
CCS for O0 and LP

J.W. de Bakker*

Centrurn voor Wiskunde en Informatica, Postbus 4079, NL-1009 AB Amsterdam
& Vrije Universiteit Amsterdam

E.P. de Vink

Department of Mathematics and Computer Science,
Vrije Universiteit Amsterdam, De Boelelaan 1081, NL-1081 HV Amsterdam

ABSTRACT We illustrate the design of comparative continuation semantics for object-oriented and logic program-
ming languages by three case studies dealing with process creation, backtracking and rendez-vous. Operational
and denotational semantics involving syntactic and semantic continuations are proposed, and their equivalence is
shown. For the rendez-vous concept, we present a somewhat streamlined version of our earlier work on the
semantics of the parallel object-oriented language POOL. Throughout, the metric framework is exploited, and
(unique fixed points of) contracting functions are used pervasively.

*Partially supported by ESPRIT BRA Integration

1. INTRODUCTION

We shall present a selection of the work we have performed in recent years on the semantics of object-

oriented (OO) and logic programming (LP) languages, in particular focusing on their control flow. As a

unifying theme, we have singled out the use of continuation semantics. Moreover, we systematically

compare operational and denotational models. Altogether, we shall be concerned with Comparative
Continuation Semantics for OO and LP.

To position the present paper with respect to our earlier work, we start with a bit of history on the

general framework we have developed. Since 1981, the Amsterdam Concurrency Group (ACG) has been

investigating control flow semantics, with special emphasis on concurrency notions, and employing

metric topology as main tool. The key observation explaining the relevance of the metric approach is the

following: Consider two computations p 1, P2. A natural distance d (p 1, P2) may be defined by putting

d (p 1, P 2) = 2-n where n (=dr sup { k : p 1 (k) = p x (k) }) is the length of the longest common initial seg-

ment of p 1 and p 2- Details vary with the form of the p 1, P 2. If computations are given as words (finite

or infinite sequences of atomic actions), we take the standard notion of prefix; ifp 1, P2 are trees, we use
truncation at depth k for p (k). Other kinds of computations, e.g. involving function application, may be
accommodated as well.

Complete metric spaces (cms's) have the characteristic property that Cauchy sequences always
have limits; this motivates their use for smooth handling of infinite behaviour. In addition, each con-
tracting function f : (M, d)- -) (M, d), for (M, d) a cms has a unique fixed point (by Banach's
theorem). Contracting functions f : (M 1, d l) ----> (M2, d2) bring points closer together: it is required
that, for some real tgE [0, I), d 2 (f (x) , f (y)) < c t , dl(X, y). Uniqueness of fLxed points may con-
veniently be exploited in a variety of situations.

In the paper [BZ82] we showed how to apply metric techniques to solve domain equations

F'= ~(IP) (1.1)

or, rather, (•, d) = 5~ (~, d), with (F, d) the cms to be determined, = isometry, and 5~ a mapping built

from given cms's (A,da) the unknown (1P, d) , and composition rules such as ~ (disjoint union), x
(Cartesian product), and Yco(") (compact subsets of •). Section 2 will provide more information on this
method.

In a series of papers, starting with [BZ82, BBKM84, BKMOZ86, BM88, BMOZ88], we developed
denotational (~) and operational ((~) semantics for a number of simple languages with concurrency.

Here a denotational semantics ~ for a language ~ is given as a mapping : ~g --~ ~'1 (for some P1 solving
(1.1) for a suitable ~), which is compositional and treats recursion through fixed points, t~ is a mapping :

-~ --~ ~2, which is derived from some Plotkin-styte transition system ([Pt83]), and which handles recur-
sion through syntactic substitution. Also, in the papers referred to, we encounter the contrasting themes
of linear time (LT, sets of sequences) versus branching time (BT, tree-like structures) semantic domains,
and of uniform (uninterpreted atomic actions) versus nonuniform (interpreted actions) concurrency.

After an initial phase in which ACG developed the basic machinery of metric semantics, the group
directed its efforts towards concurrency in the setting of object-oriented and, subsequently, of logic pro-
gramming. In a collaborative effort with Philips Research Eindhoven, within the framework of a project

with substantial support from the ESPRIT programme, we designed operational and denotational seman-

tics for the parallel object-oriented language POOL, and investigated the relationship between the
respective models ([ABKR86, AB88, ABKR89, AR89a, B89, R90a]). Throughout these studies, fruitful

use was made of the metric formalism. Two further papers deserve special mention. In [AR89b], the

technique from [BZ82] for solving domain equations (1.1) was generalised and phrased in the category
of cms's. In [KR90], a powerful method was proposed to establish equivalences such as ~9 = ~), by (i)
defining ~ as fixed point of a contracting higher-order mapping • (obtained from an appropriate transi-

tion system), and (ii) proving that 2 = ~(~9). By Banach's theorem, (0 = ~ is then immediate (cf. also
[BM88], where several more examples of the KR-method are treated).

Logic programming and some of its parallel variations were first studied by ACG in [B88, K88].

The paper [B88] proposed to investigate control flow in LP abstracting from the logical complexities (no
substitutions, refutations, etc.), and shows how the basic metric techniques apply as well to this, at first

sight rather remote, problem area. Related work includes [BK90, BoKPR90].
Since 1989, we have been pursuing the research directions as outlined above as part of the ESPRIT

Basic Research Action Integrating the Foundations of Functional, Logic and Object-Oriented Pro-
gramming. One of the tasks of this action is in particular devoted to the semantics of parallel OO and LP.

Representative papers produced by it so far are JAR90, BoKPR91, JaMo90].
Now back to the aims of the present paper. We shall demonstrate the machinery of metric seman-

tics by the investigation of two case studies. From parallel OO we take the notions of process creation
and rendez-vous between processes. From (sequential) LP we consider the backtracking notion of PRO-
LOG. In both cases we consider only the uniform or schematic version: the elementary actions remain
atomic and are not supplied with some form of interpretation as state (or substitution) transformation.
Also, both case studies serve as illustrations of more elaborate work reported elsewhere. The OO notions
are based on our study of POOL as mentioned earlier; the LP part is an introduction to the paper []388].

We conclude this introduction with an outline of the paper. In Section 2, we provide a brief sum-

mary of our metric tools, including a short discussion of the definition of suitable cms's as solution of

metric domain equations (t.1). In Section 3 we illustrate our techniques by means of the discussion of a

very simple language with as only notions elementary actions, sequential composition, nondeterministic
choice, and recursion. (The reader may recognise here the control structure of context free grammars.)
Operational and denotational semantics - both of the LT and BT variety - are developed for this
language, and their equivalence is established. By way of preparation for the subsequent sections, the

treatment is based on (syntactic and semantic) continuations. In the next section we deal with process

creation. Compared with [BM88], some details missing there in the main equivalence proof have been

added. Section 5 is devoted to backtracking. Originating with [DeBr86], this notion has also been studied

extensively by De Bruin and De Vink, e.g. [BrVi89]. In this TAPSOFT 89 paper they also included a

study of PROLOG's cut operator (using cpo rather than metric techniques). Our paper culminates in Sec-
tion 6 with the treatment of the rendez-vous construct. This is an abstracted (and considerably stream-

lined) version of the analysis of this notion in [ABKR89, R90a]. Firstly we propose a more convincing

operational semantics. Next, in the design of the denotational semantics (which avoids some of the intri-
cacies of [ABKR89] in the def'mition of the semantic parallel composition) and the ensuing equivalence

proof (~9 = 2) we exploit and advance the technique of using higher-order functions. Firstly, we provide a

simultaneous definition of 2 and of the semantic operator(s) concerned. Secondly, we give an

equivalence proof based on the principle of [KR90] combined with a refined complexity measure.

Acknowledgement. We are much indebted to the members of the ACG for fruitful cooperation over the

years, especially to Pierre America, Arie de Bruin, Joost Kok, and Jan Rutten, co-authors of the papers to
which the present one serves as an introduction.

2. MATHEMATICAL PRELIMINAPJES

This section is mainly devoted to a summary of the basic facts form metric topology which we need in
the sequel.

2.1 Notations

We use the phrase: let (x e)X be a set such that ... to introduce a set X with variable x ranging over X

such that With ~(X) we denote the collection of all subsets of X, and with ~ (X) the collection of all

subset of X which have property re. The notation f : X ---> Y expresses that f is a function with domain X

and range Y. If f : X ---> X and f (x) = x we call x a f ixed point of f. If f has a unique fixed point, we
denote it by fix(f).

2.2 Metric spaces

DEFINITION 2.1 A metric space is a pair (M,d) with M a nonempty set and d a mapping
d : M x M ---> [0,1] (a metric or distance) that satisfies the following properties:

(i) Vx, y E M , : d (x , y) = O c : ~ x = y

(ii) Vx,y ~ M , : d(x,y) = d(y,x)

(iii) Vx, y, z e M : d (x , z) < d (x , y) + d (y , z) .
We call (M,d) an ultrametric space if the following stronger version of property (iii) is satisfied:

(iii)" Vx, y ,z E M : d(x,z) < max{ d(x ,y) ,d(y ,z) }.

DEFINITION 2.2 Let (M,d) be a metric space, let (xi)*~_- o (or (xi) i for short) be a sequence in M.

a. We say that (xi)i is a Cauchy sequence whenever we have Ve>0~/E 1N Vn ,m >N: d(xn,xm)<e.

b. Let x e M. We say that (xi) i converges to x and call x the limit of (xi) i whenever we have
VE>0BN ~ IN Vn > N: d(x, xn)<E. Such a sequence we call convergent. Notation: limi_r~ x i = x.

c. The metric space (M,d) is called complete whenever each Cauchy sequence converges to an ele-
ment of M.

