
An Extended Expansion Theorem 

Gian Luigi Ferrarit, Roberto Gorrieri$, and Ugo Montanari$ 

t IEI -CNR,  Via Santa  Maria  46, 1-56125 Piss  I taly 

~Dipart imento di Informatica,  Universit~ di Piss,  
Corso Italia 40, ][-56125 Piss ,  I taly 

Abstract  

Closed CCS (CCCS) is a CCS-like algebra of processes with a generalized form of prefixing based on a 
full-fledged algebra of transitions rather than on basic actions only. The basic idea is that the generalized 
prefixing operator takes a transition t, or rather its observation w, a process E and yields the process t.E. 
From an operational standpoint, the process t.E may evolve to E by performing a transition labelled by 
w. By exploiting the algebra of transitions, we define a general form of expansion theorem which is the 
heart of a finite axiomatizatiou of a strong observational equivalence for finite CCCS agents. By adding 
the axioms concerning the interpretation of the operations of the algebra of observations, we still obtain 
a sound and complete axiomatization of the corresponding bisimulation equivalence. For instance, it is 
possible to define the classical expansion theorem, or versions of it which handle partial ordering based 
observations. 

1 I n t r o d u c t i o n  

Many different models have been proposed to specify the behaviour of concurrent and distributed systems. 
We single out two approaches: the interleaving approach ([Mi180,Mi189], [BHR84,Ho85], [AB84], [BK84], 
[tIeSS]) and the true concurrency approach ([Re85], [NPW81], [Pr86], [BC88], [DM87,DDM88a, DDM90a], 
[0187], [RT88]). 

The debate and the arguments between the supporters of either these antagonist approaches have not 
yet led to a clear measure of superiority of one over the other. In our view, the main merit of the former is its 
well-established theory, whilst the latter gives an intuitively more convincing representation of concurrent 
system behaviour. This paper aims at giving a contribution in filling the gap between the two approaches 
by providing also the latter with an axiomatic theory which can be naturally specialized to the interleaving 
case. 

The development of the interleaving approach to concurrency is well illustrated by Milner's work on 
CCS [MilS0,Mi189]. Considering concurrent systems as structured entities, which interact by some synchro- 
nization mechanisms, naturally leads to the definition of operations for building new systems from existing 
ones: every system can be seen as a term of the free algebra over this set of operations. The resulting 
process description language (the one proposed by Milner is called Calculus of Communicating Systems 
(CCS)) comes equipped with an operational semantics which takes the form of a labelled transition system 
[PloS1]. However, these operational descriptions are too intensional. More abstract semantics of the lan- 
guage are obtained by introducing behaviourai equivalences which identify process terms which exhibit the 
same behaviour in accordance with certain observational scenarios. 

Many of these behavioural equivalences are based on the notion of bisimulation [Par81]. Several 
bisimuiation based equivalences are completely characterized by equational laws between process terms; in 
other words, the equivalences are actually congruences obtained by making the quotient of the free a~ebra 

"Work partially supported by ESPRIT Basic Research Action 3011, CEDISYS, and by Progetto Finalizzato Information e 
Galcolo Pa~allelo, obiettivo LAMBRUSCO 



30 

with respect to the equational laws. For finite CCS (i.e., CCS without recursion), the so called strong 
bisimulatlon equivalence is characterized [HM85] by a finite set of axioms plus an axiom schema (thus 
infiuitary in principle): the expansion theorem. These axioms directly state that all the CCS operators can 
be defined as derived operations in terms of prefixing and summation. In particular, the expansion theorem 
explains how parallel composition can be stepwise reduced to sequentiality and nondetermiuism. As an 
instance of this law, the CCS process terms a.nll [ I~.nil and a.fl.nil + fl.a.nil are identified. The intuitive 
interpretation of this identification is that the parallel execution of the actions a and/3 is represented by 
the non deterministic choice of their interleavings. Indeed, this is the essence of interleaving semantics. 

Recently, Moiler [Mol90a,Molg0b] proved that a finite axiomatization for bisimulation based equiva- 
lences can be obtained only at the price of introducing auxiliary operators like Bergstra and Klop's left, right 
and communication merge [BK84,BK85]: the expansion theorem is thus replaced by a finite set of axioms 
relating parallel composition to the auxiliary operators, and showing how the auxiliary operators behave 
with respect to the two fundamental operators of prefixing and summation. 

Truly concurrent models describe the behaviour of systems by means of partial orderings where the 
ordering relation mirrors the causal dependencies, and concurrency is represented as absence of ordering. 
Even if this approach provides a more faithful account of distributed computations, it lacks a satisfactory 
algebraic treatment. Indeed, the techniques for defining and handling partial orders in an algebraic style 
still miss conclusive achievements. As a consequence, results on equational theories for truly concurrent 
models are not firm yet, and the interleaving approach, even if less powerful, has been adopted in giving the 
semantics of process description languages. 

The key problem in concurrency theory is to understand which are the mechanisms to determine 
the observable behaviours of concurrent and distributed computations. In fact, most of the behavioural 
equivalences can be understood in terms of the assumptions on the observation mechanism: two processes are 
equivalent provided that no observations can tell them apart. Partial orderings of events give a great power 
in modelling process behaviour, however the definition of an observational scenario for true concurrency 
seems too difficult to formalize. An argument in favour of this thesis is the lack of axiomatizations for truly 
concurrent behavioural equivalences. 

An attempt to provide equational characterizations of observational scenarios for true concurrency has 
been recently given by Degano, De Nicola and Montanari [DDM91]. Their observational framework uses 
certain node-labelled trees, called Observation Trees, which are derived from Nondeterministic Measurement 
Systems introduced in [DDM87]. The idea is that the nodes of an observation tree represent computations, 
and the labels give their observations (taken from a certain domain of observations, possibly based on 
partial orderings). On this class of trees, several bisimulation equivalences, parameterized with respect to 
the domain of the observations, can be defined. It turns out that (finite) observation trees can be described 
syntactically, and, moreover, complete sets of axioms can be provided for the various equivalences. Such 
axiomatizations are independent from the domain of observations actually chosen. 

However, by considering computations (rather than transitions) and their observations, such trees give 
an integral description of behaviours. Furthermore, the axiomatizations are not in the algebra of processes 
but rather in the algebra of observation trees. We have already remarked the important role played by 
the expansion theorem in reducing all operators to sum and prefixing. If we would be able to exhibit an 
expansion theorem also for true concurrency, then we would obtain a firm ground to provide axiomatizations 
on the algebra of processes also handling truly concurrent observational scenarios. 

This paper alms at solving this problem by providing a general form of expansion theorem which covers 
the true concurrent case, besides the obvious interleaving one. 

Let us start with a short discussion aiming at understanding the reasons which makes parallel com- 
position a derived operator in the interleaving semantics. Basically, this is due to the fortunate coincidence 
that elementary actions are both the building blocks syntactically generating process terms via prefixing, 
and the observations out of a transition. In this way, the hehaviour of an agent can be represented as the 
tree 1 obtained by unfolding the transition system, and, equivalently, as a term of the language over the 
restricted sequential/nondeterministic signature. 

IA notable example is provided by Milner's Synchronization Trees. 



31 

The identity between observations and prefLxed actions is indeed the basic assumption which makes 
the expansion theorem definable (as we will see later, also another, more subtle condition is essential). 

