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Abstract Influenza viruses pose a substantial threat to human and animal health
worldwide. Recent studies in mouse models have revealed an indispensable role
for the innate immune system in defense against influenza virus. Recognition of
the virus by innate immune receptors in a multitude of cell types activates intricate
signaling networks, functioning to restrict viral replication. Downstream effector
mechanisms include activation of innate immune cells and, induction and regu-
lation of adaptive immunity. However, uncontrolled innate responses are associ-
ated with exaggerated disease, especially in pandemic influenza virus infection.
Despite advances in the understanding of innate response to influenza in the mouse
model, there is a large knowledge gap in humans, particularly in immunocom-
promised groups such as infants and the elderly. We propose here, the need for
further studies in humans to decipher the role of innate immunity to influenza
virus, particularly at the site of infection. These studies will complement the
existing work in mice and facilitate the quest to design improved vaccines and
therapeutic strategies against influenza.

Contents

1 Introduction.......................................................................................................................... 24
2 Innate Immunity to Influenza Virus ................................................................................... 26
3 Cells of the Innate Immune System Involved in Immunity to Influenza ......................... 26

3.1 Respiratory Epithelial Cells ....................................................................................... 26
3.2 Neutrophils .................................................................................................................. 27
3.3 Macrophages (MU)..................................................................................................... 28
3.4 Monocytes ................................................................................................................... 28
3.5 Dendritic Cells (DCs) ................................................................................................. 33
3.6 Natural Killer (NK) Cells........................................................................................... 35

B. Pulendran (&) � M.S. Maddur
Emory Vaccine Center, Yerkes National Primate Research Center, Emory University,
954 Gatewood Road, Atlanta, GA 30329, USA
e-mail: bpulend@emory.edu

Current Topics in Microbiology and Immunology (2015) 386: 23–71 23
DOI: 10.1007/82_2014_405
� Springer International Publishing Switzerland 2014
Published Online: 31 July 2014



3.7 Natural Killer T (NKT) Cells .................................................................................... 35
3.8 Innate Lymphoid Cells (ILCs) ................................................................................... 36
3.9 Other Innate Immune Cells ........................................................................................ 36

4 Virus Binding Surface Receptors ....................................................................................... 36
4.1 Sialic Acid-Containing Receptors .............................................................................. 36

5 Virus Sensing Receptors ..................................................................................................... 38
5.1 C-Type Lectin Receptors (CLRs) .............................................................................. 38
5.2 Toll-Like Receptors (TLRs)....................................................................................... 39
5.3 RIG-I-Like Receptors (RLRs).................................................................................... 44
5.4 NOD-Like Receptors (NLRs)..................................................................................... 45

6 Effector Molecules of Innate Immunity ............................................................................. 46
6.1 Cytokines and Chemokines ........................................................................................ 46
6.2 Soluble Innate Mediators............................................................................................ 46
6.3 Intrinsic Antiviral Factors .......................................................................................... 47

7 Innate Control of Adaptive Immunity to Influenza ........................................................... 49
7.1 Innate Immune Cells .................................................................................................. 49
7.2 Virus Sensing Receptors............................................................................................. 52

8 Pathogenic Role of Innate Immunity to Influenza Virus Infection................................... 53
9 Systems Vaccinology of Influenza Vaccines ..................................................................... 54
10 Conclusions and Perspectives ............................................................................................. 55
References.................................................................................................................................. 56

1 Introduction

Influenza viruses pose a substantial threat to human and animal health worldwide.
Based on the antigenic specificity of their envelope proteins, influenza viruses are
classified into three distinct types: A, B, and C. Influenza A virus is the major type
that circulates in humans, birds, horses, dogs, and pigs. Influenza virus has a
negative sense, single-stranded RNA genome composed of eight segments, which
encode up to 13 proteins (Wright et al. 2013). Influenza A virus is further classified
into different subtypes based on the antigenic properties of two glycoproteins, the
hemagglutinin (HA) and neuraminidase (NA). Influenza virus causes annual epi-
demics that result in millions of human infections due to the emergence of virus
strains arising from high frequency of point mutations (antigenic drift). Further-
more, it also has high potential to cause pandemics, owing to the generation of
novel subtypes, especially in animal reservoirs, following the gene reassortments
between different influenza viruses (antigenic shift) (Medina and Garcia-Sastre
2011; Tscherne and Garcia-Sastre 2011). Such new variants of influenza virus
possess an array of strategies to disarm the host immune system, and enable
productive invasion of host cells.

Influenza virus infection in humans can result in a wide range of disease symp-
toms, from an asymptomatic infection to a severe form of febrile respiratory disease.
(Taubenberger and Morens 2008). These acute symptoms may last for 7–10 days,
but in most cases influenza virus infection is self-limiting due to the induction of
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protective immune response (Valkenburg et al. 2011). Enhanced disease severity
associated with high mortality is very common in infants, but also in the elderly
and in immunocompromised populations (Taubenberger and Morens 2008).
Therefore, a key challenge is learning how to induce protective immunity in pop-
ulations at the extremes of age and in immune compromised subjects. This in turn
requires a much deeper understanding of the nature of the innate and adaptive
immune systems in these populations.

Although virus is restricted to the respiratory tract and cleared efficiently in most
cases, acute fatal infections are associated with systemic spread of virus, particu-
larly in pandemic influenza virus infections (Taubenberger and Morens 2008; Tse
et al. 2011). In the United States, more than 36,000 deaths and 200,000 hospital-
izations with a total health care cost of $10 billion are associated with influenza
infections every year (Mao et al. 2012; Molinari et al. 2007; Taubenberger and
Morens 2008). Because of the potentially devastating consequences of influenza
pandemics and epidemics, several control measures, such as annual vaccination
with either inactivated (IIV) or live attenuated (LAIV) influenza vaccines, are used
to prevent the likelihood of future outbreaks. These vaccines incorporate the cir-
culating strains of influenza A/H1, A/H3, and B types, which are expected to
emerge in the upcoming season, based on epidemiological data obtained from
around the globe (Centers for Disease Control and Prevention 2011). Immunization
with influenza vaccines, similar to virus infection, primarily induces virus-specific
antibody responses, in the blood as well as the local respiratory tissues (Clements
et al. 1986). Although vaccination induce a protective B cell memory response, the
numbers of antibody secreting cells wane rapidly over time (Sasaki et al. 2007),
leading to reduced antibody titers, which may not be sufficient to prevent virus
infection (Castilla et al. 2013; Song et al. 2010). In addition, the potential for
emergence of new strains and particularly novel subtypes of influenza virus against
which there is no immunological memory in the population, poses major threats to
human health.

Based on extensive studies in mouse models and influenza-infected patients, it
is becoming clear that the innate immune response is critical for virus control and
plays a key role in the induction and regulation of adaptive immune responses.
Paradoxically, evidence is also emerging that an exaggerated innate immune
response can lead to enhanced pathophysiology including influenza-induced acute
respiratory distress syndrome (ARDS) in individuals with secondary complications
such as chronic respiratory or cardiac illness, or diabetes. In this review, we
discuss recent advances in our understanding of innate immunity to influenza
virus, with particular emphasis on the different subsets of innate immune cells
involved, the nature of the innate receptors that sense the virus, and the antiviral
effector molecules. Furthermore, we highlight the contrasting roles played by the
innate immune system in mediating protective antiviral immunity to influenza,
versus enhanced pathophysiology and disease severity. Most of these insights have
resulted from the mechanistic studies in animal models, in which specific subsets
of cells or specific receptors have been ablated using gene targeting. However, the
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extent to which such insights can be translated into the human model is poorly
understood. Thus, we review the knowledge gap about the roles of the various
subsets of antigen (Ag) presenting cells and other subpopulations of innate
immune cells during influenza infection in humans. We emphasize here, the
paramount need for future studies deciphering the role of innate immune response
to influenza virus at the site of infection in humans. We believe that these studies
will facilitate better understanding of the mechanisms that mediate pathogenesis of
disease, and in designing improved vaccine and therapeutic strategies against
influenza.

2 Innate Immunity to Influenza Virus

Influenza virus primarily targets the respiratory epithelial cells after breaking
through the first innate barrier, the mucous layer. In the majority of individuals
infected with the seasonal influenza virus, the virus replication is restricted to the
upper respiratory tract (nose, pharynx, and larynx). However, in some cases,
the virus can also reach the lower respiratory tract (trachea, bronchi, and lung
alveoli) in infections with pandemic strains, especially in children and the elderly.
Avian influenza virus, such as H5N1 and H7N9, can even reach the blood circulation
to infect cells in distant tissues (Taubenberger and Morens 2008; Tse et al. 2011).
Attachment to cells via virus-binding receptors enables endocytic uptake resulting
in recognition of the virus through innate receptors, which trigger intricate signaling
networks to produce antiviral effector molecules that are capable of conferring the
protective immunity.