DEFINITION 2.3 Let (Mr,dr) , (M2,dz) be metric spaces.

a. We say that (Ml ,d l) and (M2,d2) are isometric if there exists a bijection f : M 1 --~ M 2 such that

Vx, y ~ M 1: d 2 (f (x),f(Y)) = d I (x, y) . We then write M 1 =- M 2-
b. Le t t z~0 . WithM1---~a M2 wedenotethesetofallfuncfions f f r o m M l toM2 thatsatisfythefol -

lowing property: Vx, y e M l: d2(f (x) , f (y))< a.dl(X,y). Functions in M 1 ...~1 M2 we call non
distance increasing (ndi), functions in M 1 _..~a M2 with 0 < a < l we call contracting.

THEOREM 2.4 (Banach' s fixed point theorem) Let (M,d) be a complete metric space (cms, for short).
Then there exists x e M such that

(i) f (x) = x (x is a fLxed point of]),

(ii) Vy e M : f (y) = y ~ x = y (x is unique),

(iii) Vx 0 e M : limn.~** fn(xo) = x where fn+l (Xo) = fffn(xo)), fO(xo) = xo"

DEFINITION 2.5 A subset X of a metric space (M,d) is called compact whenever each sequence in X has

a subsequence that converges to an element of X.

Each compact set X is closed (i.e., each Cauehy sequence in X converges to an element of X). The main

role of the compactness property for our purposes is based on the theorems of Kuratowski ([Ku56]) and
Michael ([Mic51]). The former states that the space of compact subsets (equipped with a suitable
metric) of a complete space is itself complete. The latter is useful for showing the well-definedness of

certain semantic operators (such as Definition 4.10; for more details on these issues which are somewhat

glossed over in our paper of. [Br91]).

DEFINITION 2.6 Let (M,d), (Ml ,d l) , (M2,d2) be metric spaces.

a. We define a metric dF on M 1 --~ M 2 as follows: for every f l ,f2 e M 1 -'~ M2,
dF(fl ,f2) = sup { d 2 (f l (x),f2(x)). For ct > 0 the set M 1 ._~tt M2 is a subset of M 1 --4 M2, and the

metric on M I ~ a M2 can be obtained by taking the restriction of the corresponding dF.

b. With M I ~ M2 we denote the disjoint union of M1 and M2, which can be defined as

{ 1 } xM1 u { 2 } x M 2 . We define a metric on M1 ~,M2 as follows: for every x,y e M1 GM2,

du(x,y) = di(x,y) if x,y e { i } × M i, i=1 or 2, di(x,y) = 1 otherwise.

c. We define a metric dp o n M] × M 2 by the following clanse

dp((Xl,Xz),(yl,Y2)) = max{ d l (Xl ,y l) , d2(x2,Y2) }.
d. Let ~nc(M) = { X c M I X is compact and nonempty }. We define a metric d/-/on 5°nc(M), called

the Hausdorff distance, as follows: For every X,Y e ~nc(M),

dtt(X,Y) = max{ supxex{ d(x,Y) }, SUpyer{ d(y,X) } } where d(w,Z) = infzez{ d(w,z) }, for every
ZC_M, w e M .
In 2co(M) = { X ~ M [X compact } we also have the empty set as an element. We define dH as

above but extended with the following case: I fX # ~ then dH(X, ¢~) = da(~ ,X) = 1.
e. Let a > 0 . Wedefineida(M,d)=(M,a.d).

THEOREM 2.7 Let (M,d), (M 1,d 1) (M 2,d2), dF, dn, dp and dlt be as in Definition 2.6, and suppose that
(M,d), (MI ,d l) (M2,d2) are complete. We have that

a. (M 1 --> M2,dF),(M 1 ---~a M2,dF),
b. (MI 5M2,dv) ,
c. (M1 ×M2,dv),

d. (5°nc(M),dH), (5°co(M),dH)
are complete metric spaces. If (M,d) and (Mi,di), i=1,2, are uhrametric spaces then these composed
spaces are again ultrametric.

The proof of Theorem 2.7, parts a, b, c are straightforward. Part d is more involved. It can he proved

with the help of the following characterisation:

THEOREM 2.8 Let (~co(M),dn) be as in Definition 2.6. Let (Xi) i be a Cauchy sequence in ~co(M). We

have limi Xi = { lim i x i [x i ~ X i ^ (xi) i a Cauchy sequence in M }o

The proofs of Theorem 2.7d and Theorem 2.8 are due to Kuratowski ([Ku56]), as a generalisation of a

similar result for closed subsets, see e.g. [Ha48].
The following alternative definition of the Hausdorff distance is sometimes convenient:

LEMMA2.9 Let ~ttt(X,Y) = inf{ e l Vx e x3y E Y : d(x,y)<e, Vy e Y3x ~ X : d(y,x)<E }. Then

h.=d.
We conclude this subsection with the important

THEOREM 2.10 (Michael) Let X ~ ~co(~co(M)). Then ~)X ~ ~co(M).

2.3 Sets of sequences

Let A be a finite alphabet, and let A ~ = A * u A ~ consist of the set of all finite and infmite words over A.
We define metrics on A and A °* in

DEFINITION 2.11

a. O n A w e d e f m e t h e d i s c r e t e m e t r i C d A : f o r a l l x , y E A , d A (X , y) = O i f x = y , da(x , y)=lo therwise .

b. Let, for x e A *°, x (n) denote the prefix of x of length n, if length(x) >- n, and x otherwise. We put
d(x,y) = 2 -sup{ nl x(n)=y(n) } with the convention that 2 -~ = 0.

We have

LEMMA 2.12

a. (A°°,d) is a complete ultrametric space.

b. ~nc(A *O,dn) is a complete ultrametric space.
c. Let, f o r X ~ ~ .c (A~) ,X(n)= {x(n)l x ~ X }. T h e n d n (X , Y) = 2 -sup{hI x(n)=Y(n)}

The space ~nc(A ~) will be used extensively in the sequel.

2.4 Domain equations

In [BZ82], [AR89b], a method has been developed to determine complete (ultra)metric spaces as solu-
tions of domain equations of the form

n' = ~(~'), (2.1)

where 5t is a functor (on a category of cms's) satisfying certain conditions. Natural examples of 5~ are

obtained by building it in terms of the operations on metric spaces encountered in Definition 2.6. We
shall restrict ourselves here to the discussion of only one example of (2.1). For the general theory we

refer to [AR89b]. Several more intricate examples may be encountered in [ABKR89], [ARg0].
We shall be concerned with (l°,d) - or ~, for short, - solving the domain equation

~ = { Po } G 5°co(A × id~(~')). (2.2)

Elements p in F are usually called processes. The equation (2.2) assumes the discrete metric on {P0}

(consisting of the nit process P0 only) and on A, and, moreover, the various metrics (for G, x, ~co, ida)
as defined earlier. As a consequence, the metric d on (the non-nil processes in) P equals the Hausdorff

metric d/¢ induced by the following metric d on A x P:

d ((a l , p l) , (a 2 , p 2)) = ½d(pl ,P2 i f a l = a 2

= 1 otherwise.
The metric dH may, alternatively, be characterised by

dH(Pl,P2) = 2 -sup{ nl pl(n)=p2(n) l
where p (n), the truncation of process p at depth n, is defined by p 0 (n) = p o, and, for p # p o, P (0) = ®,

p (n + l) = { (a,p'(n))l (a , p ') e p }.
A process p e F can be viewed as a tree-like object. It is either the nil process (which terminates

normally) or the empty set (which models abnormal termination or deadlock), or it consists of a

nonempty set of pairs (a,p") which represent all possible steps a that a process p can take (each fol-

lowed by its resumption p', itself another process). In a picture, a process p(#Po , ~) may be drawn in

a tree-like fashion:

, where each Pi is either Po, ~ or another such ' tree' . Each ' tree ' is commutative, absorptive (the suc-

cessors of any node form a set rather than a multiset) and compact.

EXAMPLES

1. P0, ¢~ , { (a l , { (a2,Po),(a3,PO) }) }, { (a l , { (a2,Po) }),(a t , { (a3,PO) }) } •
2. The process p determined by p = l i m i p i, p i + l = { (a l , p i) , (a 2 , p i) } (note that p satisfies

p = { (a 1,P),(a2,p) }. Thisp may be depicted as

3. Let us, informally, define the operation of sequential composition o : ~ ' x ~- -> F by putting:

P 1 °P2 is the process obtained by replacing, in p 1, all ' leaves' P0 by P2. Now let p be defined as
the process satisfying p={ (a,po) } ~ (p o { (a,po) }). Since p is compact (hence closed), it must

include the infinite branch { (a, { (a, .-.) }) }.

P0 a]

(Wannerdam has shown (personal communication) that the operation of sequential composition

sketched above is not well-defined if processes are only required to be closed and infmite alphabets

are allowed.)

We conclude with two more remarks on processes.

REMARK Let us call two processes Pl,P2 bisimilar if there exists a bisimulation R such that plRp2.
Here a bisimulation is a relation on P x P satisfying

(i) IfpoR porpRpO thenp =P0
(ii) If plRp2 and (a,p")~ P l , then there exists (a,p")~ P2 such that p'Rp".
(iii) If p 1Rp 2 and (a,p ") ~ p 2 then there exists (a,p ") ~ p2 such that p 'Rp ".

Now an important property of the domain P is the fact that two processes are bisimilar iff they are equal.
For more information about processes and bisimulation of. [BeK87], [Ru90b].