For a long time in the true concurrency side there was a rather discouraging feeling about the existence 
of any axiomatization of bisimulation based equivalences, also motivated by the works of Grabowski and 
Gisher ([Gr81], [G88]). They proved that no finite syntax does exist for general pomsets (acronym for 
partially ordered multisets), and therefore that no algebraic characterization of them can be given except 
for the simple case of series-parallel pomsets. Indeed, Boudol and Castellani [BC88] proved that an expansion 
theorem is definable within the (fiuite) algebra of series-parallel pomsets. As they pointed out, the criticism 
for the absence of an axiomatization for causality based hlsimulation equivalences "should not be moved 
against the expansion theorem, but rather against the lack of structure in the actions of transition systems". 

In this perspective, an important breakthrough has been realized with the introduction of Causal 
Trees [DD89,DD90], which are trees with a richer labelling than Synchronization Trees. Besides the action 
# performed, an arc is also labelled by a set K of integers playing the role of backward pointers to the 
transitions which caused the present arc. Causal Trees supply a concrete representation of Nondeterministic 
Measurament Systems with mixed ordering observations [DDM89], and have to be properly understood as 
executions of Event Structures [NPW81]. Darondeau and Degano were able to define an expansion theorem 
which fully expresses the intended causal dependencies among actions performed by CCS process terms, 
and, consequently, an axiomatization for causal bisimulation (an alternative, yet equivalent formulation 
of the more popular history preserving bisimulation [DDM89], [RT88], [GGS9]). However, this expansion 
theorem, besides making use of some auxiliary operators, exploits the richer observations. Indeed, a causal 
tree can be seen as a term of an algebra with the usual two operations of prefixing and summation, but 
where prefixing is actually defined on observations of the form (P,/O. As a consequence, even if parallel 
composition can be reduced to nondeterminism and sequentiality, a parallel CCS term cannot be reduced to 
a sequential CCS term through the expansion theorem, because labels of the form (p,K) are not arguments 
of the prefixing operator. Again, this amounts to saying that the axiomatizatlon given in [DD89] is on the 
algebra of Causal Trees and not on the algebra of CCS process terms. Furthermore, each label such as 
(#, K)  has not a meaning in se (at least when / (  ~ 0), in the sense that the actual meaning of the s e t / f  
needs the past history to be properly defined. In other words, the mechanism of observing partial orderings 
offered by Causal Trees is not satisfactory since it is not completely incremental. 

The crucial point is that models based directly on partial orderings give too abstract representations 
of process behaviours, on which a definition of sequential composition cannot be nicely defined (except for 
the trlviai case in which all the events of the former process precede all the events of the latter). Indeed, 
we conjecture that an appealing incremental description of truly concurrent computations cannot be given 
without resorting to more concrete observation structures like Concurrent Histories [DM87,DDMg0a], where 
partial orderings are enriched with origin and destination processes, or Concatenable Processes [DMM89]. 

From the above discussion, it should be clear that in order to get an expansion theorem for true 
concurrency we need to include truly concurrent observations as argument of the prefixing operator (not in 
the semantic model, like for Observation Trees and Causal Trees, but in the syntax of the calculus itself). 
To this aim we equip prefixed actions with an algebraic structure, thus obtaining an algebra of observations 
in the vein of ([MY89], [FM90], [GM90]). The algebraic structure on observations is not necessarily free 
since it may reflect a particular interpretation of the operations. There is a great variety of possibilities as 
to the choice of the interpretation of the operations. As an example, the classical interleaving approach is 
easily recovered by interpreting the operations to yield elementary actions. Moreover, also a truly concurrent 
interpretation is naturally obtained. 

The technical development is the following. In CCS there is a prefix operator which from the atomic 
action p and the agent E yields the process p.E. In CCCS, we allow a generalized prefixing operation which 
takes a transition t, an agent E and yields the process t.E. 

The operational semantics of CCCS is given by axioms and inference rules. However, in CCCS the 
operational derivations are not statements of the form E1 --~ E2, but rather assertions like t : E1 - -~  E2 
meaning that E1 evolves to E2 via a transition t labelled by w. 

In our approach, the CCS axiom #.E ~-~ E, or equivalently the assertion [p, E >: p .E ~ E where 
[p, E > is the syntactic term (i.e., the name: see e.g. [FIV[90]) for the transition/~.E ~ E,  is replaced by 



32 

an axiom and an inference tale: 

p : p.nil #-~ nil 

t : E1 -Y-* E2 

[ t ,E>:  t .E --~ E 

where ~ denotes the observation out of the transitions t and It, E > .  
It remains to be specified which is the observation ~ out of any transition t. At first sight, we could 

say that the most concrete observation is the transition t itself. In this way the operators of the algebra 
of transitions describe the context information on the observation itself. For instance, one of the rules for 
parallel composition is as follows: 

t : E1 - ~  E2 

tJ E3 : E1 I Es ~ E2 ] E3 

where wJ - denotes that the observation ~ is in a context with some idle subsystem at right. In this way, the 
observation is enriched with a topological information stating where the action takes place, i.e., its locality. 
Notice that the operation on the arrow does not take the agent E3 as an operand. In fact, while in principle a 
development taking into account a more informative observation might be possible, we considered including 
agents in the observations as incompatible with the message-passing philosophy of CCS. 

We have followed this approach, except for two cases. The first case has been already presented in the 
rule for generalized prefixing [t, E >  and is rather natural: the observation of a transition [t, E >  is again the 
observation of the transition t. Intuitively, this means that the operation does change neither the action, nor 
its locality. More subtle is the other case, concerning nondeterminism. On one hand, it seems reasonable to 
enrich the observation also with the information on the rejected context: 

t : E 1 - - ~  E2 

t < + E3 : EI + E3 ~<-~+- E2 

0n the other hand, a choice context does not change the locality of an action (we could say that w < + -  
reveals the locality after the choice), and thus it can be safely omitted in the observation: 

t : E1 - %  E2 

t < + E3 : EI-I- E3 -~-~ E2" 

This concludes the description of the operational semantics of CCCS. To obtain more abstract seman- 
tics we consider the notion of bisimulation. Two agents are equivalent if they are able to perform transitions 
with the same observations, evolving to equivalent agents. For instance, the agents 

a.nil ct.nil + a.nil 

are bisimilar. Instead, the agents 

o.nil ] [3.nil a.[3.nil + [$.a.nil 

are not equivalent. The first agent may perform the transition c~Jl~.nil with observation a J -  while the 
second agent cannot. This simple example amounts to saying that, at least when operations on observations 
are not interpreted, concurrency is not simulated in terms of nondeterminism. 

In this paper, we prove that the bisimulation equivalence is characterized by a complete set of axioms. 
The axiomatization does not depend on the actual algebra of observations. As a consequence, by suitably 
interpreting the operations on observations to yield specific observations we still obtain sound and complete 
axiomatizations of the corresponding bisimulation equivalences. For instance, the axiomatization of Milner's 
Strong Observational Equivalence can be obtained by interpreting the operations to yield actions. 

The heart of the axinmatization is given by the following axiom which states the expansion theorem. 