3 Cells of the Innate Immune System Involved
in Immunity to Influenza

3.1 Respiratory Epithelial Cells

It has been demonstrated in fatal human cases as well as in mouse model that the
epithelial cells of alveoli (type I and II pneumocytes), trachea, bronchi, nose,
pharynx and larynx, and sub mucosal glands are infected by influenza virus
(Manicassamy et al. 2010; Nakajima et al. 2012, 2013; Pan et al. 2013). Influenza
virus causes productive infection of these epithelial cells resulting in the release of
large numbers of infectious virus progeny. Notably, the temperature of nose and
pharynx is 30–34 �C, which is relatively lower than the tracheal and internal body
temperature (36–37 �C). Human influenza viruses, but not avian viruses, can
replicate efficiently at this lower temperature of upper respiratory tract, similar to
that at 37 �C (Boonnak et al. 2012; Pelletier et al. 2011). Although different innate
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immune cells are found in nasal and pharyngeal cavity, the functional features of
innate immunity against pathogens at this lower temperature is not known.

In vitro, primary human type II alveolar cells produced type III IFNs in
response to human seasonal influenza virus (Wang et al. 2009), whereas differ-
entiated/polarized human bronchial epithelial cells upregulated the expression of
type I IFNs upon infection with human influenza virus, but not avian H5N1
influenza virus (Chan et al. 2010; Gerlach et al. 2013; Hsu et al. 2012; Zeng et al.
2007). These findings are consistent with the idea that the activation of type I IFN
response in respiratory epithelial cells is crucial for limiting the initial viral
infection, since the impaired type I IFN production by H5N1 virus is associated
with severe virulence.

In addition to the initial IFN-mediated antiviral response, epithelial cells secrete
various cytokines and chemokines such as IL-6, TNF-a, IL-8/CXCL8, CXCL10,
CCL2, CCL5 (Chan et al. 2005, 2009; Vareille et al. 2011; Wang et al. 2011; Yu
et al. 2011). Furthermore, influenza virus-infected epithelial cells trigger recruit-
ment of an array of innate immune cells, which participate in the protective
immune response (Table 1). Interestingly, a recent study in mice showed that
expression of GM-CSF by influenza virus-infected alveolar epithelium is essential
for effective viral clearance mediated by CD103+ DC-induced CD8+ T cells
(Unkel et al. 2012).

3.2 Neutrophils

Neutrophils arrive very early at the site of infection, and together with the tissue-
resident macrophages are among the first line of cellular defense against patho-
gens. Although influenza viruses are phagocytized by neutrophils in humans and
mice (Brandes et al. 2013), neutrophils are not permissible for productive infection
in vitro (Tate et al. 2011). Neutrophils are shown to be important for controlling
replication and spread of influenza virus in mouse models (Fujisawa 2001). Lethal
dose infection of mice depleted of neutrophils results in increased virus titers in the
lungs and in extrapulmonary sites with increased mortality (Tate et al. 2008, 2009,
2011; Tumpey et al. 2005) (Table 1). Consistent with this, in an in vitro culture of
human bronchoalveolar lavage fluid (BALF), addition of neutrophils, particularly
activated neutrophils, resulted in significantly greater clearance of influenza virus
(White et al. 2007). As phagocytic cells, neutrophils can uptake influenza virus-
infected apoptotic cells in the lungs to augment clearance of virus (Hashimoto
et al. 2007; Watanabe et al. 2005). Despite neutrophils being important partici-
pants in the antiviral response in mouse models, the phenotype and functional
relevance of large number of neutrophils that accumulate at the site of infection in
influenza virus-infected patients, and their mechanisms of anti viral immunity, are
poorly understood.
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3.3 Macrophages (MU)

These include both tissue-resident alveolar macrophages (aMU) as well as recently
recruited MU derived from circulating monocytes (moMU) (Table 1). In mouse
models, during the course of influenza virus infection, aMU are outnumbered by the
migrant monocytes, which differentiate into MU with an activated phenotype
(Herold et al. 2008). Because of their efficient phagocytic capacity, like neutrophils
MU are critical for clearance of virus-infected and apoptotic cells (Hashimoto et al.
2007; Hoeve et al. 2012; Watanabe et al. 2005). In the absence of MU, influenza
virus replication is enhanced, leading to greater disease severity and mortality, in
mice and pigs (Ito et al. 2011; Kim et al. 2008, 2013; Tate et al. 2010; Tumpey et al.
2005). In humans, most of the studies were done employing in vitro culture of aMU
obtained from BALF or lung specimens and blood monocyte-derived MU (moMU).
Compared to moMU, aMU are considered to be resistant to productive infection
with the seasonal human influenza virus strains in vitro. Consistent with this,
influenza virus replication and induction of proinflammatory cytokine responses
were much poorer in aMU when compared with moMU (van Riel et al. 2011). In the
case of avian influenza, however, the virus is able to productively infect both
moMU and aMU (reviewed in Short et al. 2012). Notably, highly pathogenic H5N1
viruses are found to induce more potent proinflammatory cytokine responses, and
IFN production than seasonal human viruses (Cheung et al. 2002; Geiler et al. 2011;
Lee et al. 2009; Perrone et al. 2008; Yu et al. 2011; Zhou et al. 2006). Moreover,
aMU are believed to be the main producers of type I IFN, since they are shown to
produce significantly more type I IFNs than DCs during influenza virus infection
(Helft et al. 2012). Thus, MU appear to play critical role in the early innate response
to influenza virus infection.

3.4 Monocytes

There are three monocyte subsets identified in the blood, which includes classical
monocytes (CD14++CD16- in humans), intermediate monocytes (CD14++CD16+

in humans), and the so-called patrolling monocytes (CD14loCD16++ in humans)
(Cros et al. 2010; Ziegler-Heitbrock et al. 2010) (Table 1).

Increased number of monocytes are found in the nasal mucosae, the first site of
infection (Gill et al. 2005, 2008; Oshansky et al. 2013) as well as in the peripheral
blood of influenza virus-infected patients (Giamarellos-Bourboulis et al. 2009; Gill
et al. 2005, 2008; McClain et al. 2013; Oshansky et al. 2013). Interestingly, in
influenza virus-infected mice, type I IFN-signaling was found to augment the dif-
ferentiation of stem cells into CCL2-producing monocytes, which mediate
the recruitment of additional monocytes (Brandes et al. 2013; Seo et al. 2011).
Consistent with this, influenza virus infection of human monocytes induces the release
of CCL2 and CXCL10 (Hoeve et al. 2012; Maddur and Pulendran, unpublished data),
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but inhibits the responsiveness to chemokines, such as CCL2, CCL3, CCL4, and
CCL5 by downregulation of their respective chemokine receptors (Salentin et al.
2003), presumably to retain these cells at the site of infection.

As discussed earlier, in addition to transformation to moMU, monocytes that
migrate to influenza virus-infected tissues can also differentiate into monocyte-
derived dendritic cells (moDCs) (Cao et al. 2012; Lin et al. 2008; Unkel et al.
2012). In vitro studies have shown that productive influenza virus infection of
human monocytes induces secretion of TNF-a and GM-CSF, and triggers rapid
transformation into cells with phenotypic features of DCs (Cao et al. 2012; Hou
et al. 2012; Qu et al. 2003). In contrast, we found that infection of monocytes with
influenza virus did not induce activation and TNF-a secretion, but merely induces
the loss of CD14 resulting in DC-like phenotype (CD11c+CD14-). Despite the
phenotypic similarity to DCs, these CD14- cells lack the functional properties of
DCs (Maddur and Pulendran unpublished data). Mice with reduced numbers of
monocytes at the site of infection, such as CCR2-/- mice or mice treated with a
CCR2 antagonist did not show increased viral loads, raising the question of the
direct role of monocytes in virus clearance (Lin et al. 2008, 2011). Furthermore,
the relevance of these findings of mouse models and in vitro studies to influenza
human patients is not clear and is worth investigating for understanding the role of
monocytes in influenza.

3.5 Dendritic Cells (DCs)

DCs are rare but widely distributed throughout the body, and function as key or-
chestrators of the immune response (Banchereau and Steinman 1998; Manicassamy
and Pulendran 2011; Pulendran et al. 2010b; Steinman and Banchereau 2007).

3.5.1 DC Subsets

In mice, DCs can be broadly classified as CD11chi conventional DCs (cDCs) and
CD11clo B220+ plasmacytoid DCs (pDCs). In the steady-state respiratory tract, the
epithelial layer of conducting airways is lined by CD103+CD11blo cDCs (langerin+),
which extends their long dendrites into the airway lumen. The lamina propria, which
is beneath the epithelial layer, contains CD103-CD11bhi cDCs (langerin-) as well as
CD11clo pDCs. Further, all the three DC subsets are found in the alveolar septa of
lung parenchyma. Under inflammatory conditions, additional CD11cloCD11-
b+Ly6C+ moDCs are recruited to the conducting airways and lung parenchyma
(Guilliams et al. 2013; Helft et al. 2010; Lambrecht and Hammad 2009, 2012). Of
note, in the lungs, MU subsets, which are CD11chi, must be distinguished from cDCs
based on other markers (Table 1). The respiratory tract draining lymphoid tissues
contain resident DC subsets such as, CD8a+ cDCs, and CD11b+ cDCs as well as
CD11clo pDCs, in addition to migratory DCs (Haniffa et al. 2013; Helft et al. 2010).
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In influenza virus-infected mice, there is an increased accumulation of
CD103-CD11bhi cDCs as well as CD103+CD11blo cDCs in the trachea and lung
interstitial tissue, with a transient increase in CD11clo pDCs, all of which display
an activated phenotype (GeurtsvanKessel et al. 2008; Ho et al. 2011; McGill et al.
2008). In addition, CD11cloCD11b+Ly6C+ moDCs also infiltrate the lungs in high
number (Guilliams et al. 2013; Lin et al. 2008, 2011). pDCs are considered to be
less susceptible to influenza virus infection, compared to the highest susceptibility
of CD103+ cDCs and CD11b+Ly6C+ moDCs, and that of intermediate suscepti-
bility of CD11bhi cDCs (Hao et al. 2008; Hargadon et al. 2011). Of relevance,
murine DCs are considered to be less susceptible to productive influenza virus
infection than human DCs in vitro (Hartmann et al. 2013; Ioannidis et al. 2012).