REMARK LT (sets of sequences) - domains may as well be obtained as solution of (systems of) domain

equations. Let P1 = { {e} } u 5°,z(A + uA°~). This domain (which is almost as 5°nc(A 0.) of Subsection
2.3, the only difference being that, for p E P1, if e e p, then p = { e }) is isometric to P2 which is (the first
component of) the solution of the system of equations

P = { p o } ~ (q ~)

= poU(A ×id~(~)) (2.3)

p0 = {e}

This way of defining P1 in terms of the isometric P2 may bring out the (dis)similarities between the
BT-domain P (solving equation (2.2)) and the LT-domain PI (or P2),

3. BASIC CONTROL FLOW

As a means to introduce our techniques in an elementary setting, we use a very simple language featur-
ing elementary actions, sequential composition, nondeterministic choice, and recursion. We baptize this

language 2cf: a program in ~gcf has the same expressive power as a context free grammar (generating
languages with finite and infinite words). For ;£c£ we shall introduce operational (¢) and denotafional
(~) semantics, both of the linear time (LT) and branching time (BT) variety (for the latter one also uses
the name bisimulation semantics). Throughout, we shall use (syntactic and semantic) continuations. For
the present language this is convenient but not essential. Our reason for employing these techniques here
is to prepare the way for their use in the three remaining sections, where continuations are indeed cru-
cial. Recursion will be handled by fixed point techniques, in particular through fixed point of contract-
ing functions. We present two alternatives, one based on fixed points of environment transformations,
the other defining the denotational meaning function ~ itself as fixed point of a contracting higher-order

mapping W. The operational semantics ~ will - both for the LT and BT case - be derived from a
Plotkin-style transition system J. A contracting higher-order mapping O will be associated with Y, and
the operational semantics ~ - which may be viewed as a means to collect all steps determined by Y for a
given program - is obtained as fixed point of this O. Moreover, we shall prove - following the approach

of [KR90] - that ~ (or, technically, a related function involving ~9) is as well a fixed point of ~ , thus

obtaining ~9 = £) as a corollary. (Incidentally, for the LT-setting this yields a new proof of Nivat's

equivalence result described in [Ni77,78], which in turn generalises the classical Chomsky-
Schutzenberger theorem for (f'mitary) context free languages.)

Altogether .~cf - though itself a language without advanced control flow notions - will be used as a

tool to illustrate the convenience and power of the metric framework in control flow semantics.

3.1 Syntax

Throughout the paper we use a self-explanatory BNF-like notation for syntactic definitions. We start
with the introduction of two basic syntactic sets:
• (a E) A, the alphabet of elementary actions,

• (x ~) PVar, the alphabet of procedure variables.

DEFINIIqON 3.1

a. Thectass (s e):£cfofstatements i sg l venby s ::=al x t s l ; s21 s l + s 2 .
b. Thec lass (gE)2£gcfo fguardeds ta tements i sg ivenbyg: :=al g;s[g l + g 2 .

c. The class (d ~) Decl d of declarations consists of mappings d : PVar ---> ~g~.

d. A program is a pair (d,s).

REMARK The guardedness (or 'Greibach') condition ensures that the execution of each procedure body
(each d(x), for x ~ PVar) starts with the execution of an elementary action (rather than of another pro-

cedure variable). Technically this condition yields contractivity of an associated function (Lemma 3.15e
or 3.17f).

EXAMPLES Take PVar= { x } ,A = { a,b,c, ... }, and write x ~ g for d (x) = g. Possible programs are:

(x ~ a;x+b, c',x) (with intended meaning ca ~° +ca*b), or (x ~ a;x;b+c, x) (with intended meaning
{ ancb n I n > 0 } u { a t° }). The construct (x ~ x;b+a, x) is not a program, since x;b+a ~ :£gcp

In this and subsequent sections we shall extensively use both syntactic and semantic continuations. The
former - to be introduced here - are to play a role in the operational semantics definitions, and the latter

in the denotational ones.

DEFINITION 3.2 Let E be a new symbol (standing for termination). The class (r E) R of syntactic con-

tinuations is given by r ::= El (s;r) where s ~ ~gcf.

Parentheses in (s;r) will often be dropped when no ambiguity arises.

3.2 LT-operational semantics

We first introduce the complete metric space which will be used as range for the operational semantics:

DEFINITION 3.3
a. Let (u,v e) A ~* =dfA* u A °~, where A is the alphabet from Subsection 3.1. (A~,d) is the cms as

introduced in Section 2. Let. be the operation of prefixing on A × A ~, defined by a.u =dr au.

b. Let (p E) • = 5Dnc(A ~) be the family of all nonempty compact subsets of A 0~, equipped with the
Hausdorff metric dH with respect to the metric d of part a. Let a .p = { a-u I u ~ p }.

The operational semantics ~ mapping programs to elements from IP will here and subsequently be given
based on a labeled transition system 5. E determines a transition relation ~ which is given as the least

relation satisfying (in the natural way) these axioms and rules.

DEFINITION 3.4 The transition system Ecf and associated relation :~cf are given as follows:
a. Atransition isafour-tuple (r l ,a,d, r2) inR ×A ×Declcf XR; we usuaily write i t a s r l ~at r2.

b. The axiom and rules of Ecf are as follows:
• a;r --->~t r (el.action)

g;r -"~l 7
• - - , d (x)= g (recursioa)

x;r --¢~

sl;(sz;r) ~
• (seq.comp)

(Sl ;s2);r -->~7

s;r "->8 7
• (choice)

(s+s--);r ~

~+s);r ~ 7

CONVENTION 1. Rules with the same premise and different conclusions are combined in a self-
explanatory notation. Cf. the choice rule. 2. In the notations --¢~, the subscript d will sometimes be

suppressed. 3. Instead of r I --'>~ r 2 ~ ~cf, we simply write r 1 --¢~ r 2 when ~cf (or its successors in sub-
sequent sections) is understood.

LEMMA 3.5 ffcf i~ finitely branching, i.e.,for each r, the set { (a ,r ') l r _.)a r" } is finite.

PROOF Direct from the definition of Jcf. []

In the technical arguments in this and subsequent sections (in particular in establishing ~ = ~)) we shall

often use (i) an auxiliary relation '---~' between syntactic continuations and (ii) the complexity car),

where cr : R ~ ~I.

DEFINITION 3.6 We def'me the relation ~ to hold between r 1, r2 if there is a rule (in the corresponding

transition system) of the form

r2 _.>a

r t __>a

The relation r 1 --~ r 2 may be read as: in order to execute r 1, find out how to execute r2. Next, we

introduce the complexity of the elements in R and.~cf:

DEFINITION 3.7

a. Cr : R ~ l~t is given by cr(E) = 0, Cr(S;r) = cs(s).

b. cs:~gcf--*~ is given by Cs(a)=l , cs(x) = cs(d(x)) + 1, c s (s t ; s 2) = c s (s l) + l ,

c~(si +s2) = cs(sl) + cAs2) + 1.

We have

LEMMA 3.8

a. Cr, cs are well-defined.

b. I f r 1 ~ r 2 then Cr(rl)>Cr(r2).
PROOF Well-definedness of c s is proved by induction on the syntactic complexity of first g then s. Part
b is clear form the definitions• []

We now define the mapping 0 a : R --~ ~' as fixed point of a higher-order function Oa which maps mean-
ings to meanings:

DEFINITION 3.9 Let F ~ R ~ ~ . The mapping ~d : (R ~ ~) ---> (R ~ P) is given by

10

Oe(F)(E) = {el ,

t}d(F)(r) = u l a.F(r ') l r - - ~ r" }, i f r e E .

LEMMA 3.10

a. dPa)(F)(r) is nonempty and compact for each F, r.

b. t}a is contracting in F.

PROOF Part a follows from the fact that 3"cf is finitely branching (Lemma 3.5); part b is direct from the
definition of Oa and elementary properties of the Hausdorff metric. []

At last, we are ready to defme

DEFINITION 3.11

a. ~d =f~x(~d).
b. ¢)(d,s) = Od(S;E).

3.3 BT-operational semantics

Only minor changes have to be made in the definitions of the previous subsection to obtain the BT-
operational semantics. Let us use the superscript b to indicate the BT-variant of the various definitions.
Thus, we shall define g)d b : :fcf "-> Fb, etc. The main step is the change in the range over the operational
semantics (now]pb rather than F):

DEFINITION 3.12 Let F ,b be the cms which solves the domain equation (2.2):

P= {PO} G~co(A x/d~(lP)).

For more information on ~ b we refer to Subsection 2.4. We proceed with the definition of O~. There
are no changes in Jcf (or ~c/). The only change we adopt is in the definition of (the new) Odb:

DEFINITION 3.13 Let F e R --> F b. The function t} b : (R ---> F b) ---> (R ---> IP b) is given by
'Vdb(/)(E) = p 0 ,

dP~(F)(r) = { (a , F (r ')) l r --->8 r ' }, i f r ~ E.

Note the crucial difference between the second clause in this definition, and that of Definition 3.9, where
U{ a.F(r ') l ... } is used. In the latter, outcomes a.p l , a . p 2 are set-theoretically united to yield
the result a ' (P l u P2 u ...), whereas in the present domain outcomes (a,Pl), (a,P2), "" are collected

into the (compac0 set { (a,pl) , (a,p2) , ... }, rather than united in the form { (a,Pl u p 2 u ...) }!
A simple example may clarify the situation: ©d(al;(a2+a3)) = (Od((al;a2)+(al;a3)) = { a l a 2 , a l a 3 },

whereas ¢)bd(al;(a2+a3)) = { (aa ,{ (a 2 , P o) , (a 3 , P o) }) } and ~)~((al;a2)+(al;a3)) =

{ (a l , { (a 2 , P 0) }) , (a l , { (a 3 , P 0) }) }.

3.4 Denotational semantics

We devote most of this subsection to the development of the LT-denotational semantics for ~gcf; at the
end of it, we discuss what variations are required to obtain a BT-denotational model. We shall employ

semantic continuations as counterpart of the earlier syntactic ones. Also, we shall provide two ways of
handling recursion, one through (fixed points of) environment transformations, the second one using

another (besides ~d) higher-order mapping form meanings to meanings.
We start with the introduction of the set of environments O] ~) Env = PVar -~ ~P --> F . In the fol-

lowing (and many subsequent) def'mitions we suppress most of the parentheses. If deemed necessary,
they may be restored on the basis of the types of the mappings involved.