E~ I E~ = E~JE~ + E~LE~ + E~ II E~ 



33 

The axiom states that the operator of parallel composition is expressed in terms of some auxiliary operators: 
left merge ],  right merge L and synchronization merge ll- Moreover, there are axioms stating the behavlour 
of the auxiliary operators with respect to prefixing and summation. In particular, the following axioms 
ensure that, in breaking down the parallel operator, the information on causal dependencies are maintained 
through the operation of the generalized prefixing. 

t.E1 J E2 = (t J E2).(E1 I E2) 

E2 If.El = (E2 I ~).(E2 I E 0  

tl.E~ II t~.E~ = (t~ I t2).(E~ I E2) 

Other axioms state how the auxiliary operators distribute with respect to the operator of non deterministic 
choice. E.g.: 

(E~ ÷E~)J  Es = E l ]  E s ÷  E~J E3 

Finally, there are axioms stating that the auxiliary operators can be eliminated from process expressions; 
thus, their role is indeed auxillar. 

niljE = E[nil = E II nit = nil I1 E = nil  

A further set of axioms is given to eliminate the restriction and the relabelling operators. 
As an example of application of these axioms, let us consider the agent t.E~ [ E2. In order axiom 

t.E~ I E2 = t.EIIE2 + t.F4LE2 + t.EI II Ez 

to be sound, the two transitions 

[t, EI>JE2 

from the left member, and (since t.ElJE2 = (tIE2).E1 I E2) 

[tJE2,EIIE2><+(t.EI[E2+t.E1 II E2) 

from the right member, must have the same observation. This is the case, since, as discussed above, both 
have the same label as tJ F~. This example clarifies that the essence of the expansion theorem relies not 
only upon the fact that prefixing must be defined on transitions (keeping the same observation), but also 
that the choices made inside a transition must not be observed. 

In Section 2 we present an absolute version of CCCS, where the operations on the observations are 
not interpreted, and where the prefix operator contains a transition. In Section 3 we give our complete 
axiomatization of the strong observational equivalence. In Section 4 we present a parameterized version 
CCCS~, where ft is an algebra of observations and where the prefix operator contains an observation. 
Essentially the same axiomatization (but now enriched with axioms for f~) holds and is complete for CCCSn. 
Finally, in Section 5 we consider two particular observation algebras: 27, yielding the classical version of CCS, 
and S ~ ,  the algebra of Spatial Histories, for a true concurrency version. Spatial Histories are characterized 
(with respect e.g. to Concatenable Petri Processes [DMM89], Concatenable Concurrent Histories [FMMgla] 
and Causal Streams [FMM91b]) by the fact that they are not ranked, i.e. the operation of sequential 
composition is always defined, and is performed via a simple notion of unification. In the conclusion, we 
point out that just adding this operation of sequentialization to the algebra of transitions would allow us to 
extend our results to handle atomic actions. 



34 

2 Closed CCS: Operational and Bisimulation Semantics 

In this section we introduce Closed CCS. We assume some familiarity with CCS. Let A (ranged over by o) 
be the alphabet of basic actions, and ~ the alphabet of complementary actions (A = ~) .  The set A = A t.J~ 
will be ranged over by A. Furthermore, as in CCS we use the special action r ,  r ¢ A for internal moves, and 
moreover, we adopt the special action $ ¢ (h tJ {r}) for error. Finally, let A = A O {r,$} (ranged over by 
#) be the set of elementary actions. 

The standard operational semantics of process algebras is given by a~doms and inference rules [Plo81] 
which allow us to derive statements of the form E1 - ~  E2, where w is the observation associated to the 
deriwtion. Here, instead, we write 

t : E1 - ~  E2 

to indicate that t is the name (proof) of a transition from E1 to E2 with observation w. 

Defini t ion 1 (Closed CCS: Absolute Form) 
A CCCS agent E has the following syntax: 

E ::= nil ,  t .E ,  E \ a ,  E[~],  E1 + E2, E1 [ E2 

where t is a transition, and ~ is a permutation on the set of elementary actions, fixing r, $, and the operation 
of complementation. 
The formation rules of the transitions are given as follows. 

p : #.nil ~ nil 

t : E1 "-~ E~ 
It, E > :  t .E .2.. E 

t : E1 ~ E2 

t[~] : E~[~] ~ E2[~] 

t : E~ - ~  E2 
t < + E : EI + E -2-~ E2 

t : E1 ~ E2 
E+ > t : E + E1 - ~  E2 

t : g l  - ~ E 2  

tJE : EI l E ~J-~ E2 I E 

t : E1 ~--~-} Ez 

Bit: E I E1 -_~t~ EI E2 

t:  E~ ~ E~, t' : E' 1 _eL E' 2 

tit' : E~ I E; ~ E~ I E2 

We can comment briefly on the definition of the transitions and their observations w. As we have al- 
ready remarked, the transitions have to be interpreted as proofs of the operational derivations. Indeed, 
there is an operator for each rule. This is the standard construction of the proved transition system 
[DDM85,DDM90b], [BC89], [MY89], [FM90], [BC90]. Computations are obtained just by concatenating 
transitions. 

Example  2 (Operational Semantics) 
Let E = fl.a.nil [ 7.nil be a CCCS term. To illustrate how the operational semantics of CCCS works, we 
show a complete derivation for agent E. Applying the inference rules we have: 



35 

[J : [Lull ~ nil 

L6,~.nil>: [3.a.nil ~ a.nit 

[t3,a.nil>J%nil : t3.a.nil J 7.nil ~ a.nil J 7.nil 

Let us consider the term &nil J c~.nil. Applying the inference rules we have: 

8 : 8.nil ~ nil, a : cl.nil - -~ nil 

a I ~ : $.nilJa.nil  ~ hi l l  nil 

The last example above shows that  the action ~ may appear as argument of the operations of the 
observations ~. Recall tha t  the action ~ has the meaning of indicating the occurrence of an error. Thus, we 
need to determine which transitions should be considered correct or proper. 

Def in i t ion  3 (Proper Transitions and Observations) 
A transition t : E1 - ~  E2 is called an error transition provided that either: 

• t = a(t ~) for some error transition t ~ and operation a. 

A transition t : F4 --~ E2 is called a proper transition (observation w is called a proper observation} 
provided that t is not an error transition. [] 

We now introduce the bisimulation semantics of Closed CCS. Only proper tra~asitions and observations 
are involved in the definition of bisimulation, i.e. only proper transitions can distinguish between CCCS 
terms. 

Def in i t ion  4 (Strong Bisimulation) 
A binary symmetric relation R on Closed CCS terms is called bisimulation if and only if R satisfies the 
following clause: 

• if ul R u~, and tl : ul ~ vz is a proper transition, then there ezists t2 such that t2 : u2 - ~  v2 is a 
proper transition and vl R v2. 

Two Closed CCS terms, ul and u2, are bisimilar, and we write ul ,'~ uz, if there e~ists a bisimulation relating 
them.m 

It is a well known fact [Par81] tha t  the arbitrary union of bisimulation relations is again a bisimulation. 

P r o p o s i t i o n  5 (Strong Observational Equivalence} 
Relation ,~ is the maximal bisimulation and it is an equivalence relation. It is called Strong Observational 
Equivalence. [] 

It is easy to show that  the equivalence relation ,,, is indeed a congruence, i.e. equivalent agents inserted 
within any context are still equivalent. 