In addition to secretion of inflammatory cytokines and chemokines, DCs effi-
ciently migrated to the regional mediastinal LN (MLN) and induce protective
adaptive immune responses to augment viral clearance (see later sections)
(GeurtsvanKessel et al. 2008; Helft et al. 2012; Ho et al. 2011; Kim and Braciale
2009; McGill et al. 2008; Unkel et al. 2012). Consistent with these findings, an
effective reduction in influenza virus replication in the lungs and enhanced survival
of infected mice was observed following adoptive transfer of CD11chi cDCs 1 day
before infection (GeurtsvanKessel et al. 2008) or influenza virus-activated bone
marrow-derived DCs (BMDCs) 1 day after infection (Boonnak et al. 2013).
Conversely, removal or loss of pDCs and/or migratory cDCs in mice prior to
influenza virus infection resulted in higher viral load in the lungs with increased
mortality, supporting the contribution of DCs in viral control (GeurtsvanKessel
et al. 2008; Kaminski et al. 2012; McGill et al. 2008).

In humans, similar to mice, two lineages of DCs are identified, which include
CD11c+CD123lo myeloid DCs (mDCs) and CD11c-CD123hi pDCs. The respiratory
tract has both mDCs and pDCs. Further, CD1c+ mDC1 (CD1a+langerin-/+), which
resemble Langerhans cells and CD141+ mDC2 (CD1a-langerin-) subsets of mDCs
identified in the human lungs are proposed to correspond to CD103-CD11bhi cDC
and CD103+CD11blolangerin+ cDC subsets in mice, respectively (Haniffa et al.
2012; Yu et al. 2013) (Table 1). The draining lymphoid tissue contains pDCs and
CD1c+ mDC1 as well as CD141+ mDC2 (Segura et al. 2012).

Studies have observed an increased number of mDCs and pDCs in the nasal
mucosa, but a decreased number in the peripheral blood of influenza virus-infected
patients (Gill et al. 2005, 2008; Huang et al. 2013), supporting the recruitment of
circulating DCs to the site of infection. Furthermore, influenza virus infection
induced activation of human DC subsets including CD1c+ mDC1, pDC and
moDCs characterized by upregulation of expression of HLA-DR, HLA-ABC,
CD80, CD86, CD40, and CCR7 (Fonteneau et al. 2003; Larsson et al. 2000; le
Nouen et al. 2011; Osterlund et al. 2005; Piqueras et al. 2006; Smed-Sorensen
et al. 2012). Interestingly, although enhanced production of IL-6, IL-8, and CCL2
was observed in pandemic H1N1 2009 influenza virus-infected patients (Lee et al.
2011), in vitro virus infection failed to enhance cytokine secretion in human
moDCs (Osterlund et al. 2010). Consistent with this, influenza virus infection of
moDCs failed to induce maturation and production of IFN-a, TNF-a, and IL-6, due
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to the suppressive effects of NS1 protein (Fernandez-Sesma et al. 2006). Notably,
exposure to type I IFNs prior to influenza virus infection was found to enhance the
activation and cytokine secretion of mDCs and pDCs, by partially overcoming
the inhibition by IFN antagonist NS1 protein of influenza virus (Fernandez-Sesma
et al. 2006; Phipps-Yonas et al. 2008).

3.6 Natural Killer (NK) Cells

NK cells possess unique natural cytotoxicity receptors (NCRs) such as NCR1 in
mice, and NKp30, NKp44, and NKp46 in humans, involved in recognition of
viral- and tumor-associated molecules and activation of NK cells (Jost and Altfeld
2013). Influenza virus productively infects human NK cells in vitro (Mao et al.
2009, 2010) as well as mice NK cells in vivo (Guo et al. 2009). In mouse models
of influenza virus infection, there is a substantial increase in the population of
activated NK cells expressing CD107a and IFN-c in the lungs, which can lyse
influenza virus-infected cells through granzyme B and perforin, and contribute to
the virus control (Ge et al. 2012; He et al. 2004; Hwang et al. 2012; Verbist et al.
2012). Accordingly, NK cell–depletion (Ge et al. 2012) or defects in NK cell
activity (Gazit et al. 2006) resulted in delayed virus clearance from the lungs with
worsen disease in mouse models of sublethal influenza virus infection.

Consistent with this, in humans, NKp46 and NKG2D-mediated recognition of
HA on influenza virus-infected cells induced NK cell-mediated cytolysis of target
cells (Draghi et al. 2007; Mandelboim et al. 2001). However, in contrast to these
in vitro findings, virus infection was associated with transient deficiency of cir-
culating NK cells, particularly CD56+++ NK cells, and downregulation of NK cell
activity, especially with pandemic H1N1 2009 influenza patients (Denney et al.
2010; Fox et al. 2012; Guo et al. 2011; Heltzer et al. 2009). It is not clear whether
the reduced number of NK cells in peripheral blood is a reflection of augmented
recruitment of NK cells to the site of infection, the respiratory tract. However, the
fatal cases of influenza virus infections showed reduced number or absence of NK
cells in lung inflammatory infiltrate (Denney et al. 2010; Welliver et al. 2007).
Consistent with this, studies have found that influenza virus-infection of NK cells
inhibits their functions of cytotoxicity and cytokine and chemokine secretion in
humans (Mao et al. 2010) as well as in mice (Guo et al. 2009).

3.7 Natural Killer T (NKT) Cells

These are a heterogeneous group of T cells that share properties of both T cells and
natural killer (NK) cells. Many of these cells recognize the non-polymorphic
CD1d molecule, an Ag-presenting molecule that binds self- and foreign lipids and
glycolipids (reviewed in Bendelac et al. 2007).
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In mice, influenza virus-activated invariant NKT cells were found to reduce viral
load and the immune-pathology during lethal influenza virus infection by different
mechanisms mediated by IFN-c and IL-22 (Kok et al. 2012; Paget et al. 2011).
Interestingly, in influenza virus-infected mice as well as in humans, activated iNKT
cells were found to diminish the immunosuppressive effect of influenza virus-
induced myeloid-derived suppressor cells (MDSCs) through CD1d- and CD40-
mediated interactions (de Santo et al. 2008). Despite these striking observation, the
role of NKT cells in humans, particularly at the site of infection is unexplored.

3.8 Innate Lymphoid Cells (ILCs)

In mice as well as in humans, ILCs include three groups of cells, (1) IFN-c-
producing NK cells and ILC1, (2) IL-4/IL-5/IL-13-producing ILC2, and (3) IL-17/
IL-22-producing ILC3 and LTi (lymphoid tissue-induce) cells (Spits et al. 2013).
Recent studies have revealed the diverse role of ILC2 in influenza virus infection.
In mice lacking T cells and B cells, ILC2 cells were found to accumulate in the
lungs following sublethal influenza virus infection, and were critical for sustaining
lung epithelial barrier and remodeling of respiratory tissue through secretion of
amphiregulin (Monticelli et al. 2011). In contrast, sublethal influenza virus
infection triggered airway hyper-reactivity (AHR) is shown to be mediated by IL-5
and IL-13–producing ILC2 (natural helper cells) that are activated by IL-33
secreted by aMU and NKT cells (Chang et al. 2011; Gorski et al. 2013). The
significance of these cells during human influenza needs to be determined.

3.9 Other Innate Immune Cells

In spite of the presence of other innate immune cells like mast cells, eosinophils
and basophils in the lungs and airways, the interaction of these cells with influenza
virus is not fully explored.

4 Virus Binding Surface Receptors

4.1 Sialic Acid-Containing Receptors

Sialic acid (SA, N-acetylneuraminic acid) is identified as the primary attachment site
on the cell surface that interacts with the receptor-binding site within the globular
head of HA of influenza viruses (Skehel and Wiley 2000; Wilson and Cox 1990).
Following the interaction of virus with SA-containing receptors, entry into the cell
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might involve clathrin-mediated endocytosis or caveolin and clathrin independent
mechanism (de Vries et al. 2011; Lakadamyali et al. 2006).

Sialic acid is added to surface proteins as part of post-translational modification.
SA consists of nine carbon sugar frequently attached to underlying terminal gal-
actose residue of glycoproteins or glycolipids of cell surface receptors by either
a2,3 (SAa2,3Gal) or a2,6 (SAa2,6Gal) linkage (Wilson and Cox 1990). The SA
and its linkage is critical for facilitating influenza virus infection of epithelial and
immune cells, since enzymatic switching of SA linkage or removal of cell-surface
SA can alter susceptibility or confer resistance to influenza virus infection. It has
been observed that human influenza virus strains usually bind SAa2,6Gal, whereas
avian influenza virus strains have preference for SAa2,3Gal linkage, (reviewed
in Londrigan et al. 2012). Thus, SA is considered to be an important determinant
of virus tropism and contributes to viral pathogenesis and induction of immune
response.

