted and applied: one for the height of a human fig­
ure's right hand, the other for energy (Figure 3). Motion caricatures 
were also generated with different degree of distinctiveness (Figure 4). 

7. DISCUSSIONS AND CONCLUSIONS 
A vector space representation of motion data based on a linear com­

bination of prototypes is presented for example-based motion synthesis 
analogous to that of stationary objects. Due to the representation, many 
techniques successful for synthesis of stationary objects become appli­
cable to motion synthesis and are done in a compact way with the low 
dimensional weight vector of the linear combination. 
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Especially noticeable, among them, is the extraction of motion at­
tribute vectors which, when added to or subtracted from a motion, will 
manipulate a specific attribute of motion while keeping all other at­
tributes as constant as possible: adopted from a technique to handle 
attributes such as weight, age, and gender of faces [BV99], the motion 
attribute vectors can deal with those invariant for each individual. This 
separates generation of motion into a preprocess that may require com­
plex and time-consuming computations, and a process that is fast and 
tolerant of various types of complexity: one for the extraction of the mo­
tion attribute vectors, the other for the additionjsubtraction of them. 
Even on-the-fty motion synthesis can, hence, take advantage of a rich 
set of example motions while only a sm all set of examples are interpo­
lated for the motion synthesis in previous works [RCB98] [WH97], hardly 
handling those attributes invariant for each individual. 

The basis transformation to one formed by the eigenvectors of the 
covariance matrix is often considered for dimension reduction or level­
of-details [AMOO] [BV99] [PW89]. Characterizing the variation between 
the examples, the eigenvector representation also serves weIl for efficient 
generation of motion variations which should be especially useful for 
applications such as crowd motions [MGT99]: altering the weights is 
more efficient and of better quality than directly perturbing the motion 
curves in a data-independent way [Per95]. 

The linear combination of stationary objects is also suggested for com­
puter animation [AMOO] [BV99] [EPOO] [PW89]. This linear combination 
in space may be suitable for a single stream of motion data. For a set of 
motions, however, a linear combination in space-time as done here fits 
better in terms of computation and storage. 

Lately, in computer vision, a similar not ion of the vector space rep­
resentation is proposed for synthesis and analysis of motion patterns 
[GPOO]. Handling video sequences directly without any 3D model, its 
motion synthesis is limited to, for example, that of similar view angles 
and the motion correspondence becomes complicated, being a spatio­
temporal correspondence problem. In our approach, however, 3D model­
based representations such as joint angles are used so that it is suitable 
for 3D animation and its motion correspondence problem is reduced to 
that of temporal correspondence for which a time-warp algorithm can 
be used [BW95]. 
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Figure 1 Five of ten similar hut distinct example motions used for the motion syn­
thesis. 
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Figure 2 Three of the eigenvectors scaled by ±constants are added to the average 
motion. 
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Figure 3 Motion Attributes. (Upper) the height of the human figure's right hand, 
high/low and (Lower) the energy of the human figure, high/low. 
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Figure 4 Motion Caricature. (Starting from the bottom) the average motion, the 
original motion and two of its caricatures with different degrees of distinctiveness. 
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