T h e o r e m  6 (Congruence) 
The relation ,,, is a congruence 
Proof .  Standard. See, for instance the proof given in [Mil89] for CCS strong observational congruence. [] 



36 

E x a m p l e  7 (Some Equivalent CCCS Processes) 
Let E be a CCCS process. The process LE  is equivalent to nil: there is no proper transition which can 
discriminate between the two processes. 
It is easy to see that the processes E + E and E are equivalent. Moreover, E + nil is equivalent to E. The 
process ( tJnil).( E I nil) is equivalent to t .E I nil. However, it is not true that ( tJ E~).( E1 I E~) is equivalent 
to t.Ea I E2, for any CCCS term Ex and E2. For instance, take (aJ13.nil).(nil I #.nil) and a.nil I #.nil. 
The second process can perform a transition with observation a 113 while the first process cannot. 
Finally, the process a.nil I #.nil is not equivalent to the process #.nil I a.nil. The first process can perform 
a transition with observation a J -  while the second cannot. This final example expresses that the equivalence 
,,~ discriminates between processes which have a different physical distribution, in other words we observe 
the localities of the composing subagents.O 

E x a m p l e  8 ( E~pressive Power) 
The two CCCS proeesses E1 = a.(#.nil + 7.nii) + a.nil 1 13.nil, E2 = a.(#.nil + 7.nil) + a.nil I 13.nil + a.#.nil 
are indistinguishable by Pomset Bisimulation Equivalence [BC88]. However, they are distinguished by ,,~. 
This is because the process E~ can perform a transition with observation a ending in a state from which 
a transition with observation 7 is impossible. The process E1 cannot do this because there is no transition 
with observation a from the state c~.nit 1 13.nil, although there is a transition with observation a ] - .  ra 

3 Fin i te  C o m p l e t e  A x i o m a t i z a t i o n  

In this section we introduce an equational theory Jr which characterizes the bisimulation equivalence ,,~ 
introduced in the previous section. To this aim we introduce some auxiliary operators, following Bergstra 
and Klop Algebra of Communicating Processes (ACP) [BK84,BK85]. 

Defini t ion 9 (The Equational Theory Jr) 
The set of terms of the equational theory Jr is given by the following grammar: 

F ::= nil ,  t .F ,  F \ a ,  F[O], FI + F2, F1 I F2, FlJF2, FI[F2, F1 II F2 

where t is a transition of Closed CCS. 
The equational theory jr is given as follows: 

S1 F + F = F  

$2 F~ +F2 = F~+ F~ 

$3 F~+(F2+Fs)=(F~+F~)+F3 

$4 F + nil = F 

N t .E=nil ,  where t is an error transition 

w ¢ s ~ s 

T t:E1---*E2,t  :El----rE ~ 
t.E = t'.E 

EX F~ IF2= F~JF2÷ F~LF2÷ F~ IIF~ 



37 

D~ t .ede~ = (tJv,).(v, I e , )  

m F, tt.Y, = (Y, tt).(v2 t e , )  

DZ ta.F~ II t2.F2 = (t~ t t2).(F~ 1/~2) 

194 (F~ + F2)JF = F, JF + F2JF 

D5 E[(FI + F2) = F[F, + E[F2 

D6 (F,+F~)IIF=F, IIF+F211F 

D7 F II (FI + F2) = F II FI + F II F ~ 

R1 t .F\a = t \a .F\a 

-~2 t.Y[#] = t[,I,].F[,I,] 

n4  (F1 + F2)[,}] = FI[,~I + F2[~] 

Z nil~a = nil[~] = na I nil = nilJF = F[na = F 11 ,,it = hi! II F = n/ l  

[] 

We can comment briefly on the definition of the equational system. In the line of ACP, three operators 
J, right merge, [, left merge and II, synchronization merge have been introduced. The interpretation of the 
term FIJF2 is that the process FI has more priority than F2: the interpreter is committed to choose the 
first transition among those F1 can perform. The dual phenomenon happens with the process F1 [F2. The 
process F1 II F2 is committed to a synchronization. 

The axioms ($1 - $4) express that (F, -{-, nil) is an abelian mono/d. Notice that these are Milner's 
axioms for the Strong Observational Congruence. The axiom (N) expresses that only proper observations 
can discriminate the behaviour of agents. Notice that we do not make any distinction between a legal 
termination, represented by nil, and a termination due to the occurrence of an error transition. The axiom 
(T) expresses that we identify processes prefixed with transitions which give rise to the same observation. 
This axiom amounts to saying that transitions really stand for observations. The axiom (EX) states the 
expansion theorem. A parallel process FI l F2 can proceed either by choosing to perform a step in F1, or in 
F2, or to synchronize the two processes. 

The axioms (D1 - D7) state the distribution of the auxiliary operators with respect to the fundamental 
operators of sum a~d prefixing. The meaning of the remaining axioms is immediate. 

Example 10 (Expansion of Parallel CCCS Agents) 
Let c~.nil [ #.nil be a CCCS agent. By applying the laws of the equational system ~r as rewriting rules we 
can infer the equality 

a.nil I ~.nil = a.nilJ~.nil + c~.nilL~.nil + a.nil II ~.nil 

= (aJ#.nil).(nil J #.nil) + (a.nil~).(a.nil  I nil) + (a I B).(nil I nil) 

= (aJ#.nil).(nil[B).(nil I nit) + (a.nil~).(ctjnil).(nil I nil) + (a [ #).(nil I nil) 

= ( a J # . n i l ) . ( n i l  L a).nil + (a.nillfl).(aJ nil).nil + (a I/9).nil 



38 

We will prove tha t  the equational theory above is a characterization of the bisimnlation equivalence 
,~. It is worth-noting tha t  axiom (T) points out that  prefixing with transitions stands for prefixing with 
observations. To illustrate this fact we have the following proposition. 

P r o p o s i t i o n  11 (Prefiz/n 9 Theorems) 
Let t be a transition, and El ,  E2 be CCCS agents. The following equalities hold in 

t.E1 = [t, E 2 > . F a  

(t < + E 0 . E 2  = (E~+> t).E2 = t.E2 

(tJE~).E2 = (tJE~).E2 

(E~ Lt).E2 = (E~ [t).E2 

Proof .  Routinery application of the axiom (T). rJ 

Let G be the set of terms of CCCS over the restricted signature comprising nil, prefixing and summation 
only (thus, also a subset of terms of the equational theory ~r). In other words, terms in G are given by the 
following syntax 

G ::= ni l ,  t.G , G + G 

where t is a transition of Closed CCS. We have the following result. 

T h e o r e m  12 (The Generalized Expansion Theorem for CCCS) 
For every term F of the equational theory jr ther e exists a term G such that 

Y I - F = G  

Proof .  The proof is by induction on the structure of terms. The unique non trivial step concerns parallel 
terms of the form F1 I F~. In this case the theorem is proved by using the axioms EX, D1-D7 and Z, in 
order to push parallel composition inside the structure of the term and to remove it at the end.n 

Since CCCS agents are terms of the equation~d theory ~', we can safely say that  the theorem above 
ensures the existence of normal forms for agents within the syntax of agents itself. The following theorem is 
the crux of the paper and shows that  the proposed axiomatization is sound and complete (the proof follows 
[HM85]). 