In the human respiratory tract, using lectins specific for SA linkage, epithelial
cells of the nasal mucosa, paranasal sinuses, the pharynx, the trachea, and the
bronchi and bronchioles were found to predominantly express SAa2,6Gal, with
SAa2,3Gal expression being rare (Shinya et al. 2006). However, the cells of the
lower respiratory tract, including non-ciliated cuboidal bronchiolar cells and the
type II pneumocytes of alveoli predominantly expressed SAa2,3Gal (Ibricevic
et al. 2006; Shinya et al. 2006; Thompson et al. 2006). Although a similar pattern
of SAa2,3Gal expression is observed in mouse respiratory tract, SAa2,6Gal is not
expressed (Ibricevic et al. 2006) (Table 1). In the human innate immune cells, cell
surface expression of SAa2,6Gal is found to be predominant compared to
SAa2,3Gal (Corral et al. 1990; Hartshorn et al. 1995; Nicholls et al. 2007; Ramos
et al. 2011; Sakabe et al. 2011; Videira et al. 2008) (Table 1).

Despite these observations of differential expression of SA-linkages on cells
and its significance in virus attachment, the identity of SA-containing receptors is
unexplored. Further, it is also not clear whether virus binding SA-containing
receptors trigger intracellular signals for activation and cytokine production in
innate cells. However, study using UV-inactivated genetically modified human
influenza viruses showed that virus binding to SAa2,3Gal induced higher levels of
proinflammatory cytokines and IFN-inducible genes in DCs and MU compared to
influenza virus with SAa2,6Gal binding specificity (Ramos et al. 2011), suggesting
a viral replication-independent induction of innate response. These finding indicate
that the binding of SA-containing receptors to HA can induce differential innate
antiviral responses. Further, inactivated influenza vaccine (IIV) used in humans is
a split vaccine mainly containing HA, and hence, the interaction of IIV with
SA-containing receptors is likely to play role in the vaccine-induced immunity.
Therefore, deciphering the identity, structure, and functional features (like cyto-
plasmic signaling network) of SA-containing receptors involved in influenza is
warranted.

Although SA is critical for virus binding and tropism, the cells lacking surface
SA were found to be permissive to virus entry and infection, although to lesser
extent (Thompson et al. 2006). Further, it is believed that SA enhances the binding
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of influenza virus to cell surface to facilitate the interaction with other receptors
required for virus entry (Londrigan et al. 2012). Consistent with this, several cell
surface carbohydrate-recognizing receptors are also proposed in binding to sugar
residues within the surface glycoproteins of influenza virus to augment virus
uptake. They include C-type lectin receptors (CLRs), which are the innate rec-
ognition receptors of host (discussed below).

5 Virus Sensing Receptors

Influenza virus is sensed by different pattern-recognition receptors (PRRs).
Detection of viral components by PRRs triggers intracellular signaling cascades
responsible for secretion of type I IFNs, proinflammatory cytokines, and chemo-
kines, and acquisition of activation status. Recent studies have shown that influenza
virus is sensed by PRRs such as, CLRs, Toll-like receptors (TLRs), retinoic acid-
inducible gene I (RIG-I)-like receptors (RLRs), and nucleotide oligomerization
domain (NOD)-like receptors (NLRs).

5.1 C-Type Lectin Receptors (CLRs)

These are a diverse family of transmembrane proteins that contain one or more
carbohydrate recognition domains (CRDs), but do not bind only carbohydrate
structures (Geijtenbeek and Gringhuis 2009; Sancho and Reis e Sousa 2012).
Interaction between influenza virus and CLRs specific to mannose and galactose,
which serve as the receptor for virus attachment and infection of cells, has been
observed. These CLRs include (i) macrophage mannose receptor (MMR, CD206,
which binds to mannose, fucose, and sulphated sugars), (ii) macrophage galactose-
type lectin (MGL, CD301, which binds mainly to terminal GalNAc residues, but
also to galactose and Lewis-X structures) and (iii) DC-specific ICAM3-grabbing
non-integrin (DC-SIGN, CD209, which binds mannose-rich glycans) (Geijtenbeek
and Gringhuis 2009; Sancho and Reis e Sousa 2012).

These CLRs are primarily expressed on monocytes, MU, and mDCs (Table 1).
They can mediate influenza virus binding to augment the SA-dependent virus up take
by cells resulting in enhanced susceptibility to infection. However, these receptors
alone do not mediate efficient infection in the absence of SA (Londrigan et al. 2011;
Wang et al. 2008). Furthermore, these CLRs, which are known to bind influenza
virus lack both activating-ITAM as well as inhibitory-ITIM cytoplasmic signaling
motifs, but possess tyrosine motifs involved in endocytosis (Geijtenbeek and
Gringhuis 2009; Sancho and Reis e Sousa 2012). Hence, based on the recent findings,
it is speculated that virus-bound CLRs can employ the endocytic equipment to direct
the captured viral antigenic cargo for processing and cross-presentation to T cells,
especially MMR and MGL (Sancho and Reis e Sousa 2012). Furthermore, despite
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being unable to induce myeloid cell activation by themselves, these CLRs,
particularly DC-SIGN, are found to modulate the outcome of signaling by other
PRRs (Geijtenbeek and Gringhuis 2009; Sancho and Reis e Sousa 2012). It is
therefore important to determine the effect of binding of influenza virus to these
CLRs on the activation and function of myeloid cells induced by other PRRs, and
also the ensuing CD8+ T cell immune response.

5.2 Toll-Like Receptors (TLRs)

TLRs have emerged as key sensors of innate immunity to viruses recognizing their
PAMPs. TLR2 and TLR4 on cell surface detect the envelope glyco/lipoproteins
and that of intracellular/endosomal TLR3, TLR7, TLR8, and TLR9 sense viral
nucleic acids (Finberg et al. 2007; Kawai and Akira 2011).

All TLRs recruit a specific set of adaptor molecules that harbor TIR (Toll-IL-1
receptor) domain, such as MyD88, TIRAP, TRIF, or TRAM, a combination of
which decides the response to ligand. MyD88 is employed by all TLRs, except
TLR3, which uses TRIF. Whereas TLR4 can utilize TIRAP or TRAM to recruit
MyD88 or TRIF, TLR2 uses TIRAP to recruit MyD88. Further, MyD88-dependent
and TRIF-dependent signaling pathways activate NF-kB, interferon regulatory
factor7 (IRF7) or IRF3 through IRAKs, TRAF6, TAK1, and IKK complex,
resulting in induction of antiviral status and secretion of cytokines. Interestingly,
TLRs cooperate with other PRRs like NLRs and RLRs to induce innate immunity
to pathogens including influenza (reviewed in Kawai and Akira 2011) (Fig. 1).
Studies have shown that influenza virus is recognized by different TLRs, such as
TLR7/8 that bind ssRNA and TLR3, which senses the dsRNA in the endosomes. In
addition, TLR4 can detect the damage-associated molecular patterns (DAMPs)
released from virus-infected cells (Table 2).

5.2.1 TLR3

Although absent in pDCs, monocytes, and neutrophils, low levels of TLR3 is
expressed in MU, mDCs, moDCs (Kadowaki et al. 2001) and primary respiratory
epithelial cells of mice (le Goffic et al. 2006) and humans (Guillot et al. 2005;
Ioannidis et al. 2013) (Table 1). It is important to note that due to the action of RNA
helicase DDX39B, dsRNA is not generated during replication of influenza virus
(Pichlmair et al. 2006; Wisskirchen et al. 2011). It is therefore important to determine
whether TLR3 plays a significant role in antiviral immunity during influenza virus
infections and to identify the ligands for TLR3 within the influenza-infected cells.

Pretreatment of human moDCs with TLR3 ligand (poly I:C) conferred resis-
tance to infection with H5N1 influenza virus (Thitithanyanont et al. 2007). Con-
sistent with this, intranasal pretreatment of mice with poly I:C provided high level
of protection against lethal challenge with influenza virus (Wong et al. 2009).
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Furthermore, lethal dose influenza virus-infected mice showed TLR3-mediated
enhancement of inflammatory reaction and CD8+ T cell response, associated with
augmented viral clearance, compared to TLR3-/- mice (le Goffic et al. 2006)
(Table 2). However, TLR3-/- mice survived longer than control mice (le Goffic
et al. 2006), suggesting that TLR3-triggered innate response inhibits viral spread,
but the ensuing adaptive immunity is detrimental to the host.