11

DEFINITION 3.14 (denotational semantics for ~cf, first definition)
a. The mapping b~: :ece -* Env --~ • ~ • is given by

bo a rl p = a .p

J x r t p = TIx p

bo(sl ; s z) r lp = bosl r l (J s 2 r t P)

bo(Sl +S2)rlp = (boSl rlP)U(b°s2~qp) .
b. Hd: Env ~ Env is given by Hat I = Xx.~ d (x) T 1.

C. rld=fix(Ha),,.~O(d,s)=basrla{E}.

The above definitions are justified in

LEMMA 3.15
a. bosrl e F--)I IP.
b. bo s e Env ._) l p ._> l IP.

c. b° g rl e P --//2 ~P
d. J g s Env --*'/z ~' ~ ¢2 F.

e. Hd e Env --¢~ Env.
f. ~(d,x) = ~(d,d(x)).

PROOF Simpler than that of lemma 4.13 and therefore omitted. []

We next turn to the definition of 2) as fixed point of a higher-order mapping:

DEFINITION 3.16 (denotational semantics for Zcf, second definition)
a. Let F s 2gcf --> P ~ 1 ~,. The function Wd : (lecf --* P ~1 ~) ~ (:gcf --* ~ ~ l P) is defined as fol-

lows:
q ' d F a p = a.p

q J d F x p = ULdFd(x)p

• d F (S l ; s 2) P = q J d F S l (F S 2 p)

~tldF (Sl +S2)P = (tIJdFSlp) u (q J d F S 2 p) .
b. b°d =f/x(qJd); ~(d,s)=b°as {e}.

The above definition is justified in

LEMMA 3.17 Let F, F 1 , F 2 e ~cf-O F ___>I F ,p , p t , p 2 e IP.

a. ~d F s is well-defined for each F, s.

b. Foral lg , d (q l d F g P l , W d F g P 2) < ½d(Pl,P2).
c. As part b, with s replacing g.

d. Foral lg , d (W d F l g , W d F 2 g) < ½d(F1,F2).
e. As part d, with s replacing g.

f. Wd e (Zcf ---~ P --~l ~') - -~ (~cf --> F ---~1F).
PROOF Simpler than that of Lemma 5.12 and therefore omitted. []

Comparing Definitions 3.14 and 3.16, and using the uniqueness of the fixed point bod, we easily obtain
that, for all s, boris =] s ~ d . Thus, we see that them are (at least) two ways of defining the denotational
semantics 2) via fixed point techniques. This will allow us in subsequent sections to adopt the most
appropriate definition technique. (e.g., in Section 4, the method based on a higher-0rder ~d does not
work, due to lack of conu'activity for ~d!)

12

No more than a small adjustment is necessary to obtain the BT-denotational meaning: introduce ~b
as before (Subsection 3.3), replace in the definitions of (the types of) b ~ or qs d the domain F 15y p b , and
keep all clauses in the definitions, apart from the first ones (in Definition 3.14.a and Definition 3.16.a)

where a.p is replaced by { (a,p) }. This seemingly small variation is sufficient to handle the new range
for ~)b: Instead of sets of sequences now 'trees' are delivered, and no further measures are required to
handle the semantic operators corresponding to the respective syntactic constructs.

3.5 e) and ~ are equivalent

The stated equivalence result holds for ~ and ~ as well as for ~ b and ~9 b, We shall present the former,

leaving the negligible variations to obtain the latter to the reader.
We first introduce the mapping #d : R --~ • relating syntactic and semantics continuations:

DEFINITION 3.18
at(E) = {e},

ea(s;r) = ~ S ~ d e a (r) (=~eaSed(r)) .

LEMMA 3.19 l f r 1 ~ r 2 then g a (r l) = $a(r2).
PROOF Clear from the definitions. []

The key idea as to how to relate 0 and ~9 is contained in the next lemma (a simple example of the tech-
nique first introduced in [KR90]):

LEMMA 3.20 ¢~a(gd) = gal.
PROOF We show that, for all r, ¢a(gd)(r) = ~a(r) using induction on car). A typical case is r =x;r'.

d#d($a)(x;r')

= (def. e~d) kJ{a.dd(r-)t x;r'--C~-r}

= (def. gcf) u { a.~d(7) l g;r' --¢ 7 }
= (ind.) $d(g;r')
= (Lemma 3.19) #a(x;r'). []

COROLLARY 3.21 0 d = ~d.
PROOF Both (0 d and gd are fixed points of the contraction ~d. n

Finally we have

THEOREM 3.22 • = ~.

PROOF ~(d,s) = Od(s;E)= Sd(s;E) =Jd s {e} = ~(d,s). o

4. PROCESS CREATION

Processt creation occurs in parallel languages such as, e.g. the parallel object-oriented language POOL
([A89, AR89a]). A dynamically evolving configuration of processes which may refer to each other

through (pointer) variables results from execution of such a program, and the creation of a new process
is a central programming concept in this setting. We study here (as everywhere in our paper) a

schematic (i.e. variableless) version, abstracting from the pointer structure. What remains is, at each

J- The programming concept of 'process' has nothing to do with the mathematical notion of a
process p in a domain •.

13

moment, a set of n -> 1 processes executing in parallel. Process creation here amounts to the addition of

an n +l-st process to this set, together with the initiation of its execution. For some more details on this

notion at this abstract level we refer to lAB88]; full details are supplied in [ABKR89, AR89a, AR90].

(In Sections 4 and 5 we shall only be concerned with LT-semantics; BT returns in Section 6.)

4.1 Syntax

Let (a,b,c,d ~) A and (x,y ~) PVar be as in section 3. We introduce the language ~fpc which extends *~cf
with the new(s) construct for process creation.

DEFINITION 4.1

a. The class (s ~) ~gpc of statements is given by

s::=al xl sl;s21 sl+s21 new(s).
b. The classes (g E) Sgc, (h ~) :£ph c are given by

g : : = h l g l ; g 2 l g l + g 2 [new(g).
h : : = a] h ; s l h l + h 2 .

c. The class (d e) Declpc has elements d : PVar ---) ~ggc.
d. A program is a pair (d,s).

REMARKS

a. The new(s) construct serves to create a new process with body s. For example, executing

new(a;new(b);c);d will result in parallel execution of a;new(b);c and of d, to be denoted (for the

purposes of this explanation only) by (a;new(b);c)ll d. Performing an a-step results in the

remainder program (new(b);c)II d which may evolve, in turn, to the program b II c II d. Note that

the parallel operator II is not itself in the syntax of the language (see also the remark at the end of
Section 4), but used here only to sketch its intended semantics in familiar terms. Precise definitions
will follow.

2. In a procedure declaration such as d(x) = new(a);x, execution of the body new(a);x may start with
execution of x (since new(a);x has the same effect as a II x). In order to avoid such unguarded
behaviour, the auxiliary h is employed.

The syntactic continuations (r ~) R are now given in

DEFINITION 4.2 r : :=E I (s ;r) l (r l , r2) .

Execution of (r 1, r 2) will be defined in such a way that it amounts to the parallel (here taken in the inter-

leaved sense) execution of r 1 and r 2. It will be convenient to adopt, throughout this section, the follow-
ing

CONVENTION We shall always identify (E,r) and (r,E) with r.

4.2 Operational Semantics

(u, v e) A *°, (p c) P , a.u, a.p are as in Section 3. Transitions are again fourtuples in
R x A x Declpc x R, with R and Declpc as given in Subsection 4.1. The transition system Jpc (and asso-
ciated relation ~pc) is given in

DEFINITION 4.3

• (el. action), (recursion), (seq. comp.) and (choice) are as in Definition 3.4.

14

(s;E, r) ~

new(s);r --->~

r 1 --->~ r 2

(r l , r) --->~ (r2,r)

(r,r 1) --->~ (r, r2)

The definition of ~d and ~) proceeds in the same way as in Section 3:

DEFINITION 4.4 Let F E R ~ ~, and let Od: (R ---) l a) ---> (R --~ P) be given by
• d(F)(E) = {8},

~d(F)(r) = t.){ a.F(r') : r - -~ r" }, i f r # E ,

where r -->~ r ' ~ ~pc-

LEMMA 4.5

a. tbd(F)(r) is nonempty and compact for each F, r.

b. dP d is contracting in F.
PROOF As usual. []

DEFINITION 4.6

a. O a =f/x(~a).
b. O(d,s) = Od(S;E).

(new)

(par.comp.)

LEMMA 4.9
a. k(h;r) = O, k(g;r) <_ k(r).

b. l f r l ---~ r 2 then l(r l) > l(r 2).
PROOF Part a is shown by induction on the syntactic complexity of first h, then g. Part b is direct from

the definitions. []

4.3 Denotational semantics

Before proceeding with the definitions of the various meaning functions, we first def'me the operator t!:
x IP--~ IF), which shuffles the elementary actions in its (possibly infinite) arguments P l , P2 yielding

the result p 1 II p2. Note that I[only occurs in the semantics Of~pc. We shall define [[as fixed point of a

DEFINITION 4.8

a. k:R-->•qisgivenbyk(E)=••k(r••r2)=k(r•)+k(r2)•k(a;r)=••k(x;r)=•+k(r)•k((s1;s2);r)
= k(s t;(s 2 ;r)), k((s 1 + s 2);r) = max{ k(s 1 ;r) , k(s 2;r) }, k(new(s);r) = k(s;E) + k(r).

b. c: R - - -) ~ is given by c(E)=0, c(rl ,r2) = c(r l)+c(r2) , c(a;r) = 1 +c(r) , c(x;r) = l + c (r) ,

c ((s l ; s 2) ; r) = 1 +C(Sl;(s2;r)), c ((s l + s 2) ; r) = 1 +c(sl;r)+c(s2;r) , c(new(s);r) =
1 + c(s;E) + c(r).