T h e o r e m  13 (Soundness and Completeness) 
E1 ~ E2 if and only if ~c ~- E1 = E2. 
Proof .  
All the axioms in Y are satisfied 2 by ,m 
The converse, i.e. i r e  ~ E I then Y: ~- E = E t, will be firstly proved for norraal forms E and E ~, by inducing 
on their structure, noting that E --~ ~ implies that -E is a subterm of E.  
Let = be the congruence on terms induced by the axioms of Yr. We therefore assume that E and E ~ take the 
forms 

E = ~t~.E~ 
w1 

and 

11 

where transitions tl and tJ have observations wl and wJ, respectively. Assume that E ,,~ E ~. Since E -ff~ El, 
then for some E__, E ~ ~ E and Ei "~ E.  But E must be EJ for some j ,  with wl = wJ, and by induction 
Ei -- EJ. So nuch a j must exists for each i, and by symmetry for each i there exists j such that Ei = EJ 
also. It then follows from axioms $1-$4 and T that E = E ~. 
Finally, when E and E ~ are arbitrary CCCS agents, Theorem 12 ensures that any agent can be proved 
congruent, and thus (by the first part of this theorem) observationally equivalent, to its normal form. n 

2To be rigorous, we could not say that ~ satisfies the axioms EX and D1-D7 because they invol'~e also terms which are not 
CCCS agents. However, it is immediate to see that ,.~ can be safely extended also to those terms, 



39 

4 A n  Al t ernat ive  Formulat ion  o f  C C C S  

One of the main consequences of the equational characterization of the equivalence ,~ is that we can safely 
replace the algebra of transitions with an algebra of observations. In fact according to axiom T all transitions 
with the same observation have the same meaning within the prefLx operator. Thus, in t.E we can safely 
replace t with its observation w. In this section, we introduce an equivalent but formally simpler definition 
of CCCS. 

Defini t ion 14 (Algebra of Observatiows) 
An observation algebra ~, with elements called observations and denoted by w, is any one-sorted algebra 
with the following syntax: 

and satisfying the following axioms: 

~ \ ~  = 6[~] = 6J -  = - L6 = ~ I ~ = ~ I ~ = ~. 

For instance, a I a ,  (a J - )  and ( - [ f l )  are observations. Indeed, it is easy to see that the labels of 
proper transitions (see Definition 3) plus $, are the elements of the initial algebra in the class of a~ebras 
satisfying the above presentation. Notice that all the error transitions are now labefled with $ because the 
operations of any observation algebra are strict on the action 5. 

Defini t ion 15 (Closed CCS: Parameterized Form) 
Let ~ be an observation algebra. A CCCS~ agent E has the .following syntax'. 

E ::= . i l ,  ~ . E ,  E k a ,  E l # f ,  E1 + E2 ,  E1 I E2 

where w E fl is an observation. 
The operational semantics is defined by axioms and inference rules which allow us to derive statements of 
the form El - ~  E2. 

D 

E1 -~E2 
El\a ~ E2\a 

,--~ E2 

E1 -~E2 
EI + E - ~  E2 

E1 --~ E2 

E1 I E ~J---~ E2 I E 

E +  Ez E2 

E I F~ -[-~ E I E2 

Similar results on the axiomatization of the bisimulation equivalence can be easily proved also for this 
alternative formulation. 



40 

D e f i n i t i o n  16 (Parametcrized Bisimulation) 
Let ~2 be an observation algebra. A binary symmetric relation R on CCCSn agents is called ~-bis imulnt ion  
if  and only if R satisfies the following clause: 

• if u, R u2, and ul ~ vl, wa # 6, then there exists v2 such that u2 ~ vz, Vl R v2, and wx = w2 when 
evaluated in l~. 

Two Closed CCS terms, u, and u2, are bisimilar, and we write nl , ~  u2, if  there exists a fl-bisimulation 
relating them.[] 

As usual ,  relation ~n is the  max ima l  fl- bls imulat ion and  it is an  equivalence relation.  

D e f i n i t i o n  17 (The Equational Theory ~l )  
The equational theory }r, is the theory obtained from yr by removing aziom T, by substituting everywhere 
observation oa for transition t, operations oaJ-, and - [ w  .for tJ E, and Eft ,  and by replacing axiom N with 
the axiom &F = nil. 
Sl F+F=F 

~ + ~ = ~ + ~  

s3 F~ + (F2+ F3)= (F~ + F2)+ Fs 

$4 F + n i l = F  

N 6.F = nil, 

EX F, t F2 = F~JF2 + F~[F2 + F~ II F2 

D1 ~.FlJF2 = (~J-).F1 I F2 

m F21,~.F1 = ( - [ ~ ) . F 2  tF1 

D3 ~t.F1 II ~2.F2 = (w, I ~2).F1 I F2 

D4 (F~ + F2)IF = FIJF + F2IF 

95 FI(FI + F2) = FIFI + FIF2 

06 (FI + F2) II F = F1]I F + F211F 

197 F II (FI + F2) = F II FI + F II F2 

R1 w.F\ot = w\a.F\a 

R2 ,o.F[¢] = ~,[¢].F[~] 

R3 (F~ + F2)\a = F~\~ + F2\a 

R4 (El + f2)[~l = F,[,~] + F~[¢] 

Z na\c~ = nil[~] = hill na = nitJF = F[na = F II n a  = nit II F = , i t  
[] 

T h e o r e m  18 (Soundeness and Completeness) 
Let.An be an aziomatization of the observation algebra ft. Then B1 ~t~ E2 if  and only if Yr'UA~ ~" E1 = E2. 
P r o o f .  The aziomatization Atl of the observation algebra is irrelevant to define normal forms and to 
establish their existence, o 



41 

In this formulation of CCCS we can also introduce a programming logic in the style of Hennessy - 
MilnerLogic [HM85], whose modalities are parameterized with respect to the observation algebra fL 

Defini t ion 19 (The Programming Logic HML(~)) 
The syntax of the HML(f 0 is 

: : :  tru~ I - '~ I ~ v ~ I [,,,]~. 

The satisfaction relation ~ for the logic on the set UCCS agents is as follows: 

* E ~ true for any E, 

. E ~ ~o if and only if E ~ ~o 

e E ~ o l V ~ o 2  i f a n d o n l y i f E ~ o l  o r E ~ o 2  

o E ~ [w]~0 if and only if for any E' such that E - ~  E t, we have E' ~ ~o 

Such family of programming logics naturally induces an equivalence relation - n  on CCCS agents. We 
say that Ex -=a E2 if and only if E1 ~ ~ iff E2 ~ ~ for all formulae ~ of the logic. 

Theo rem 20 (Logical Characterization) 

[3 

The proof of the theorem follows the same pattern of the proof given by Hennessy and Milner in 
[tIM85] 3. 

5 Interpreting the Operations 

As already anticipated, in this section we show that by suitably interpreting the operations on the algebra of 
observations it is possible to derive the classical interleaving expansion theorem and also a truly concurrent 
interpretation which faithfully handles partial ordering obserwtions. 