5.2.2 TLR7/8

In humans, the highest levels of TLR7 is expressed in pDCs (Kadowaki et al. 2001),
whereas mDC1, mDC2, LCs, and NK cells lack TLR7 (Kadowaki et al. 2001;

Fig. 1 Recognition of influenza virus infection by pattern-recognition receptors. Activation of
TLRs upon detection of viral RNA (TLR3 and TLR7/8) or binding of death-associated molecular
patterns (DAMPS; TLR4) recruits adaptor molecules (MyD88 and TRIF) triggering distinct
signaling pathways that activates nuclear translocation of transcription factors (IRF3/7 and
NF-kB) to induce production of type I interferons (I IFNs) and inflammatory cytokines (IL-6,
TNF and pro-IL-1b and -IL-18). Recognition of 5’ppp-RNA by RIG-I activates recruitment of
MAVS on mitochondrion, which in turn induces the production of cytokines through IRF3/IRF7.
Of the NLRs, NOD2 detects ssRNA to activate translocation of MAPK and IRF3/IRF7 by
recruiting adaptor molecules, RIPK2 and MAVS, respectively, to induce cytokine production.
Activation of NLRP3 mediated by diverse stimuli, dependent on ionic channel M2 protein of
influenza virus, recruits ASC (apoptosis-associated speck-like protein containing a caspase
recruitment domain), which in turn interact with pro-caspase-1 to form NLRP3 inflammasome.
Autoactivation of caspase-1 cleaves pro-IL-1b/IL-18 to mature IL-1b/IL-18 for their secretion
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Merad et al. 2013). However, TLR8 is expressed at low levels by moMU (Hui et al.
2011) and mDCs, but not pDCs (Kadowaki et al. 2001). In mice, CD8a+ cDCs
lack TLR7, but express TLR3, whereas CD8a- cDCs, pDCs, and BMDCs (Edwards
et al. 2003), and also BMMU (Kawai and Akira 2011) express TLR7 (Table 1).

In response to live or inactivated influenza virus in vitro, pDCs produced high
levels of IFN-a, and also inflammatory cytokines in a TLR7-and MyD88-dependent
manner through recognition of viral ssRNA (Diebold et al. 2004; Koyama et al.
2007; Lund et al. 2004) (Fig. 1). TLR7-mediated sensing of inactivated-influenza
virus by pDCs is required to confer protective primary adaptive immune response in
mice (Geeraedts et al. 2008; Koyama et al. 2007, 2010). In contrast, cytokine
production in the lungs following live influenza virus infection did not require
TLR7-signaling in pDCs (Koyama et al. 2010). Despite the uncontrolled viral load
and mortality observed in TLR7/MyD88-deficit mice infected with lethal dose of
influenza virus in a previous study (Seo et al. 2010), the lack of TLR7 did not
markedly alter the viral load, disease pathology and inflammatory cytokine
response in following lethal dose (Jeisy-Scott et al. 2011) or sublethal dose (Pang
et al. 2013b). Consistent with this finding, TLR7-induced type I IFN in pDCs was
dispensable for induction of protective response to influenza virus in mice vacci-
nated with live-virus vaccine (Koyama et al. 2010). Furthermore, IFN-a secretion
by murine mDC/BMDCs in response to influenza virus is found to be dependent on
live virus replication, but not on TLR7/MyD88- signaling (Barchet et al. 2005;
Koyama et al. 2007). Nevertheless, in murine BMDCs, TLR7-signaling was
required for the induction of pro-IL-1b and secretion of mature IL-1b after influ-
enza virus infection (Ichinohe et al. 2010). These results suggest a cell-specific role
of TLR7 in the induction of innate immune response to influenza virus infection as
well as vaccination.

5.2.3 TLR4

TLR4 is expressed mainly on myeloid cells including, neutrophils, monocytes,
mDCs, moDCs, and MU (Table 2). Although the ligand for TLR4 in influenza
virus is not known, a DAMP molecule, S100A9 released in influenza virus-
infected lungs was found to trigger TLR4-MyD88-signaling pathway in MU to
induce exaggerating proinflammatory response, cell-death, and virus pathogenesis
following lethal infection (Tsai et al. 2014) (Fig. 1). Furthermore, similar to TLR4
deficient mice (Nhu et al. 2010), treatment of mice with a TLR4 antagonist,
Eritoran, was found to protect from lethal influenza infection by alleviating lung
pathology, clinical symptoms, cytokine, and oxidized phospholipid expression, as
well as by controlling viral loads, a process dependent on CD14 and TLR2
expression (Shirey et al. 2013). Activation of TLR4-signaling during influenza
infection seems to induce an exaggerated inflammatory response.
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5.3 RIG-I-Like Receptors (RLRs)

These are the RNA-sensing PRRs expressed in the cytosol of majority of the
mammalian cells. RLRs represent a family of RNA helicases, which includes three
members, RIG-I, melanoma differentiation-associated gene 5 (MDA5), and labo-
ratory of genetics and physiology-2 (LGP-2) (Takeuchi and Akira 2009). In
addition to the RNA helicase domain, RIG-I and MDA5 contain two N-terminal
caspase recruitment domains (CARDs), whereas LGP2 lacks a CARD component,
and functions as a negative regulator of RIG-I/MDA5-signaling (Loo and Gale
2011). RIG-I recognizes RNA containing 5’-triphosphate with panhandle-like
secondary structures, whereas MDA5 preferentially senses long dsRNA ([2 kb)
(Takeuchi and Akira 2009). RLRs signal through a common adaptor IFN-b
promoter stimulator-1 (IPS-1), also known as mitochondrial antiviral signaling
(MAVS) leading to phosphorylation of IRF7/3 and NF-kB , which in turn induce
type I IFNs, and proinflammatory cytokines and chemokines, respectively (Loo
and Gale 2011). The recruitment of the adaptor MAVS is dependent on E3-ligase
tripartite motif containing 25 (TRIM25)- and Riplet-dependent ubiquitination of
RIG-I (Loo and Gale 2011). Under steady state, RLR is expressed at low levels,
but is greatly increased in response to IFN and after virus infection (Loo and
Gale 2011) (Fig. 1).

In influenza virus-infected cells, RIG-I is the RLR that senses the virus in
cytosol by recognizing the 5’-triphosphate -RNA sequence motifs along RNA
containing some dsRNA part (panhandle), which is generated by active viral
replication within the cells (Kato et al. 2006; Pichlmair et al. 2006; Rehwinkel
et al. 2010). Of note, a recent study revealed that influenza virus lacking NS1
induces antiviral stress granules that contain viral RNA together with RIG-I and
antiviral proteins including protein kinase R (PKR). These antiviral stress granules
are shown to serve as the site of 5’ppp RNA-induced activation of RIG-I-signaling
(Onomoto et al. 2012). Consistent with this, influenza virus infection boosted an
early transient expression and activation of RIG-I in respiratory epithelial cells
(Crotta et al. 2013; le Goffic et al. 2007), MU (Ohman et al. 2009; Wang et al.
2012), BMDCs (Koyama et al. 2007) and mast cells (Graham et al. 2013).
Although dispensable for viral control following sublethal dose, signaling from
RIG-I and TLR7 was required for survival and restricting the virus growth after
lethal dose influenza infection in mice (Koyama et al. 2007; Pang et al. 2013b).
Furthermore, expression on RIG-I and MDA5 were enhanced in peripheral blood
cells (Lee et al. 2013) and patients who exhibit a polymorphism resulting in the
expression of a nonfunctional variant of RIG-I were severely attenuated in anti-
viral responses against influenza virus (Pothlichet et al. 2009). These findings
support an important role for the RIG-I-mediated responses in restraining the
influenza virus.
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5.4 NOD-Like Receptors (NLRs)

The NLR family comprises more than 20 receptors that are expressed intracellu-
larly in the cytosol, and respond to various PAMPs to trigger inflammatory
response. NLRs can trigger several signaling pathways including MAPK, NF-kB,
and MAVS-IRF3 to induce production of IL-6, TNF-a, pro- IL-1b/IL-18, and also
type I IFNs, respectively (Kanneganti 2010) (Fig. 1). Importantly, some of
the NLRs can recruit the adaptor ASC (apoptosis-associated speck-like protein
containing a CARD), which in turn interact with the pro-caspase-1 to form the
‘‘inflammasome’’ (Franchi et al. 2009). Assembly of inflammasome leads to
autoactivation of caspase-1, which cleaves pro-IL-1b/IL-18 to mature IL-1b/IL-18
for secretion (Yu and Finlay 2008) (Fig. 1).

Studies have shown that NLRP3 (NLR family PYD-containing protein
3/Cryopyrin), NLRC2 (NLR family CARD-containing protein 2), and NLRX1 are
the NLRs responding to influenza virus (Kanneganti 2010). Whereas NLRP3
inflammasome induces the secretion of mature IL-1b/IL-18, NLRC2/NOD2, and
NLRX1 signals the production of type I IFNs in response to influenza virus.

Influenza virus-induced NLRP3-mediated IL-1b and IL-18 production involve
two steps that include, enhancing the transcription of genes encoding pro-IL- 1b
and pro-IL-18 and NLRP3 (signal 1) and activating NLRP3 inflammasome (signal
2). Signal 1 is initiated by the detection of viral RNA by TLR7, which activates
NF-kB. Although initial studies showed that NLRP3 detects influenza virus via
recognition of viral RNA (Allen et al. 2009; Thomas et al. 2009), it is now clear
that many sources contribute to signal 2 either in combination or alone, and all
depend on the newly synthesized viral M2 protein. These include, (i) ionic
imbalance of the trans-Golgi pH, (ii) potassium efflux through the P2X7 receptor,
an ATP-gated cation channel, (iii) lysosomal maturation and release of cathepsin B
and (iv) cellular reactive oxygen species (Ichinohe et al. 2010; Lietzen et al. 2011)
(Fig. 1). Recently, influenza virus virulence protein polymerase basic protein
1-frame 2 (PB1-F2) alone in aggregated form was found to be sufficient to activate
NLRP3 inflammasome-induced IL-1b (McAuley et al. 2013). In addition, recent
evidences support the role of commensal microbiota derived PAMPs as signal 1
for NLRP3 inflammasome activation (Ichinohe et al. 2011). Despite these findings,
the specific PAMP in influenza virus interacting with NLRP3 is not yet known.
Apart from the cleavage of pro-IL-1b and pro-IL-18, NLRP3-inflammasome
activation also results in the initiation of a proinflammatory form of cell death
known as pyroptosis (Schroder and Tschopp 2010).