DEFINITION 4.7 r 1 --->> r 2 is as in Definition 3.6 (but now with respect to 5pc).

The definition of the complexity t: R ---) 1N! is now more involved. 1 is given as a pair t = (k,c), where
k(r) counts the number of unguarded occurrences in r of a procedure variable, and c(r) gives a certain

form of syntactic complexity of its argument r. (Note that the definition here differs from that of Def'mi-

tion 3.7!) We order the/-complexity by putting (k 1,c I) • (k2,c2) if either k 1 < k2 or k 1 = k2 and

C 1 < C 2.

15

higher-order mapping. This technique, which may seem somewhat overdone in the present setting, is

applied firstly to handle finite and infinite arguments in one go, and secondly to prepare the way for the
definitions in Section 6, where a higher-order definition for (a more involved version of) It seems essen-

tial.

DEFINITION 4.10

a. Let ~ ~ P x ~ --~1 F . We define the mappings
~r,~. : (] P x ~ " ') 1F)-"~(~X~:~-'91 F)

Oo : (] ex~ ' - - e l lP) - - e (A**xA*° - -* i~ ')

f~,l : (~ ' x ~ ' - e l ~) - e (] P x ~ ')
as follows:

~o(O)(Pl,P2) = u{tOo(O)(u,v)l u ~ p l , v ~ p 2 }

O~o(¢)(c,v) = { v }
o(¢)(au, v) = a .¢ ({u } , { v })

t~ll (¢)(pl ,p2) = ~o(¢)(Pl ,p2) u f~o(¢)(P2,pl)

b. II =fix(f~ ,,), IL --- t)o(ll).

EXAMPLE Let a t° be the inf'mite sequence of a 's. Then a° l I b = { a t° } w(a*ba°~). Note that the
'unfair' outcome a °~ (b never got its turn) is included in the result.

LEMMA 4.11

a. All operators in Definition 4,10 are well-defined, l)o, 0~o, f~ II are contracting in ~.

b. p l l l P 2 = (p l lI p 2) u (p 2 1 L P l) .
PROOF Part a follows by Michael's theorem; part b is direct from the definitions. []

The denotational mappings are collected in the next definition. We draw attention to the clause dealing
with new(s). Also, the meaning of a procedure variable is handled in the customary way through
environments.

DEFINITION 4.12
a. b~: ~gpc --~ Env --> ~' --~ ~' is given by

b~ a fl p = a,p
b~xTlp = ~lxp

~ (s l ; s 2) ~ p = dCsl~(dCs21]p)

b°(Sl+S2)l lp = (~ S l a q p) L) (b ° s 2 1] p)

~new(s)r lp = (bas l]{e}) l lp
b. lid: Env --~ Env is given by

HdTlX =,~(d(x))~
c. TId =fix(Ha) , ~)(d,s)= has 1"ld {8}.

The justification of this definition follows in

LEMMA 4.13

a. Y s r l e P - ~ l ~ .
b. J s e Env--->l lp--el F.

c. J h ~ e ~ - - e ~ P .

16

d. Y h ~ Env ---)~ • ---~ ~.
e. Y g ~ E p _ ~ l p .
f. Y g E Env _._~2 ~ .._)1 F.
g. H a ~ Env ---) s/2 Env.

PROOF We exhibit a few selected subcases. Throughout, we argue by induction on the syntactic com-
plexity of the statements concerned.

c. Case h =- h " ;s.
d(Y (h ' ; s)~p l , Y(h';s)Tlp2)

= d (Y h ' ~] (Y s ~ p l) , J h ' l] (Y s l q p 2))
< (ind.) V2d(b°sr lp l ,b°s lqp2)
< (part a) ½ d (p l , P 2) .

d. Take p arbitrary, case h -= h';s.

d(Y(h';s)~]l p , Y(h ';s) l]2p)
< (def. J , d an ultrametric)

max{ d (Y h'lq 1 (o°s vii p) , Yh'~]l (Ys rl2p)) (*) ,

d(Yh ' l] l (bes 112 p) , Yh'r l2 (Ys ~]2P) (**) }
< ½ d (r h , I12), since

(*)

< (part c) ½ d (Y s r h p , Y s l q z p)

< (part b) ½ d (r l l , r12), and
(**)

< (ind.) ½ d (r h , 1]2).
e. Case g -~ new(g').

d (Y new(g ") I1 p 1, Y new(g ±) 11 p 2)

= d ((Y g ' ~ { e }) l l P l , (Y g ' ~ { e]) l l P 2)
-< ill nd i)d(p~,pz) . []

4.4 ~) and ~0 are equivalent

Let $a: R ~ P be given in

DEFINITION 4.14
~ (E) = { e } ,

#d(s;r) = b°S~ldSd(r),

#a(r~,rz) = Sd(r~)ll $a(r2).

LEMMA 4.15 I f r ~ ~ r2 then #a(r ~) = #a(rz).
PROOF Clear by the definitions. Observe that the (par.comp.) rule does not contribute to the ~ relation.
I-1

LEMMA 4.16 ~a($d) = #d.
PROOF We prove that, for all r, dPd($d)(r) = rid(r) by induction on l(r). We exhibit two subcases:
Case r ~- x;r'.

~d(~,t)(x;r ')

= U{ a.#aCr) l x;r' ~ - ~ }

= (definition ~pc) ~{ a.Sd(r-)l g;r" ~ -~ }

= @a(8d)(g;r')
= (ind.) #d(g;r')

17

= (Lemma 4.15) ~a(x;r').
Case r --- (r 1,r2).

¢d(#d)(r 1,r2)

= U{a.~a(r-)l (r l , r 2) ~ , ~ F }
= (def. Jpc) u { a.da(r',r2) l r l -->~ r ' } u (symm.)

= (def, $d) U{ a.#a(r')II ~d(r2) : r l --->~ r ' ~ (symm.)

= (def. IL)U({a .Sd(r ') : r l --->$r'} U_ #d(r2))w (symm.)

= (prop. 11) (U }a.#d(r') : r l ~ r" }) IL #d(r2) u (symm.)
= (def. Od) (Od(ga)(rl) II #d(r2))u (symm.)
= (ind.) (#d(rl) II $d(r2))u(symm.)

= (def. II) #d(r 1)[I $d(r2)
= (def. $a) #a(rt,r2)" []

It is now immediate that

THEOREM 4.17 d~ = ~0.

PROOF By Lemma 4.16 and Banach's fixed point theorem 2.4, (9 a = 8 a.

proof of Theorem 3.22. []

= g~ now follows as in the

We conclude this Section 4 with a

REMARK The programming concept of process creation has been modeled in terms of the semantic ll-

operator (from Definition 4.10). As a natural consequence of this, one may want to compare :fcf with the

language ~sh which extends Zcf with the syntactic merge operator (i.e. which has syntaxis s (E :gsh) ::= a

I x[s l ;s2 I Sl + s z l Sl II s2, and derived definitions). Now a somewhat surprising result of Aalbers-

berg and America (personal communication) is that ~pc and $sh are incomparable: Assuming the natural

semantics for ~sh (relating the syntactic tl to the semantic II), we have that there exists a program in ~gpc
without an equivalent program in :£sh, and vice versa. We have thus falsified a conjecture stating that the
new-construct may as well be expressed in terms of the merge operator. The nontrivial counter examples
as mentioned involve combined use of recursion and process creation or merge. One final point: con-
tinuation semantics does not fit well with merge. We do not know how to provide a clause for

J (s I II s 2) TIp in terms of J s t ~ P 1 and ~e s2 rl P2 for some suitable continuations p I, P 2.

5. BACKTRACKING

Our next language, ~bt, has as characteristic feature failure (in the form of the atomic fail statement) and

backtracking (expressed by S l [] s 2). The nondeterministic choice s l + s 2 has disappeared; recursion and
sequential composition remain. In order to execute s 1 ns2, we assume two kinds of syntactic continua-
tions, viz. the success continuation r and the failure continuation t. Execution of ((s 1 tas2);r) : t is per-

formed by executing s I with success continuation r and failure continuation (s2;r):t. If somewhere in

the execution of s 1 we encounter failure, we continue with the execution of (s2;r) : t. ff not, we continue

with execution of r : ((s2;r) : t).

In the papers [B88, BrVi89, Vi90] we have shown how to apply this construct to model the back-

tracking feature of PROLOG. The present model being Iogicless, in the papers just cited (cf. also [BK90])
we also discuss how to interpret the atomic actions and how to instantiate the procedure variables in such

a way that the usual PROLOG semantics in terms of computed answer substitutions is obtained. More-

over, in [B88, BrVi89] it was also shown how the simple backtracking formalism to be presented below

18

may be extended with a continuation semantics for the cut operator.

5.1 Syntax

Let (a ~)A, (x e)PVar be as usual. We shall from now on be somewhat more succinct in the various

definitions and lemmas.

DEFINITION 5.1

a. s (~gbt): :=al xl faill s t ; s21 Sl=S2.
b. g (e2e~t) : :=a l faill g;s] g lug2 .
c. d (~ Declbt) is a mapping d: PVar -4 ~[t; a program is a pair (d,s).

DEFINITION 5.2

a. r (eR) ::=El (s;r)
b. t (e T) : :=f l (r:t)

f is short for fail. Parentheses will be omitted when convenient. We do not identify t and E:t !