5.1 Recovering Interleaving Semantics 

We now introduce the Algebra I of Interleaving Observations. Its elements are the actions, including r and 
& The interpretation of the operations is defined by the following axiomatization .,4:/-: 

p\~ = i f  p E {~, ~} then ~, else # 

~[~1 = ~(~) 

~ ] -  = ~ =  - [ ~  

Pl I P2 = i f pl =-ff~thenr, else& 

Clearly, the classical Interleaving Expansion Theorem is deriwble in Y:' U .AI. Indeed, in the equational 
system ~-1 U ~4z, the following equalities hold: 

SNotice that because we are dealing with finite CCCS agents we do not need to introduce the image fi~iteness requireraent 
on the transition relation. 



42 

~.E~JE~ = (~I-).(E~ I E~) = j,.(E~ I E~) 

E~L~.E~ = (-I~).(E~ I E2) = ~.(E~ I E2) 

a.E~ I1 ~.E2 = (~ I ~).(E1 I E2) = r.(E~ 1 E2) 

~.Ex 11/3.E2 = (a I/3).(E1 I E2) = ~.(E1 I E2) where a ~/3 

It can be proved (see, e.g., IGor91]) that the classical interleaving expansion theorem can be obtained by 
using the axioms stated above. In particular, if one is interested in finding the most compact representation 
in ACP-style of Milner's expansion theorem, note that parallel composition I becomes commutative, and 
thus a single auxiliary operator for asynchrony is enough (the topological information on observations is 
irremediably lost). 
W'e have proved (see example 10) that in .7" we have: 

a.nil  l /3.nil = (aJ/3.nil).(nilLfl).nil + (a.nilL~).(aJnii).nil + (a I /3).nil 

In yrt we have: 

a.ni l  t ~3.nil = (aJ-) .(-[~3).nil  + ( - [ f l ) . ( a ] - ) .n i l  + (c~ I /3).nit 

Finally, in ~rr U .A~ we have: 

a.ni l  113.nil = a./3.nil q-/3.a.nil + &nil 

= a./3.nil +/3.a.nil + nil 

= a./3.nil +/3.a.nil  

Similarly, it is easy to see that 

a.nil  I -~.nil = a.H.nil q- "~.a.nil + "r.nit 

5.2 A T r u l y  C o n c u r r e n t  I n t e r p r e t a t i o n  

Now we introduce an algebra S?/ of concrete partial ordering observations, where partial orderings are 
enriched with attaching points, like Concurrent Histories [DMS?,FMMgta]. The observation 0J out of a 
transition E - -~  E t will be interpreted as a particular kind of concurrent history, called spatial history, 
where the process labels are structured with topological information. We remark that this is just one of the 
possible truly concurrent interpretations. Indeed, by taking (slight variants of) Petri nonsequential processes 
[GR83,DMM89] or Causal Streams [FMMglb] as carrier sets, we can get an observation algebra as well. 

A concurrent history h is a triple (V, <,£), where (V, <) is a partial ordering, £ : V ~ P U A is the 
labelling function which sends the set of maximal and minimal elements (w.r.t. <) to P (the set of process 
types) and all the other elements to A (the set of event types). The elements of h with labels in P axe 
called processes, those with labels in A are called events. Minimal processes, denoted by £(h), are called 
sources, while maximal processes, denoted by D(h), are called destinations. Furthermore, we require that 
l be injective on sources (destinations), namely no two minimal (maximal) processes have the same label. 
Therefore, we can safely identify sources (destinations) with the set of their labels. 

Concurrent Histories are naturally equipped with an operation of concatenation. Given two histories 
hi = (V1,<1,£1) and h2 = (V2,<z,12), the concatenation hi ; h2 is defined provided that tq(h2) = ~(hl) .  
In such a case, the resulting history hi ; h~ is obtained by matching £(h2) with ~D(hl), i.e. by identifying 
the corresponding processes (of course, two processes match provided that they have the same label). The 
relation <t  U <_2 is made transitively closed, and the matched processes, whenever they are neither minimal 
nor maximal elements in the resulting partial ordering, are erased. Figure 1 shows an example of the 
operation of concatenation between histories. Graphically, processes (events) are represented by circles 
(boxes), and the partial orderings are represented by their Hasse diagrams growing downwards. 



43 

I 

Figure 1: Two concurrent histories and their sequential composition 

In order to introduce Spatial Histories, we have to define the set of process labels P. We remark that 
Spatial Histories are Concurrent Histories with certain structured process labels, called localities. Localities 
are given by: 

L ::= o, L J - ,  -LL 

A set of localities is called a chart, and it is denoted by I ,  provided that it can be generated by the following 
rule: 

~, {.}, [] - u - [[ are cha~s 

where ~b is the empty chart and [ J -  = {pJ - : p 6 I ) ,  i.e., the operator componentwise affects the elements 
of I (symmetrically for - LI). Finally, a chart is called complete, and is denoted by C, if it is generated by 
the following rule: 

{,}, C] - U - [C are complete 

Notice that complete charts axe charts, and that charts can be completed. Intuitively, charts describe 
information about the physical distribution of processes. A locality is very close to the notion of grape, 
introduced in [DM87,DDM88a, DDM90a], to deal with distributed semantics for CCS and related languages. 
A complete chart C gives a syntactical representation of a distributed system which occupies all the available 
space with its components. A chart I gives a consistent, representation of the distributed structure of a 
system which possibly leaves some space empty. 

On charts a partial ordering relation ~ is easily defined: it is the least relation satisfying the following 
clauses: 

(i) ~ _ ~ ,  

(~) {.} _~ c, 

& ~_ I2 and I3 ~ I4 
(m) (XlJ - U - its) _~ (x2J - U - [/4)" 

It is immediate to show that relation ~ is a partial ordering. Moreover, the set of charts with relation 
_ is a join semilattice. This means that, given two charts I ,  and/2,  there always exists their greatest lower 
bound,/1 U/2,  which is called the most general unifier (mgu) of I1 and I2. Procedurally, the chart/'1 LJ/2 
is built by adding them the minimal topological detail which makes the two charts in full agreement. For 
instance, let us consider the two charts/1 = { . J - }  and I2 = { ( * J - ) j - } .  The chart [ ,  tJ/2 turns out to 
be { ( e J - ) J - ,  ( - [ e ) J - } .  If in proving that 11 _-_</1 UI2, and/2  _ I1 LJl2 we do not use the full power of 



4 4  

axiom (i) but just the fact that ff _~ ~b, then 11 and [2 are called strongly unifiable. Intuitively, two strongly 
unifiable charts either are both complete, or leave the same empty space. 

A spatial history is a concurrent history h = (V, _~,l)~ where process types are localities (the labelling 
function £ sends sources and destinations to charts) and event types are basic actions; moreover we require 
that sources and destinations are strongly unifiable, and that no process is both a minimal and a maximal 
element of the partial ordering. Finally, a spatial history has no events labelled by 6. Spatial Histories are 
considered up to isomorphisms of labelled partial orders. 

We now introduce an observation algebra whose dements are spatial histories plus the error & To 
simplify the definition of the algebra, we first introduce some notations. We write h~, for the history with 
three linearly ordered elements where the middle one is labelled by #, and the two extrema by o. Clearly, 
the constants A U {I"} wUl be interpreted as the histories h~, and the constant ~ by the element 6 of the 
algebra. As required by Definition 14 6 is absorbent with respect to all the operations. 

The interpretation of the operations is given as follows. We have h = (V, ~ , l ) .  