Studies have shown that live influenza virus infection induces the expression and
activation of NLRP3 inflammasome components (NLRP3, ASC, and Caspase-1) to
mediate IL-1b and IL-18 production in different cell types in vitro; such as mice
BMDCs and BMMU, human MU, nasal airway epithelial cell line and monocytic cell
line THP-1 (Allen et al. 2009; Ichinohe et al. 2009; Kanneganti et al. 2006; Thomas
et al. 2009). Accordingly, mice lacking any of the NLRP3 inflammasome compo-
nents did not produce IL-1b and IL-18 following the high-lethal dose influenza virus
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infection (Allen et al. 2009; Thomas et al. 2009). Furthermore, NLRP3-deficient
mice showed a reduced protective inflammation including the suppressed accumu-
lation of neutrophils and monocytes to the lungs and airways upon influenza virus
infection, which resulted in higher mortality (Allen et al. 2009; Thomas et al. 2009).
Strikingly, NLRP3-deficient mice showed collagen deposits in lungs suggesting the
delayed resolution of lung injury due to the absence of pro-fibrotic role of IL-1b
(Thomas et al. 2009). Notably, the inflammasome complex was found to be dis-
pensable for early clearance (up to 6 days) of the virus (Thomas et al. 2009), but was
essential for reducing the viral load in later stage of infection (Allen et al. 2009;
Ichinohe et al. 2009). These findings suggested that NLRP3-inflammasome induced
inflammatory response, rather than direct viral control, mediates the protective
immunity to influenza virus infection, possibly via adaptive immune responses.

NLRC2 (or NOD2) is believed to recognize the viral genomic ssRNA to recruit
MAVS adaptor protein to activate IRF3-mediated type I IFN production in DCs and
MU in response to influenza virus (Fig. 1). In agreement, NOD2-deficient mice
showed decreased type I IFNs and DC activation, and exhibited enhanced sus-
ceptibility to lethal dose virus-induced pathogenesis (Lupfer et al. 2014; Sabbah
et al. 2009). Further, NLRX1, NLR located in mitochondria, binds to viral protein
PB1-F2. NLRX-signaling prevents virus-induced MU apoptosis and promotes both
MU survival as well as type I IFN signaling in mice infection with lethal dose
(Jaworska et al. 2014). On contrary, NOD2 and NLRX1 are found to negatively
regulate the NLRP3 and RIG-induced inflammatory response to lethal dose influ-
enza virus, respectively, and control the immunopathology (Allen et al. 2011;
Lupfer et al. 2013). Together, these findings suggest that NLRs execute differential
role in response to influenza virus infection to obtain a balanced innate immunity.

6 Effector Molecules of Innate Immunity

6.1 Cytokines and Chemokines

These mainly activate and attract various immune cells to the site of infection.
Type I IFNs are the principal antiviral effectors to inhibit viral replication, and also
promote greater activation of innate immune cells, particularly DCs, to facilitate
the induction of adaptive immunity.

6.2 Soluble Innate Mediators

These function mainly by direct interaction with the virus outside the cells, resulting
in either inhibition of viral binding to target cells, or in disruption of viral membranes
(reviewed in Tripathi et al. 2013). Some of these soluble innate mediators, such as
mucins, surfactant protein A (SP-A), glycoprotein-340, pentraxins, ficolins- inhibit
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the attachment of influenza virus to cells by presenting SA to the viral HA. Whereas
other mediators, such as SP-D, mannose binding lectin (MBL), H-ficolins possess a
lectin activity, and can interact with glycans on viral HA to form aggregate, which
prevents the binding of virus to cells. In addition, there are antimicrobial peptides,
such as a-defensins (human neutrophil peptides) and b-defensins, which cause
viral aggregates, and also LL-37 that causes disruption of viral membrane. Fur-
thermore, complement proteins activated by either soluble innate mediator, MBL,
or natural IgM are also shown to exert beneficial role in influenza virus infection
(Tripathi et al. 2013).

6.3 Intrinsic Antiviral Factors

These factors directly interact with the virus inside host cells to restrict the entry,
replication, and assembly of virus, thereby rendering the cells nonpermissive to
virus. This form of immunity to virus is referred as intrinsic antiviral immunity
(Yan and Chen 2012). These factors are preexistent, but can be further enhanced by
viral infection and type I IFNs, the principal mediator of antiviral innate response.

Type I IFNs activate the JAK/STAT pathway upon binding to its receptor,
IFNAR. In addition to upregulating the innate recognition receptors (discussed
earlier), IFNAR-signaling results in transcriptional upregulation of interferon-
stimulated genes (ISGs), which in turn restrict the viral replication.

6.3.1 Mx

The myxovirus resistance gene, or Mx, was the first ISG found to restrict influenza
virus replication. The human MxA and MxB, and the murine Mx2 are cytoplasmic
proteins, whereas the murine Mx1 is localized within the nucleus (Haller et al.
2009). In mice, Mx1 inhibits the influenza virus infection, but Mx2 does not. In
humans, MxA inhibits influenza as well as other viruses, but MxB has no effect on
influenza infection. Mx proteins are reported to interact with viral NP and RNA
helicases involved in the transport of viral RNA to the nucleus, which is the site of
viral transcription and replication, resulting in the inhibition of viral growth (von
der Malsburg et al. 2011). Different strains of influenza virus vary in their sensi-
tivity to these proteins (Zimmermann et al. 2011). Of note, since most of the inbred
mice strains are devoid of functional Mx proteins, the extrapolation of mouse data
to humans has to be done with extreme caution.

6.3.2 Protein Kinase R (PKR)

It is an IFN inducible protein kinase that becomes activated upon binding to
dsRNA in cytosol. In case of influenza virus, this is shown to be mediated by the
panhandle secondary structure formed by 5’ppp end of RNA (Dauber et al. 2009).
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While there have been multiple substrates identified for PKR, most of the antiviral
activity of PKR is due to phosphorylation of eIF2a, which results in a general
translational block, limiting viral replication (Pindel and Sadler 2011). NS1 of
influenza A virus inhibits the activity of PKR (Li et al. 2006), and PKR-KO mice
are highly susceptible to infection with NS1 defective influenza A virus (Bergmann
et al. 2000), highlighting the contribution of PKR in restricting influenza virus
replication. In addition to its role in inhibiting the translation of viral RNA, PKR
activation also initiates signal transduction via NF-kB leading to cell growth arrest
and autophagy, which result in an enhanced anti-viral immunity (Sadler and
Williams 2008).

6.3.3 OAS/RNAseL

OAS (oligoadenylate synthetase) and RNase L is one of the first interferon-
induced antiviral pathways discovered. Similar to PKR, OAS requires binding to
dsRNA for activation of its enzymatic activity in cytosol. Upon activation, OAS
generates 2’–5’ oligoadenylates that act as a cofactor for a latent cytoplasmic
RNAse, RNAseL. Activated RNAseL cleaves viral and cellular RNA stopping the
viral replication (Chakrabarti et al. 2011).

6.3.4 ISG15

ISG15 is a 17kDa protein present in cytosol that has structural resemblance to two
covalently linked ubiquitins. Like ubiquitin, ISG15 is conjugated to proteins
through lysine residues. While the outcome of ISGylation are still unclear, ISG15-
KO mice are more prone to infection by several viruses, including influenza A and
B viruses, supporting the antiviral activity of this molecule (Lenschow et al. 2007).
Importantly, NS1 protein of influenza A virus was shown to be conjugated by
ISG15 resulting in the inhibition of NS1 function, and is believed to restrict the
influenza virus replication (reviewed in Garcia-Sastre 2011).

6.3.5 Viperin and Tetherin

These are the recently discovered ISGs expressed on cell surface that exhibit the
ability to inhibit influenza virus infection. Viperin is localized in the endoplasmic
reticulum. It interferes with the enzymatic process of membrane fluidity and
membrane microdomains to inhibit the efficient budding of influenza virus from
infected cells (Wang et al. 2007). Tetherin (also known as BST2), like viperin, also
restricts viral budding. By retaining newly assembled virions attached to the
plasma membrane, tetherin restricts the formation of influenza virus like particles
(reviewed in Garcia-Sastre 2011).
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6.3.6 IFITM and IFIT

IFITM (IFN-inducible transmembrane protein) are ISGs that restrict viral entry
(Brass et al. 2009; Everitt et al. 2012). IFITM3 has been identified as an important
host restriction factor for influenza virus. IFITM3 proteins block infection early
during cytosolic entry of viruses that utilize the endosomal pathway (Feeley et al.
2011), suggesting that they affect the function of viral proteins involved in viral
fusion in the endosome (Garcia-Sastre 2011). Infection of IFITM3 deficient mice
with low virulence influenza A virus resulted in a severe form of disease, similar to
that caused by high virulence virus (Brass et al. 2009; Everitt et al. 2012). Inter-
estingly, avian cells do not seem to express a homolog to IFITM3, which raises the
possibility that IFITM proteins might influence viral tropism (reviewed in Yan and
Chen 2012).