5.2 Operational Semantics

Since the behaviour of an ~3t-program is deterministic, single sequences rather than sets of those are
now delivered. For consistency in notation, we use in this section p to range over • =# Aod =dr
A* u A*. 8 u A co. Here A*. 8 denotes the set of all finite sequences over A, with ~ postfixed. We

define the operator o of concatenation on P as follows:

DEFINITION 5.3 Let ~ range over] ax F _..~l F .
a. ~o: (~ x lp -4 t P) --4 (~ x F--41 P) is given by

f2oCep = p

flo¢~ip = 8

f~o(pap" p = a . ~ p ' p

b. o =fix(f~o).

Thus, 'o' is the usual concatenation with, in addition, the property that ~ op = 8.

Transitions are four-tuples in T × A × Declbt × T, written as t ---~ t'. The transition system "~bt (and

associated transition relation ff{bt) is given in

DEFINITION 5.4
* (a;r):t --4~ r:t (el.action)

(g;r):t -4~ t , d(x) g (recursion)
(x;r):t -4~t t

t --¢~ t
, (failure)

(fail;r):t -4~ t

(s 1 ;(s2;r)):t -4~ t
. (seq.comp.)

((Sl;S2);r):t -4~ t

(sl;r):((s2;r):t) --->~ t
. (backtrack)

((Sl tas2);r):t -4~ t

19

• cl(F)(t) = 8,

c~d(F)(t) = a.F(t ') ,

We have the usual

With Jbt we associate the usual --~ relation:

DEFINITION 5.5

a . t l " ~ t 2 if there is a rule in Ybt of the form

---~* is the reflexive and transitive closure of--~.

b. We say that t terminates if, for some t ' , t ~ * E:t ' . Also, t fails if t .-~* f.

For the syntactic constructs from ~ebt, R, T we define a complexity measure which is a slight extension of
that introduced in Section 3:

DEFINITION 5.6 The mappings ct : T ---) ~l, Cr : R ---) ~q are given by

a. ct(f) = O, ct(r;t) = Cr(r) + ct(t).

b. cr(E) = 0, Cr(S;r) = Cs(S),

c. cs(a)=cs(fail)= l, cs(x)=cs(d(x))+ l, cs(sl ;s2)=Cs(Sl)+ l, cs(s lns2)=Cs(Sl)+Cs(S2)+ l.

LEMMA 5.7

a. ct, Cr, cs are well-defined.

b. I f t l ~ t2 thenct(t l) > ct(t2).
c. For each t, either t terminates, or t fails, or t ---)a t" for some a, t'.

PROOF Well-definedness of c t, cr is clear. Well-deflnedness of c s follows by induction on the syntactic
complexity of first g, then arbitrary s. Part b. is clear from the def'mitions, part c uses induction on ct(t).
[]

We are now ready for

DEFINITION 5.8 Let F range over T ---) P . The mapping (I) a : (T ~]P) ~ (T ---) ~) is given by
Od(F)(t) = e, f f t te rminates ,

if t fails,

i f t a • "~d t .

LEMMA 5 . 9 0 d (F) (t) is well-defined for each F, t. Also, ~d is contracting in F.
PROOF Easy. []

The operational semantics for ~bt is given in

DEFINITION 5.10

a. ed =f~C~d).
b. O(d,s) = Od((S;E) : f).

5.3 Denotational semantics

To prepare the way for a related definition in Section 6, we now vary the denotational definition format
by replacing the use of (fixed points of) environments by the use of (be d as fixed point of) a higher-order

mapping ~Pd. (Recall that both approaches were already used for the simple language ~gcf,Of Section 3.)
We use as semantic success continuations functions q) in F ...)1 F , and as semantic failure continuations

20

elements p in ~'. Moreover, we shall use F to range over Zbt ~ (]P ~1 ~) _.) (p ..41 p) .

DEFINITION 5.11
a. The function Wd: ("~bt"")(~"-)l ~)"-) (F-")I ~)) "-) (*~bt-")(~-"~l F)" ')(~:~"-)I~))

given by

W d F a 9 P = a .gp

~FdFX9p = ~ d F d (x) 9 p

VdFfa i l gp = p

~ d F (S l ; S 2) g p = ~ d F S l (F S 2 9) p

WdF(slr~S2)gp = W d F S l g (W d F s 2 9 p) .

b. b°d =fix(Wd); ~(d,s)=b°ds(~p.e)&

This definition is justified by

LEMMA 5.12 Let g, ~l , ~2 E ~ .._) l ~ , p, p l , P2 e ~.

a. V g : d (W d F g ~ P l , W d F g O P 2) < d (P l ,P2).
b. As a, with s replacing g.

c. V g : d (W d F g ~ l , d (W d F g 9 2) < ½d(~ l ,42).
d. As c, with s replacing g.

e. V g : d (q J d F l g , ~ d F 2 g) < - ½ d (F 1 , F 2) .
f. As e, with s replacing g.
g. ~ d e (.~bt - ~ (~ --> l ~) --) (~:~ --) l ~)) ---) ½ (.~bt ---) (~ --) ! ~) --> (~ --¢ l ~)),

PROOF We present a few typical subcases.
a.

is

d(WdFfa i lOp l , WdF fail 9P2)

= d(p l ,P2);
d (~ a F (g;s) 9P 1, Wd F (g;s) 9P2)

= d (W a F g (F s g) p l , , W a F g (F s g) p 2)
< (theind. hyp. a p p l i e s s i n c e F s t ~ P - - -) l F O d (p l , p 2) .

b. All cases are similar to part a, but for the case s -= x, which follows by part a.

e. Choose some t~, p. We consider the case g;s:

d(WdF1 (g;s)gp , ~FdF2 (g;s)gP)
< (def., d an ultrametric)

max{ d (~ a F 1 g (F 1 sg)p ,V?dFl g(F2 s g) p)(*),

d (~ F a F l g (F 2 s g) p , ~ a F 2 g (F 2 s g) p) (* *) },
(*)

_< (part c) ½ d (F t s 9 , F 2 s g)
< ½d(F1 , F 2) ,

(**)

_< (ind.) ¥2.d(F 1 ,F2) . []

5.4 ~) and ~0 are equivalent

We define functions 8d and ~a relating syntactic and semantic success and failure continuations, respec-
tively.

21

DEFINITION 5.13

a. Thefunctionad: R __>(p_~l ~) is given by
aa(E) = Xp.e,

aa(s;r) = Ja(s)ad(r) .
b. The function 5~d: T ---> P is given by

~a(t3 = 8 ,

5~d(r:t) = act(r) 5~d(t).

LEMMA 5.14

a. l f t i "--~t2 then;~d(tl)=5~a(t2).

b. 5~a((a;r) : t) = a.5~d(r : t); 5~d(E: t) = e,
PROOF We exhibit one typical case for part a:

5~a((s 1 tas2);r:t)

= aa((s10s2) ; r)Yd(t)
= ~e(s lns2)ad(r)Yd(t)

= JdS l ad(r)(~es2 ad(r)9;a(t))

= 9;d((Sl;r) : ((s2;r): t)) , In

Next we have the usual

LEMMA 5.15 ~d(aa) = 5~a.

PROOF We show, employing induction on ct(t), that *a(~;a)(t) = Ya(t), for all t.

THEOREM 5.16

a. ~ d = '~d"
b. ~ = ~ .

PROOF As usual. 171

6. RENDEZVOUS

In this section we investigate (a schematic kind of) the rendez-vous programming construct as occurring

in ADA [ANS830] or POOL. The version studied here extends the communication mechanism of CCS

[MiS0] in the following way: Whereas in CCS synchronised execution of the actions c, c" in two parallel

components results in the execution of a x-step (as expressed by the equation c I c" = "~), in our language

~r~ we extend the class of elementary actions with methods rn, ~ (which thus occur in pairs as well),

together with an extension of the declaration map d which now also maps each rn (and ~) to an associ-

ated statemem d(ra) (= d(~)) as body. The intended execution of this construct is as follows: Imagine

two parallel components r 1 , r 2, the first ready to execute m;r', and the second ready to execute m;r". A
successful communication will then result in the execution of d(m);(r ' ,r") . Thus, the procedure body

d(m) associated with m is executed first; after its completion, the parallel execution of r ' and r" is
resumed.

Following the plan to discuss key features of the language POOL, we embed the rendez-vous
notion in a language with process creation. Since the denotational meaning of an elemem in ~rv now

involves (in the new(s) case) the semantic operator II which in turn - by the argument as just given -

involves the communication operator I calling for the denotational meaning of d(rn), it may become

apparent to the reader that we are confronted with a more complex situation than that encountered

22

earlier: We shall have to design a simultaneous higher-order definition for the denotational meaning

function and for the semantics II-operator.
One further point to mention in this introduction is that we shall employ a branching time semantic

domain (elsewhere often called a bisimulation-model): The need for a BT-domain arises - just as for
C C S - from the possible deadlock behaviour of an .~rv-program: We want to distinguish between the

meaning of a l ; (a 2 +m) and (al;a2)+(al;m) since, in the presence of a parallel ~ , their deadlock

behaviour differs.
A final word on the relationship with [R90a]: We have designed here a BT-operational model

which is self-contained (expressed only in terms of the familiar transition system formalism). In [R90a],

the (intermediate) operational BT-semantics involves as well an application of the denotational meaning
function. Compared with [ABKR89], the approach adopted here is more demanding since continuations
are passed as arguments of function (necessitating the solution of a domain equation of the form

F (]P ~ ...) ...) , (6.1)

and the introduction of both dependent and independent resumptions appears to be required. In the
present setting dealing with a skeleton-version of the rendez-vous construct we have managed to avoid
these complexities. We are optimistic that the method to be described below will work as well in a set-
ting for the rendezvous with individual variables, parameters, and a resulting value to be mtomed.

6.1 Syntax

Let (a ~) A and (x ~) PVar be as usual, and let (m e) M be a set of method names. Let 7: M ---> M be a

mapping such that m = m. Let e range over A u M.