• h i -  -- (V,(_,£'), where, for all processes v, r (v)  = £(v) j - ,  and for all the events v, l'(v) -- £(v). 
It is immediate to observe that if h satisfies the requirements about strong unifiabUity of sources 
with destinations, then also h i -  does, and thus also h J -  is a spatial history. Symmetrically for the 
operation - [h. 

• The operation of synchronization, hi I h2, yields a history only when both hi and h2 have a unique 
event - say, vl and v2, respectively - and £1(vl) = 12(v2). Otherwise, hi I h2 = ~. In the first case, the 
spatial history hi I h2 = (V,__,0 is given as follows. Set V is equal to (V1 t~ V~), where ~ is the union 
of V1 and V2, obtained by identifying the elements Vl and v2, (the resulting element is denoted by ~). 
Relation _~ is the transitive closure of the union of the two relations _~1 and <~2 on V. The labelling 
function £ is: 

- for all v E Vl,t(v) = ll(v).[-;  

- for all ~, e ½, 0 ' )  = - [ l ~ ( , O .  

• h \ a  yields a history only when there are no events labelled by ~ or by ~, and the result of the operation 
is h itself. Otherwise, h\a  yields ~. 

i h[~] is the history obtained by applying the relabelling function • to events. 

i 11 : 11 : I 

Figure 2: The procedure giving the concatenation ( ~ J - ; -  [3 of spatial histories a J -  and - L  Q 

Now it could be interesting to concatenate histories in order to have a complete observation out of 
a computation. To this aim, we introduce a concatenation operation on spatial histories for growing t h e  

partial orderings. 



45 

Given two spatial histories hi and h2, the concatenation hi; h2 is the spatial history obtained by firstly 
substituting ~(hl )  LJ~q(h2) for/)(hi)  in hi and for ~q(h2) in h2, and then concatenating hi and h2 according 
to the concatenation operation given above for concurrent histories. Notice that this operation is well defined 
because ~)(hl)1.1 ~q(h2) always exists. An example of this construction is reported in Figure 2. The localities 
of processes are directly drawn in the picture. For instance, the label of the upmost leftmost process in the 
picture is . J - ,  as it can be inferred by its position with respect to the thick symmetry line. 

As an example of the expansion theorem in the case of the algebra of truly concurrent observations 
given by spatial histories, let us consider the CCCS agent (ct.(~ I nil) ] "~.nil)\/L According to the expansion 
theorem and to the interpretation of the operations we have: 

(c~.(/~ I nit) I-~.nit)\# = ( a J - ) . ( ( # J - )  I'~).nit 

The spatial history observation of the unique 2-step computation is illustrated in Figure 3. 

I ( 

E ;I : ,I 0 
? 

Figure 3: The observation of the 2-step computation of (o~.(/~ I nil) I -~.nil)\1~ 

We are presently investigating an axiomatlzation of the algebra 8 ~  of spatial histories, following the 
intuition behind the proposal presented in [FMg0]. There, a truly concurrent axiomatization of CCS is 
given by exploiting a relation stating that independent transitions can be permuted. We plan to apply a 
similar machinery to spatial histories; indeed, spatial histories involving different localities are obviously 
independent and thus can be permuted. 

6 Extens ions  and Future Work 

The first natural extension concerns the introduction of a recursive definition construct, like for CCS. To 
this aim, we can extend the syntax in the obvious way, and adapt the overall theory without too much effort. 
Of course, no finite axiomatization is given in the general case, except for regular behaviours [Mi189]. 

As soon as we admit transitions as arguments of the prefixing operator, we augment the expressive 
power of the language, not only because the axiomatlzation we propose would not be possible otherwise, 
but also because the algebra of transitions (and thus of observations) can be enriched as one wishes. For 
example, here we discuss the relevant case in which sequential composition, denoted by u;n, is added to 
the transition algebra. In this way, atomically executed computations can be arguments for prefixing, thus 
introducing explicitly a mechanism to handle atomic actions. In the context of Process Algebras, the notion 
of atomic action has been extensively used to address the problem of action refinement. Some preliminary 
results are reported in ([BC88], [dBK88], [GMM90,DGg0,Gor91]). 

In order to introduce the operation of sequential composition and the mechanism of atomicity, we need 
two transition relations, the former (--*) for transitions, the latter (=~) for computations. Of course, any 
transition is a computation and thus we need the following rule: 



46 

t : E1 ~ E~ 
t : EI ~ E2 

Moreover, we need the rule for concatenating computations, which induces also a corresponding oper- 
ation on observations: 

t w # 
~ : EI = ~  E2,t : E2 ==~ Es 

t; t' :El ~ E3 

Finally, we have to transform a (possibly multi-step) computation in just an atomic transition. To 
this aim, the inference rule for prefixing is replaced by the following: 

t : E~ ~ E2 
It, E > :  t .E --~ E 

Bisimulation is defined considering only the atomic relation 4 ,  and all the results proved in the paper 
hold also in this more general case. 

With the introduction of these new rules, the language becomes extensively strenghtened. However, 
a difficult problem arises, namely the relationship between the operations of sequential composition and 
synchronization. Indeed, the synchronization operation does not have a natural counterpart on computa- 
tions. For instance, in an interleaving setting, [GMMg0] introduces an operation on sequences of actions 
which is intrinsically nondeterministic, and thus is not expressible in our algebraic framework. An alter- 
native approach has been followed in a truly concurrent setting by [GM90], where a restricted (partial) 
synchronization operation on processes has been proposed. 

References 

[AB84] Austry, D. Boudol, G. AIgebre de Processns et Synchronization, Theoretical Computer Science 30 (1), pp 
91-131, 1984. 

[BC88] Boudol, G., Castellani, I., Concurrency and Alomicity, Theoretical ComputerScience 59 (1,2), pp. 25- 84, 
1988. 

[BC89] Boudol, G., Castellani, I., Permutations of Transitions: An Event Structure Semantics for CCS, In Proc. 
REX School, Workshop on Linear Time Branching Time and Partial Orders in Logics and Models for 
Concurrency, LNCS 354, pp 411-437 1989. 

[BC90] Boudol, G., Castellani, I ,  Three Equivalent Semantics Semantics for CCS, In Semantics of Systems of 
Concurrent Processes, LNCS 469, pp 96-141, 1990. 

[dBK88] de Bakker, J.W., Kok, J.N., Uniform Abstraction, Atomicity and Contractions in the Compttrative Semantics 
of Concurrent Prolog, in Proc. of Int. Conf. on Fifth Generation Computer Systems Tokyo, 1988. 

[BHR84] Brookes, S.D, Hoare, C.A.R., Roscoe, A.D., A Theor~/of Communicating Sequential Processes, Journal of 
ACM 31 (3), pp 560-599, 1984. 

[BK84] Bergstra, J., Klop, W., Process Algebra for Synchronous Communication, Information and Control 60, pp 
109-137, 1984. 

[BK85] Bergstra, J., Klop, W., Algebra of Communicating Processes with Abstraction, Theoretical Computer Sci- 
ence, 37, (1), pp 77-121, 1985. 

[DD89] Darondeau, P.~ Degano, P. Causal Trees, In Proc. ICALP 89, LNCS 372, pp 234-248, 1989. 