The IFIT family (interferon-induced proteins with tetratricopeptide repeats)
includes four members, IFIT1, 2, 3, and 5, which are the cytoplasmic proteins that
recognize viral RNA with 5’triphosphate or without 2’-O-methylation. IFIT1 is
found to inhibit cellular translation by binding to the eIF3 initiation factor to
suppress the viral translation and replication (Yan and Chen 2012).

7 Innate Control of Adaptive Immunity to Influenza

7.1 Innate Immune Cells

At the cellular level, innate immune cells, particularly DCs, which sense the viral
invasion through unique innate receptors, are also endowed with the ability to
prime adaptive immune cells, such as T cells and B cells, to induce a virus-specific
long-lasting immunity (Braciale et al. 2012; Iwasaki and Medzhitov 2010;
Manicassamy and Pulendran 2009, 2011; Pulendran et al. 2010b).

7.1.1 DCs

DCs are well known for their critical role in the initiation of Ag-specific response
owing to their ability to uptake and process Ags, and to migrate to the lymphoid
tissues for presentation to naïve Ag-specific T cells. Furthermore, DCs in airways
are believed to derive viral Ag for presentation via two unique ways, endogenous
Ag following direct infection or exogenous Ag by uptake of infected dead cells.

Extensive studies have shown that respiratory DC subsets, such as
CD103+CD11blocDCs and CD11bhiCD103- cDCs acquire a mature phenotype in
the presence of type I IFNs and migrate to the regional LN in CCR7-dependent
manner (Fig. 2). Among the DCs in LN, respiratory CD103+CD11blo cDCs are
found to be the only DCs that prime virus-specific naïve CD8+ T cells in the LN to
differentiate into effector cells (GeurtsvanKessel et al. 2008; Helft et al. 2012;
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Ho et al. 2011; Kim and Braciale 2009; Kim et al. 2014; Unkel et al. 2012). This is
because, type I IFN-dependent antiviral status of CD103+CD11blo cDCs restrains
their productive infection, and they preferentially uptake influenza virus-infected
apoptotic cells in the lungs (Desch et al. 2011; Helft et al. 2012). This results in an
influx of high number of activated CD103+CD11blocDCs that carry viral Ags into
LN for cross-priming of virus-specific CD8+ T cells, early during the infection
(Albert et al. 1998; Desch et al. 2011; Helft et al. 2012; Ho et al. 2011) (Fig. 2).

On the contrary, CD11bhiCD103- cDCs, which is the major migratory DC
subset in LN at the peak of infection, are found to drive the generation of central
memory CD8+T cells (Kim et al. 2014) (Fig. 2). The differential function of cDC

Fig. 2 Innate control of adaptive immunity to influenza. Innate immune cells, particularly
dendritic cells (DCs) in the respiratory tissues acquire antigens either through direct infection or by
uptake of influenza-infected dead cells and undergo maturation process triggered by TLR7 or RIG-
I-signaling, under the influence of type I IFNs produced by macrophages and pDCs. Respiratory
DC subsets (CD103+ cDCs, CD11b+ cDCs and pDCs) migrate to the draining lymph node (LN),
where they can transfer influenza antigens (Ag) to LN-resident CD8a+ cDC. In the LN, respiratory
CD103+ cDCs together with CD8a+ cDCs stimulate the naïve CD8+ T cells to proliferate and
differentiate into cytotoxic effector CD8+ T cells, in a CD24-dependent manner. On the other hand,
CD11b+ cDCs drive the activation of CD8+ T cells, mainly effector T cells at later stage of
infection, to induce memory CD8+ T cells. Interaction of naïve CD4+ T cells with cDCs generates
IFN-c-producing Th1 cells, which in turn facilitates the differentiation of effector B cells in a
TLR7-dependent manner. These effector cells migrate from LN to respiratory tissues, where they
have second interaction with Ag-bearing innate immune cells to undergo further activation and
differentiation to terminal effector cells that secrete effector molecules to control virus spread
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subsets is attributed to an enhanced expression of CD24 on CD103+CD11blocDCs,
which regulate CD8+ T cell activation through HMGB1-mediated engagement of
T cell RAGE (Kim et al. 2014). Although CD11clo pDCs and CD11b+Ly6C+

moDCs migrate to the LN in high number, and are shown to carry viral Ags, they
were inefficient in activating naïve CD8+T cells, compared to CD103+ cDCs and
CD11bhi cDCs (Ballesteros-Tato et al. 2010; GeurtsvanKessel et al. 2008; Kim and
Braciale 2009).

In addition to migratory respiratory DCs, some studies suggested that
LN-resident CD8a+ cDCs are also able to activate naïve CD8+ T cells by cross-
presentation of Ag acquired from migratory DCs (Belz et al. 2007; Waithman et al.
2013). Notably, together with neutrophils and MU (Hufford et al. 2012; Kohlmeier
et al. 2010; Tate et al. 2012), respiratory DCs at the site of infection were essential for
the survival of effector T cells in Ag (cross-) presentation, IL-15 trans-presentation-
and lymphotoxin (LT) b-dependent manner (McGill et al. 2008, 2010) (Fig. 2).
Thus, the non-redundant role of DC subsets facilitates rapid generation and main-
tenance of the effector T cells needed to clear acute infection, followed by slower
development of the cells needed for sustained memory.

Furthermore, both CD103+CD11blo cDCs and CD11bhiCD103- cDCs are found
to efficiently activate naïve virus-specific CD4+ T cells in the LN (Fig. 2), compared
to other migratory DC subsets, in mice exposed to infectious as well as inactivated
influenza virus (GeurtsvanKessel et al. 2008; Kim and Braciale 2009). However,
blood monocyte-derived moDC recruited to LN are reported to stimulate IL-12p70-
mediated Th1 response in mice (Nakano et al. 2009). Recent studies in influenza-
infected mice (Leon et al. 2014) and influenza-vaccinated humans (Bentebibel et al.
2013) showed that follicular CD4+ T (Tfh) cells are present in LN and circulation,
respectively, and are essential for germinal center (GC) reactions and antibody
production. Notably, pDCs were found to be essential for enhancement of virus-
specific primary antibody response following influenza infection (GeurtsvanKessel
et al. 2008; McGill et al. 2008) and vaccination (Koyama et al. 2010). Further,
CD11chi cDCs in the lungs were crucial for maintenance of GC reactions in tertiary
lymphoid structures, and to sustain virus-specific antibodies (GeurtsvanKessel et al.
2009). Despite these observations, the role of DC subsets in the generation of Tfh
cells and primary antibody response is not clearly known.

In humans, consistent with the high susceptibility to productive infection
in vitro, influenza virus-exposed mDCs were impaired in Ag (cross-) presentation
to CD8+ T cells (Smed-Sorensen et al. 2012) and CD4+ T cells (Fernandez-Sesma
et al. 2006). However, mDCs exposed to inactivated virus or infected dead cells
were highly efficient in Ag (cross-) presentation to activate CD8+ T cells (Smed-
Sorensen et al. 2012). Furthermore, when LAIV was administered to humanized
mice, the lung-resident CD1c+ mDC1, but not CD141+ mDC2, are found to drive
the expansion of influenza virus-specific CD103-expressing mucosal CD8+ T cells
through membrane-bound TGF-b-dependent mechanisms (Yu et al. 2013).

Recent studies showed that pDCs are less efficient than mDCs, in both cross-
as well as direct presentation of influenza Ag to T cells in vitro (Lui et al. 2009;
Smed-Sorensen et al. 2012). Strikingly, influenza virus-activated pDCs were able
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to induce a strong Th1 polarization through synergistic effect of IL-12 and type I
IFNs (Cella et al. 2000). Furthermore, influenza virus triggered secretion of type I
IFNs and IL-6 from pDCs induced differentiation of plasma cells and virus-
specific antibody production from B cells activated by T cells (Jego et al. 2003).
These findings indicate that human mDCs are likely important for the induction of
CD8+ T cell response and that of pDCs in CD4+ T cell-dependent virus-specific
antibody response.

Despite these studies in mouse models and in vitro human studies on how
influenza virus-exposed mDCs and pDCs influence different aspects of adaptive
immunity; the phenotype, activation status and functional role of DC subsets in
influenza virus-infected patients, particularly at the site of infection, is not known.