DEFINITION 6.1

a. s (~e r~) : :=e t X[Sl;SZ[s t + s 2 [new(s),
g (e ~) : : = h l xl gt;g21 g l+g21 new(g),
h (~ g h) : : = a l h;sl h i + h 2 .

b. (d e) Declrv consists of mappings d = (dl ,d2), where
dl : PVar --.> ~ , d2 : M ---> 2ghrv .

such that dz(m) = d2(m). For simplicity, we drop indices on d when no confusion is expected.
c. Programs are as usual.

REMARKS
1. Note that the syntax for h involves a, not e. For guarding purposes, method names have the same

role as procedure variables.
2. The codomain for d2 is 2~hrv rather than 2gSrv (or ~rv). This is motivated by our wish to have contract-

ing functions in the semantic definitions (cf. Subsection 6.3).

Syntactic continuations are as in Section 4:

DEFINITION 6.2 r (~R) : :=E t (s,r)l (r l , r2) .

Again, we identify (E,r) and (r,E) with r.

23

6.2 Operational semantics

Transitions are four-tuples in R x (A u M) x Declrv x R, written as r 1 -43 r2.

DEFINITION 6.3 Err and associated ~rv are given by
a. All axioms and rules as in 5'pc of Section 4, with e replacing a.

b. In addition, the rule

r l __.)mr', r 2 --4 ~ r " , h ;(r ' , r") _..)e r
• , d(m) = h (rendez-vous)

(r 1,r2) -4e r

The relation --~ is as in Section 4 (the rendez-vous case will obtain special treatment below). The com-
plexity definition is slightly amended:

DEFINITION 6.4 The complexity l = ~ k, c) for r e R is as in Section 4, with the addition that
k(m;r) = 1 + k(r), and c(m;r) = I + c(r).

Again we have

LEMMA 6.5

a. k (h ; r)=O,k (g ; r)<k(r) .

b. l f r I --~ r 2 then/(r 2) > l(r2). []

As semantic domain we use here the complete metric space 1~ which satisfies the domain equation

IP = {Po } ~ ~co((A u M) x id~(lP)) (6.2)

Here P0 is the nil-process - modeling the nil action. Also, from Section 2 we recall that (6.2) is actually
an equation in (complete) metric spaces.

Let F range over R -4 ~. We give the usual

DEFINITION 6.6 #Pa : (R -4 •) -4 (R -4 IP) is given by

~d(F)(E) = P0,

dPd(F)(r) = { (e , F (r ')) l r ~ r ' } , i f r ~ E .

REMARK See also Definition 3.13 and the comments following it.

DEFINITION 6 . 7 0 a =fix(alP d), O(d,s) = t~d(S;E).

The 0 as just given yields branching time (BT) results; moreover, it preserves m-steps which have not

synchronised with a corresponding ~. For example, O(d, (a+m);E) = { (a , p o) , (m , p o) }. The main
advantage of this 0 is that it equals the denotational ~0. On the other hand, it is possible to define a linear
time #)' which, in addition, suppresses m-steps in the result. The details are as follows:

Let ~ ' =dr ~nc(A~). The mapping 0a: R -4 ~P' satisfies
~ (E) = (~},

~)'d(r) = k){ e'Od(r')l r - -) ~ r ' , e ~ A } i f r ~ E a n d { e t r - - ~ r ' , e ~ A } ~ 0 .

~ (r) = {8}, otherwise

Here r -4~ r ' is from ~rv (but note that e may not be from M). Well-def'medness of ~ may be shown in
the usual manner. Examples are

~9"d(al;(a2+m);E) = { a la2 }.

24

~)'d(((al;a2)+(al;m));E) = { ala2, a18 }.
Furthermore, we may show that ~ = abso f)d, where the abstraction mapping abs: F---> F" firstly
replaces a tree by the set of all its paths (thus collapsing the branching structure), and secondly omits all

m paths. We define abs to satisfy

absfpo) = {e},

abs(p) = u{ e.abs(p') l (e,p") e p , e e A } if { e l (e , p") e p , e e A } # ~ ,

abs(p) = {8}, otherwise.

This definition may be justified by the familiar higher-order argument.

6.3 Denotational semantics

We define the mutually dependent ~e a : Zrv --e F --e 1 ~' and 11 : F x F ...~11 ~ as simultaneous fixed points

of the higher-order U/d, fla:

DEFINITION 6.8 Let F e grv --e P --e 1 l ~, ~ e F x l ~ - e 1 l ~. The mappings
U/d: (~rv "-) ~ ' ')1 P) X (~:~ x P -')1 P) '")(*~rv "") 11)-')1]P),

f~a: (~,~ ~ I P ~ I l ~) x (F x ~ - > 1 F) "-'> (ll~ x F ~ 1 F)

are defined as follows:

u/aF~ep = { (e , p) }

u/dF ~Xp = u/dF ~d(x)p

U/dF dp(Sl ;S2)p = u/dF t~sl (F S2p)

u/dF~(Sl+S2)P = (u/dFd:slP)U(u/dF~S2p)

u/dF i~new(s)p = ~dF d:(u/dF i~spo)p

~dF(~ppo = ~dFt~pOp=p

~dF i~plp 2 = (~dF d:plP2)~(~)~dF d:pEPl)~ (~ ldF d~plP2),ifpl,P2 #Po

where

~2~dF ~plp2 = {(e,q~fp')(p2))l (e,P')e Pl },

~ldF ~plp 2 = tj{ u/dF dph (C~(p')(p"))l 3m : (m,p')~ pl , (m,p")e p2,d(m)=h }.

Moreover, we put (J a , [I) =fix(U/d , f~a), and ~0(d,s) = .,qa s p o.

EXPLANATION Using u/d(b°d, I[) = "Led, ~d(b°d, II) = II, and putting II = L'l~(~d, II), I = f ~ / (J a , II), we
obtain the equalities

Jdnew(s)p = (Jdspo)llP,
p l l I P 2 = (p I I I p 2) ~ J (p 2 1 1 p l) u (P l l P 2) ,

pl l P2 = u{~ea(h)(P'llP")l 3 m : (m , p ') e p l , (~ , p ") e p 2 , d (m) = h }.

Note that the last of these equations is the denotational counterpart of the operational rendez-vous rule.
The terms P l II P2 andp2 II P l in the second equation describe individual steps which do not lead to

communication.
A lemma justifying definition 6.8 now follows:

LEMMA 6.9 For all relevant arguments:
a. W a and flu are well-defined.
b. d(U/dFI¢:I,WdF2d:2)<-d((FI,C~I),(F2,d:2)).

25

c. d (tFdFOhpl , W d F ~ h p 2) < - ½d(pl ,P2) .
d. d(WdFlC~lh,WdF2~2h)<- ~/2d((Fl,~l) ,(F2,~2)).
e. d (~dFlOl ,~dF2d~2) <- ½d((Fl, t~l),(F2,~2)).
f. d (OdFl(Pl ,~dF2O2) < - ½d((Fl , t~l),(F2,~2)).
PROOF We prove a few selected subcases. We use 1 or 2 to abbreviate (F 1,$1) or (F 2, $2).
b. Take an arbilrary p; we consider the case s 1 ; s 2-

d(Wd l(Sl ; s2)p , tlJd 2 (s 1 ;s2) p)
< (def., d an ultrametric)

max{ d(W d ls 1 (F 1 s2p) , ut~ d ls I (F 2 sEp))(*),
d (~ d I s 1 (F 2 s2p) , Wd 2Sl (F2 s2P))(**) }, where

(*)

(ind.) d (F l S 2 p , F 2 s 2 p)
<- d(F1 , F 2)
-< d (1 ,2) , and

(**)

(ind.) d (1 ,2) .
c. Case h;s.

d(Wd 1 (h;s)p, Wd 2 (h;s)p)
< (as usual)

max{ d(Wd l h(F l S p) , Wd l h(F2 s p)) (*) , d(Wd l h(F 2 s p) , #/d 2h(F 2 s p)) (**) },
(*)

< (part c) ½ d (F l s p , F 2 s p)
< ½d(F 1 ,F2)
<_ d(1,2) .

(**)

_< (ind.) ¥2d(1,2).
e. Let t, 2 be as above; take arbitrary p l, p2.

d(~ld l p l P2, ~td 2P 1 P2)
= d (U { W d l h (d h p ' p ") l 3 m : (m , p ') c p l , (m , p ") e p 2 , d (m) = h } ,

t..){ Wd2h(~2p 'p") l qm: (m , p ') e p l , (~ , p ") e p E , d (m) = h })

<_ sup{d(Wdlh(Cplp 'p") ,Wd2h(~2p 'p")) [3 m : (m , p ') ~ p l , (m , p ") E p E , d (m) = h }
<_ sup{max{d(Wdlh(d~lp 'p") ,Wdlh(Cp2p'p")) (*) ,

d(tPd I h (~2P'P"), ~d 2h (t~2P'P")) (**) } },
(*)

(part d) ½ d ($ i , $2)
< ½ d (1 , 2) ,

(**)

_< (ind.) ~ d (1 ,2) .

REMARK Note how the proof for part e builds on part d which is stated for h only. This explains the
earlier restriction that d(m) ~ 2£hrv.

6.4 ~) and ~0 are equivalent

We first define dd in a similar way as in Section 4 (of. Definition 4.14):

26

DEFINITION 6.10 ga : R --~ P is given by
rid(E) = P0 ,

gd(s;r) = ~ed(S)dd(r),

~d(rl ,r2) = da(rl)ll #d(r2).

We have the usual

LEMMA 6.11 I f r 1 ~ r 2 then #d(r l) = gd(r2).
PROOF Standard. []

In order to be able to obtain the main technical result (viz. ~a(~d) = rid, see Lemma 6.13), we need

some auxiliary facts:

LEMMA 6.12

a. l f h ; r l .._>e r2, then e E A.
b. I f r l ._>m r2 then k(r 1) > k(r2).
c. I f (rl,r2)--->er has been obtained by an application of the rendez-vous rule, then

l(r 1,r2) > l(h;(r',r")).
PROOF

a. Clear by the definition of~g~.
b. Induction on l(r I). We consider a few typical subcases, depending on how r I -=) r 2 was obtained.