[DDg0] Darondeau, P., Degano, P., Causal Tree = Interleaving 4- Causality, In Semantics of Systems of Concurrent 
Processes, LNCS 469, pp 239-255, 1990. 

[DDM85] Degaao, P., De Nicola, R., Montanaxi, U. Partial ordering derivations for CCS, Proc. 5th Int. Conf. Fun- 
damentals of Computation Theory, LNCS 199, pp. 520-533, 1985. 



4? 

[DDM87] Degano, P. De Nicola, R., Montanari, U. Observational Equivalences for Concurrency Models, in Formal 
Description of Programming Concepts III, M. Wirsing, ed., North Holland, pp 105-132, 1987. 

[DDM88a] Degano, P. De Nicola, R., Montanari, U. A Distributed Operational Semantics for CCS Based on Condi- 
tion/Event Systems. Acta Informatica, 26, pp 59-91, 1988. 

[DDM88b] Degano, P. De Nicola, R., Montanari, U. On the Consistency of Truly Concurrent Operational and Deno- 
rational Semantics. Proc. LICS 88, IEEE Computer Society Press, pp 133-141, 1988. 

[DDM89] Degano, P. De Nicola, R., Montanari, U. Partial Ordering Descriptions and Observations of Nondetermin- 
istic Concurrent Processes, in Linear Time, Branching Time and Partial Order in Logics and Models for 
Concurrency, LNCS 354, pp 438- 400, 1989. 

[DDM90a] Degano, P. De Nicola, R., Montanari, U. A Partial Ordering SemanticJ for CCS, Theoretical Computer 
Science (75), pp. 223-262, 1990. 

[DDM90b] Degano, P., De Nicola, It., Montanari, U. On the Operational Semantics of Distributed Concurrent Systems 
in: Declarative Systems (G. David, R.T. Boute, and B.D. Shriver Eels) Proc. IFIP 10.1 Workshop on 
Concepts and Characteristics of Declarative Systems, North-Holland, Amsterdam, 1990. 

[DDM91] Degano, P. De Nicola, R., Montanari, U. Universal Axioms for Bisimulation, Submitted for Publication, 
1991. 

[DG90] Degano, P., Gorrieri, R., Atomic Refinement in Process Description Languages, Submitted for Publication, 
1990. 

[DMM89] Degano, P., Meseguer, J., Montanari, U., Ariomatizing Net Computations and Processes, in LICS 89, IEEE 
Computer Society Press, pp 175-185, 1989. 

[DM87] Degano , P., Montanari, U., Concurrent Histories: A Basis for Observing Distributed Systems, Journal of 
Computer and System Sciences 34, pp 422-461, 1987. 

[Fe90] Ferrari, G. Unifying Models of Concurrency, PhD Thesis, TD/4- 90, Dipartimento di Informatica, Univ. 
Pisa, 1990. 

[FM90] Ferrari, G., Montanari, U., Towards the Unification of Models for Concurrency, Proc. CAAP'90, LNCS 
431, pp 162-176, 1990. 

[FMMgla] Ferrari, G., Montanari, U., Mowbray, M. On Causality Observed Incrementally, Finally, To appear Proc. 
TAPSOFT - CAAP 91, LNCS, 1991. 

[FMM91b] Ferrari, G., Montanari, U., Mowbray, M. Causal Streams: Tracing Causality in Distributed Systems, 
Submitted for publication, 1991. 

[G88] Gischer, J. The Equational Theory of Pomsets, Theoretical Computer Science 61, 1988. 

[Go88] Goltz, U. On Representing CCS Programs by Finite Petri Nets, Proc. MFCS 88, LNCS 324, pp 339-350, 
1988. 

[Gor91] Gorrieri, R. Refinement, Atomicity and Transactions for Process Description Languages, PhD Thesis, Di- 
partimento di Informatica, Univ. Pisa, 1991. 

[Gr81] Grabowski, J. On Partial Languages, Fundamenta Informaticae, IV 2, pp 427-498, 1981. 

[GG89] van Glabbeek, R., Goltz, U., Equivalence Notions for Concurrent Systems and Refinement of Actions, Proc. 
MFCS '89, LNCS 397, pp 237-248, 1989. 

[GM90] Gorrieri, It., Montanari, U., SCONE: a Simple Calculus of Nets, In Proc. CONCUR'90, LNCS 458, pp 2- 
30, 1990. 

[GMMg0] Gorrieri, R., Marchetti, S., Montanari, U. A2CCS:Atomic Actions for CCS, Theoretical Computer Science, 
'/'2, pp 203-223 1990. 

[Gtt83] Goltz, U., Reisig, W., The Non Sequential Behaviour of Petri Nets, In formation and Computation 57, pp 
125-147, 1983. 



48 

[ao85] 

[}IM85] 

[aeS8] 

[Mil80] 

[Mi189] 

[Mol90a] 

[Mol90b] 

[MM90] 

[MY89] 

[ParS1] 

[NPW81] 

[o187] 

[Plo81l 

[Pr861 

[RTSS] 

IRES5] 

Hoare, C.A.R., Communicating Sequential Processes, Prentice Hall, 1985. 

Hennessy, M., Milner, R., Algebraic Laws for Nondeterrninism and Concurrency, Journal of ACM 32 (1), 
pp 137-141, 1985. 

Hennessy, M. As Algebraic Theory of Processes, MIT Press, 1988. 

Milner, R., A Calculus of Communicating Systems, LNCS 92, 1980. 

Milner, R., Communication and Concurrency, Prentice Hall, 1989. 

Moiler, F. The Nonexistence of Finite Axiomatizatians for CCS Congruences, Proe. LICS'90, IEEE Press, 
pp 142-153 1990. 

Moiler, F. The Imporfanee of the Left Merge Operator in Process Algebras, Proc. ICALP'90, LNCS 443, pp 
752-764, 1990. 

Meseguer,J. Montanari, U. Petri Nets are Monoids: A new Algebraic Formulation of Net Theory, Informa- 
tion and Computation, 88 (2), pp 105-155, 1990. 

Montanari, U. Yankelevich, D. An Algebraic View of Interleaving and Distributed Operational Semantics, 
In Proc. Third Symposium on Category Theory and Computer Science, LNCS 389, pp 5-20, 1989. 

Park, D., Concurrency and Automata on Infinite Sequences, in Proc. GI, LNCS 104, pp 167-183, 1981. 

Nielsen, M., Plotkin, G. Winskel, G. Peiri Nets, Event Structures and Domains (Part I). Theoretical Com- 
puter Science, 13 (1), pp 85-108, 1981. 

Olderog, E.-K., Operational Petri Nets Semantics for CCSP, in Advances in Petri Nets 87, LNCS 266, pp 
196-223, 1987. 

Plotkin, G. A Structured Approach to Operational Semantics, DAIMI FN-19, Computer Science Dept. 
University of Aarhus, 1981. 

Pratt, V., Modelling Concurrency with Partial Orders, Int. Journal of Parallel Programming, 15 (1), pp 
381-400, 1986. 

P~binovich, A. Trakhtenbrot, B. Behaviour Structures and Nets, Fundamenta Informaticae XI, pp 357- 
404,1988. 

Reisig, W. Petri Nets: An Introduction, EATCS Monograph, Springer, 1985. 