7.2 Virus Sensing Receptors

7.2.1 TLRs and RLRs

Although a previous study implicated TLR3 in the enhancement of CD8+ T cell
response in lethal dose influenza virus-infected mice (le Goffic et al. 2006), later
studies found that TLR3 and its associated adapter molecule, TRIF, do not play a
significant role in the development of influenza virus-specific CD4+ or CD8+ T cell
or B cell responses following sublethal infection (Heer et al. 2007; Koyama et al.
2007; Seo et al. 2010) (Table 2). Surprisingly, TLR7/MyD88 and RIG-I-signaling
are also found to play negligible roles in CD8+ T cell activation and effector
functions in sublethal dose influenza virus-infected mice (Heer et al. 2007;
Koyama et al. 2007; Pang et al. 2013a). However, CD4+ T cell response, the
number of antibody-secreting cells in secondary lymphoid organs, and the pro-
duction of virus-specific antibodies following sublethal intranasal infection were
dependent on TLR7 signaling, but not RIG-I signaling (Jeisy-Scott et al. 2012;
Koyama et al. 2007). Furthermore, TLR7-signaling in pDCs, was essential for
protective antibody response induced by virion RNA-containing split vaccine
(Jeisy-Scott et al. 2012) and inactivated whole virus vaccine (Koyama et al. 2007,
2010) (Table 2). Here, along with stimulation of TLRs on B cells, TLR7-mediated
induction of type I IFNs in pDCs was found to be critical for T cell-dependent
antibody response following infection and vaccination (Heer et al. 2007; Koyama
et al. 2010). Based on these findings, it appears that TLRs rather than RLRs
contribute to the induction of effective T cell-dependent antibody response to
influenza virus, whereas TLR-independent and RLR-independent mechanisms
might exist with regards to CD8+ T cell responses. In this context, our recent study
showed that activation of induced general control nonderepressible 2 kinase
(GCN2) in DCs by the yellow fever vaccine (YF-17D) is crucial for generation
of CD8+ T cell response through autophagy and enhanced Ag presentation
(Ravindran et al. 2014). Interestingly, induction of CD8+ T cell responses to the
LAIV was also dependent on GCN2 (Ravindran et al. 2014).
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7.2.2 NLRs and Caspase-1

Mice deficient of caspase-1, ASC, and NLRP3, which lacked IL-1b and that of
IL-1R-deficient mice showed a failure in the activation of virus-specific IFN-c-
secreting CD4+ and CD8+ T cells, and to generate nasal IgA and serum IgG
response following sublethal dose of influenza virus infection (Ichinohe et al.
2009; Pang et al. 2013a) (Table 2). Furthermore, microbiota-mediated NLRP3-
inflammasome-caspase-1 activation-induced IL-1b is believed to be essential for
activation and migration of DCs from the lungs to the LN for T cell priming during
sublethal dose influenza virus infection in mice (Ichinohe et al. 2011). Supporting
these previous findings, a recent study showed that signaling through the IL-1R (by
IL-1b/IL-1a) in uninfected DCs carrying viral Ag was required and sufficient for
productive priming of CD8+ T cells, but signaling through TLR7 and RIG-I was
dispensable (Pang et al. 2013a). In contrast, a previous study found that antibody
production, as well as the influenza virus-specific CD8+ T cell number in the BAL,
of both Nlrp3 and caspase-1-deficient mice was similar to wild type mice infected
with sublethal dose of influenza virus between 7 and 11 days of infection (Thomas
et al. 2009) (Table 2). While several studies favored the role of influenza virus-
triggered caspase-1 activation in CD8+ T cell response, further studies are needed
to clarify these findings. A recent study revealed that NOD2-deficiency causes
reduced generation of virus-specific CD8+ T cell response following lethal
infection in mice (Lupfer et al. 2014) (Table 2).

In summary, despite a unique indispensable role of innate immune system in
antiviral immunity, cooperation with CD8+ T cell and CD4+ T cell-dependent
virus-neutralizing antibody response, is essential for protection, especially het-
erosubtypic influenza virus immunity.

8 Pathogenic Role of Innate Immunity to Influenza Virus
Infection

A major form of innate immune-mediated pathology following influenza virus
infection is viral pneumonia, which leads to ARDS resulting in multiorgan failure
and a high mortality rate (Short et al. 2014). In addition to virus-induced cell injury,
ARDS is attributed to hyperactivation of innate immune cells, such as neutrophils,
monocytes, and NK cells. These cells induce excessive inflammatory responses
involving reactive oxygen species, TNF-related apoptosis-inducing ligand
(TRAIL), inducible nitric oxide synthase (iNOS2) and proinflammatory cytokines
(Herold et al. 2008; Hogner et al. 2013; Lin et al. 2008; Short et al. 2014).

Increased accumulation of innate cells through a chemokine-mediated feed-
forward loop is observed in the lung lesions of high dose lethal infection associated
with poor innate control of influenza virus (Aldridge et al. 2009; Brandes et al.
2013; Lin et al. 2008; Narasaraju et al. 2011; Seo et al. 2011). Consistent with this,
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interfering with the massive infiltration of these innate cells through chemokine
antagonism (CCR2 for monocytes) or partial cell depletion (Aldridge et al. 2009;
Brandes et al. 2013; Lin et al. 2011) was found to alleviate the immune-mediated
pathology.

9 Systems Vaccinology of Influenza Vaccines

System vaccinology employs a number of high-throughput technologies like DNA
microarrays, protein arrays, deep sequencing, and mass spectrometry to generate
system-wide unbiased molecular measurements to reconstruct the events in an
immune response (Pulendran et al. 2010a). Over the last few years, several studies
have used systems biology approaches to obtain a global picture of the immune
responses to vaccination, and to identify molecular signatures that can be used to
predict vaccine immunity in humans, and also to understand the mechanisms
involved in the vaccine-induced immunity (Li et al. 2013, 2014; Nakaya et al. 2011,
2012; Pulendran 2009; Pulendran et al. 2010a; Querec et al. 2009; Ravindran et al.
2014; Tsang et al. 2014).

A comparative study of immune response to trivalent inactivated influenza
vaccine (TIV) and live attenuated influenza vaccine (LAIV) using systems biology
approach revealed salient common as well as contrasting features between them.
While LAIV induced the expression of several interferon-related genes, which are
similar to live viral vaccines, the TIV induced a signature composed of genes
highly expressed in plasma B cells (Nakaya et al. 2011). For TIV, of the 44 genes
identified to accurately predict the outcome of immunization as either high or low
antibody titers, one gene-CAMKIV- had no known function in regulating immu-
nity, but was negatively correlated with antibody titers. Consistent with this,
CAMKIV-deficit mice developed high antibody titers after vaccination (Nakaya
et al. 2011). Furthermore, the expression of TLR5 few days after TIV adminis-
tration highly correlated with the antibody titers 4 weeks post vaccination. How-
ever, TIV did not activate TLR5 signaling per se (Jason and Pulendran
unpublished data). TLR5 is sensor of bacterial flagellin, which could be derived
from commensal flora. In this context, perturbation of gut microbiota was found to
influence the host immune response involved in the clearance of virus from lungs
in influenza infected mice (Ichinohe et al. 2011). Consistent with this, our pre-
liminary results support the significant influence of intestinal flora on TIV-induced
antibody response in mouse model (Jason and Pulendran unpublished data).

In addition, studies are also being performed in influenza virus-infected patients
and animal models for better understanding of the disease pathogenesis that might
help in efficient control (Huang et al. 2011; Korth et al. 2013; Woods et al. 2013;
Zaslavsky et al. 2013). A temporal pattern of host molecular responses was
identified by systems biology approach in the peripheral blood of influenza virus-
infected human volunteers, which differentiated symptomatic from asymptomatic
infections of influenza virus strains (Huang et al. 2011; Woods et al. 2013).
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Further, while symptomatic patients showed multiple PRR-mediated antiviral and
inflammatory responses, asymptomatic individuals revealed a highly regulated
antiviral responses together with enhanced cell-mediated and antioxidant respon-
ses (Huang et al. 2011; Woods et al. 2013). Similarly, differential induction of
inflammatory gene expression is observed in the mouse lungs following infection
with influenza virus causing mild or severe respiratory disease, which is largely
accounted by neutrophils (Brandes et al. 2013; Kash et al. 2006; Korth et al. 2013).
Furthermore, by integrating the large-scale lipid measurements with targeted gene
expression, a recent study in influenza mouse model and human patients showed
that 5-lipoxygenase metabolites correlate with the pathogenic phase of the infec-
tion, whereas 12/15-lipoxygenase metabolites associate with the resolution phase
(Tam et al. 2013).

10 Conclusions and Perspectives

In this review, we summarized our current knowledge of the innate immune
responses to influenza. At the cellular level, respiratory epithelial cells being the
primary target support the viral replication to release progeny viruses; but together
with DCs and MU, trigger trafficking of increased number of immune cells to the
site of infection. Uptake of influenza virus mainly through the SA-containing
receptors and recognition of viral components by the innate receptors trigger
activation and upregulation of antiviral program in respiratory epithelial as well as
immune cells recruited to the airways. Antiviral innate response mainly includes
type I and III IFNs and the IFN-stimulated genes, in addition to various inflam-
matory cytokines and chemokines. Although innate immunity seems to achieve the
protective viral clearance in concert with adaptive immune response, damaging
role of innate immunity in the pathogenesis of influenza is also emerging with the
recent studies. Of note, variation in the amplitude of innate immune response has
been linked to both virus dose and strains as well as host factors.

There is an impressive amount of knowledge emerging on innate immunity to
influenza virus from experimental studies in mice. However, there is a paucity of
knowledge about the mechanisms that mediate innate and adaptive immunity to
influenza in humans, particularly among those populations that show enhanced
morbidity and mortality to infection, such as the infants and the elderly. Thus,
there is an imperative to study innate immunity in humans using cutting edge tools
like systems biology, in order to acquire a deeper understanding for devising
rational prophylactic and therapeutic strategies for the control of influenza.
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