(el.action) Then r 1 = m;r', r 1 = r', k(rl) = k(m;r') = 1 + k(r" > k(r') = k(r2).
(recursion) Then r 1 is of the form x;r and the rule

g;r _.>m r2

x;r ._>m r2

has been applied. Since k(x;r) = 1 + k(r) > k(r) >_ k(g;r), we have l(g;r) < l(x;r). By induction,

l(g;r) > t(r2), and l(x;r) > l(r2) follows.
(rendez-vous) By part a, this case cannot occur.

c. Bypart b, i f r l - - ->mr 'andr2- - ->~r" thenk (r l)>k(r ')>Oandk(r2)>k(r")>O. H e n c e k (r l , r 2) >
k(h;(r',r ")) = O, and l(r l ,r 2) > l(h;(r',r")) follows.

We are now ready for

LEMMA 6.13 For all r, ~Pa($d)(r) = 8d(r).
PROOF We use induction on l(r). The interesting case is r = (r 1 ,r2). We have

Od(~d)(r 1,r 2)
= { (e , $ d (r ')) l r l - - ' ~ ' r ' } l l S d (r 2) ~ { < e , e d (r ')) l r 2 - - > e r ' } l l ~ d (r l) u

{ (e, gd('F))l r 1 ...>m r ' , r2 -'4m//r °" , h;(r ' ,r") _.>e -~ }

= (Pd(gd)(r I) 11 gd(r2) u (~d(t~d;(r2) II ~d(r2) u
U{ ~d($d)(h;(r ' ,r")) [r i _..>m r ' , r2 _..>mr', h;(r ' ,r") _~e -F }

= (ind,) rid(r1) II dd(r2)uda(r2) II dd(r2)u
U{ Sd(h;(r' ,r"))l r l ...>mr', r2 ~ m r" , h;,(r',r') ._.>e "~ }

= (def. $d, dPd) rid(r l) II t~d(r2)u #d(r2) II t~d(r2) u

U{ Ya(h)(p' It P ') I (re,p") ~ t~a(gd)(r 1), (~ , P ") ~ ~a(ga)(r 2), d (m) = h }

= (def.) Sd(r l) II $d(r2)vgd(r2) II ad(r2)udPd(gd)(rt)l dPd(gd)(r2)
= (ind., clef II) Sd(r 1)II 8a(rz)

= (def. dd) gd(rl ,r2), ta

27

Finally, we conclude with our main

THEOREM 6.14 For all s ~ 2£rv, d ~ Declrv, ¢)(d,s) = $(d,s).
PROOF Follows from Lemma 6.13 by the familiar argument, n

REFERENCES

[A89]

[AB88]

[ABKR86]

[ABKR89]

[AR89a]

[AR89b]

[AR90]

[ANs83]

[B88]

[B89]

[BBKM84]

[BK90]

[BKMOZ86]

IBM88]
[BMOZ88]

[BZ82]

[BeK87]

[BoKPR90]

[BoKPR91]

[Br91]

[DeBr86]

[BrVi89]

[Ha48]
[JaMo90]

P.H.M. America, Issues in the design of a parallel object-oriented language, Formal Aspects of
Computing 1 (1989), pp. 366-411.
P.H.M. America, J.W. de Bakker, Designing equivalent semantic models for process creation,
Theoretical Computer Science 60 (1988) 109-176.
P.H.M. America, J.W. de Bakker, J.N. Kok, J.J.M.M. Rutten, Operational semantics of a parallel
object-oriented language, 13th ACM Symposium on Principles of Programming Languages, St.
Petersburg, Florida, January 13-15, 1986, pp. 194-208.
P.H.M. America, J.W. de Bakker, J.N. Kok, J.J.M.M. Rutten, Denotationat semantics of a parallel
object-oriented language, Information and Computation, Vol. 83, pp. 152-205, 1989.
P.H.M. America, J.J.M.M. Rutten, A parallel object-oriented language: design and semantic foun-
dations, in J.W. de Bakker (ed.), Languages for Parallel Architectures: Design, Semantics, Imple-
mentation Models, Wiley Series in Parallel Computing (1989) pp. 1-49.
P.H.M. America, J.J.M.M. Rutten, Solving reflexive domain equations in a category of complete
metric spaces, Journal of Computer and System Sciences 39, (1989) 343-375.
P.H.M. America, J.J.M.M. Rutten, A layered semantics for a parallel object-oriented language,
CS-R9052, CWI, Amsterdam, 1990.
ANSI. The Programming Language ADA Reference Manual, ANSI/MIL-STD 1815A-1983, Vol.
155, Springer, 1983.
J.W. de Bakker, Comparative semantics for flow of control in logic programming without logic,
Report CS-R8840, CWI, Amsterdam (1988), revised version to appear in Information and Computa-
tion.
J.W. de Bakker, Designing concurrency semantics, in: Proc. l l th World Computer Congress
(G.X. Ritter, ed.), North Holland, 1989, pp. 591-598.
J.W. de Bakker, J.A. Bergstra, J.W. Klop, J.-J.Ch. Meyer, Linear time and branching time seman-
tics for recursion with merge, Theoretical Computer Science 34 (1984) 135-156.
J.W. de Bakker, J.N. Kok, Comparative metric semantics for Concurrent Prolog, Theoretical
Computer Science 75 (1990), 15-44.
J.W. de Bakker, J.N. Kok, J.-J.Ch. Meyer, E.-R. Olderog, J.I. Zucker, Contrasting themes in the
semantics of imperative concurrency, in Current Trends in Concurrency: Overviews and Tutorials
(J.W. de Bakker, W.P. de Roever, G. Rozenberg, eds.), LNCS 224, Springer (1986) 51-121.
J.W. de Bakker, J.-J.Ch. Meyer, Metric semantics for concurrency, BIT 28, pp. 504-529, 1988.
J.W. de Bakker, J.-J.Ch. Meyer, E-R. Olderog, J.I. Zucker, Transition systems, metric spaces and
ready sets in the semantics of uniform concurrency, Journal of Computer and Systems Sciences 36
(1988), 158-224.
J.W. de Bakker, J.I. Zucker, Processes and the denotational semantics of concurrency, Information
and Control 54 (1982) 70-120.
J.A. Bergstra, J.W. Klop, A convergence theorem in process algebra, Report CS-8733, CWI ,
Amsterdam, 1987.
F.S. de Boer, J.N. Kok, C. Palamidessi, J.J.M.M. Rutten, From failure to success: Comparing a
denotational and a declarative semantics for Horn Clause Logic, in Proc. of the international
BCS-FACS Workshop on Semantics for Concurrency (M.Z. Kwiatkowska, M.W. Shields, R.M.
Thomas, eds.), Workshops in computing, Springer (1990), 38-60.
F.S. de Boer, J.N. Kok, C. Palamidessi, LJ.M.M. Rutten, The failure of failures: towards a para-
digm for asynchronous communication, Report, CS-R91.., CWI, to appear.
F. van Breugel, Comparative semantics for a real-time programming language with integration,
these Proceedings.
A. de Bruin, Exercises in continuation semantics: jumps, backtracking, dynamic networks, Phi)
Thesis, Vrije Universiteit Amsterdam, 1986.
A. de Bruin, E.P, de Vink, Continuation semantics for PROLOG with cut, Proc. TAPSOFT 89,
Vol I (J. Diaz, F. Orejas, eds.), LNCS 351, Springer, pp. 178-192, 1989.
H. Hahn, Reelle Funktionen, Chelsea 1948.
J.-M. Jacquet & L. Monteiro, Comparative Semantics for a Parallel Contextual Programming
Language, in Prnc. North-American Logic Programming Conference (S. Debray, M. Hermenegildo,

28

[K88]

[KR90]

[Ku56]

[Mic51]
[Mi80]
[Ni77]

[Ni78]

[R90a]

[R90b]

[Vi90]

eds.) pp. 195-214, MIT Press, 1990
J.N. Kok, A compositional semantics for Concurrent Prolog, in Prec. 5th Annual Symposium on
Theoretical Aspects of Computer Science, Bordeaux, February 1988 (R. Cori, M. Wirsing, eds.),
LNCS 294, pp. 373-388.
J.N. Kok, J.J.M.M. Rutten, Contractions in comparing concurrency semantics, Theoretical Com-
puter Science 76, pp. 180-222 (1990).
K. Kuratowski, Sur une m~thode de m~trisation complOte des certains espaces d' ensembles com-
pacts, Fundamenta Mathematicae 42 (1956), pp. 114-138.
E. Michael, Topologies on spaces of subsets, Transactions of the AMS 71, 1951, pp. 152-182.
R. Milner, A Calculus for Communicating Systems, LNCS 92, Springer, 1980.
M. Nivat, Mots infinis engendrds par une grammaire algabrique, RAIRO Infommfique Th~orique
11 (1977) pp. 311-327.
M. NivaL Sur les ensembles de mots infinis engendrds par une grarmr~ire alg~brique, RAIRO
Informatique Th6orique 12 (1978), pp. 259-278.
JJ.M.M. Rutten, Semantic correctness for a parallel object-oriented language, SIAM Journal on
Computing 19, 1990, pp. 341-383.
J.J.M.M. Rutten, Deriving metric models for bisimulation from transition system specifications, in
Prec. IFIP TC~ Working Conference on Progrmmaxing Concepts and Methods, North-Holland,
1990, pp, 148-170.
E.P. de Vink, Comparative semantics for Prolog with cut, Science of Computer Programming 13
(1990), pp. 237-264.

