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Abstract. This paper introduces a novel algorithm for performing At-
tributed Graph Matching (AGM). A salient characteristic of the Interpo-
lator-Based Kronecker Product Graph Matching (IBKPGM) algorithm
is that it does not require the explicit calculation of compatibility val-
ues between vertices and edges, either using compatibility functions or
probability distributions. No assumption is made about the adjacency
structure of the graphs to be matched. The IBKPGM algorithm uses
Reproducing Kernel Hilbert Space (RKHS) interpolator theory to ob-
tain an unconstrained estimate to the Kronecker Match Matrix (KMM)
from which a permutation sub-matrix is inferred.

1 Introduction

An object can be described in terms of its parts, the properties of these parts
and their mutual relationships. Representation of the structural descriptions of
objects by attributed relational graphs reduces the problem of matching to an
Attributed Graph Matching (AGM) problem.

According to [1], graph matching algorithms can be divided into two ma-
jor approaches. In general, the first approach constructs a state-space, which is
searched using heuristics to reduce complexity [2-7]. The second approach, which
is the one adopted here, is based on function optimization techniques which in-
clude Bayesian, linear-programming, continuation, eigen-decomposition, polyno-
mial transform, genetic, neural network and relaxation-based methods [1, 8–19].

Except for some earlier approaches not suited to sub-graph matching, such
as [8–10], most optimization-based algorithms require the explicit calculation of
compatibility values between vertices and edges, either using compatibility func-
tions or probability distributions. In addition, some Bayesian-based approaches
fail when graphs are fully connected [14–19]. The focus of this paper is on
matching fully-connected, undirected attributed graphs, using a non-Bayesian
optimization framework, without the explicit calculation of compatibility values
or matrices.

The outline of the presentation is as follows: In section 2, we briefly review the
concept of an attributed graph, formulate the Attributed Graph Matching (AGM)
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problem, and introduce the Kronecker Product Graph Matching KPGM formu-
lation. The Interpolator-Based Kronecker Product Graph Matching (IBKPGM)
algorithm is presented in section 3. Numerical results obtained during the eval-
uation of our algorithm are presented in section 4.

2 KPGM Formulation

The focus of this paper is on matching graphs where a duplicate graph, say

G =
(
V, E, {Ai}r

i=1, {Bj}s
j=1

)
(1)

is matched to a reference graph, say

G′ =
(
V ′, E′, {A′

i}r
i=1, {B′

j}s
j=1

)
(2)

where Ai ∈ R
n×n, Bj ∈ R

n×1, A′
i ∈ R

n′×n′
and B′

j ∈ R
n′×1 represent the

edge attribute adjacency matrices and vertex attribute vectors respectively. The
reference and duplicate graphs each have r edge attributes and s vertex at-
tributes. The number of vertices of G′ (respectively, G) is n′ := |V ′| (respectively,
n := |V |). Here we consider the general case of sub-graph matching. Full-graph
Matching (FGM) refers to matching two graphs having the same number of
vertices (i.e. n′ = n) while Sub-graph Matching (SGM) refers to matching two
graphs having a different number of vertices (i.e. n′ > n).

We say that G is matched to some sub-graph of G′ if there exists an n × n′

permutation sub-matrix P such that Ai = PA′
iP

T and Bj = PB′
j where i =

1, ...., r and j = 1, ...., s.
We now observe that vertex attribute vectors converted to diagonal matrices,

using the diag(·) operation in linear algebra, satisfy the same expression as edge
attribute matrices do, namely diagBj ≈ Pdiag(B′

j)P
T , with exact equality

holding for the ideal case (i.e. when G is just a permuted sub-graph of G′).
This means that these converted vertex attribute vectors may be considered as
additional edge attribute matrices. Observing that

vec(Ai −PA′
iP

T ) ≡ vecAi −ΦvecA′
i (3)

where Φ = P⊗P and ⊗ denotes the Kronecker Product for matrices, the AGM
problem can be expressed as

min
Φ

(
r+s∑
i=1

‖vecAi −ΦvecA′
i‖2

)
(4)

subject to Φ = P⊗P, P ∈ Per(n, n′) where Per(n, n′) is the set of all n×n′

permutation sub-matrices. Here ‖·‖ denotes some matrix norm. Different norms
will yield different solutions to the above minimization problem. The IBKPGM
algorithm in essence obtains an approximation to Φ, from which P ∈ Per(n, n′)
can be derived.

The following definitions and observation are used in the sequel:
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Definition 1. The matrix Φ = P⊗P minimizing Eq. (4 ), subject to
P ∈ Per(n, n′), is termed the Constrained Kronecker Match Matrix.

Definition 2. An unconstrained approximation to the Constrained Kronecker
Match Matrix, say Φ̂, is termed the Unconstrained Kronecker Match Matrix.

Definition 3. An unconstrained approximation to the permutation matrix, say
P̂, is termed the Unconstrained Permutation Sub-matrix.

Observation 1 Given a Constrained Kronecker Match Matrix, Φ=P⊗P, such
that P ∈ Per(n, n′), we can retrieve the unknown permutation sub-matrix P by

Pij :=

∑
k,lΦkl

n
, (5)

where i = 1, ..., n, j = 1, ..., n′,k = (i − 1)n + 1, ..., (i − 1)n + n and l = (j −
1)n′ + 1, ..., (j − 1)n′ + n′.

The space generated by all Unconstrained Kronecker Match Matrices con-
tains the space generated by all Constrained Kronecker Match Matrices. The
general approach we follow is to first derive an unconstrained Kronecker Match
Matrix from which we then infer a Constrained Kronecker Match Matrix.

3 The Interpolator-Based Approach

The Interpolator Based Kronecker Product Graph Matching (IBKPGM) algo-
rithm uses Reproducing Kernel Hilbert Space (RKHS) interpolator theory, the
general framework of which is presented in [20], to obtain an unconstrained ap-
proximation to Φ. The RIGM algorithm [21] is based on the same theory, but the
way in which the permutation sub-matrix P is obtained, is completely different.

3.1 The Interpolator Equation

The AGM process can be viewed to be comprising of the mapping

F : R
n′×n′ → R

n×n , F(X) := PXPT , (6)

with the fixed parameter matrix P ∈ Per(n, n′) the unknown quantity to be
determined. In doing so, the AGM problem is cast into a system identification
problem which can be solved by selecting an appropriate RKHS-based interpo-
lator to model the above mapping. This interpolator contains an approximation
to P implicitly. The input-output pairs used for establishing the interpolative
constraints associated with F is the set {(Xk,Yk)}r+s

k=1, where Xk := A′
k and

Yk := Ak.
The framework presented in [20] will now be used to find a solution to the

AGM problem. Consider the space of all functions of the form F : R
(n′)2×1 →

R, F (X) =
∑n′

i,j=1 ϕi j Xi j . The component functions Fi j of the function F
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clearly belong to this space. We choose as basis for this space the functions
ei j(X) := Xi j where i, j = 1, . . . , n ′. Next, we endow this space with the
inner product (F, G) :=

∑n′

i,j=1 ϕi j γi j to obtain an RKHS with reproducing

kernel given by K(Y,Z) =
∑n′

i,j=1 ei j(Y) ei j(Z) = (vecY)T vecZ. Here vec(·)
denotes the vectorization operation of linear algebra. Given the training set
{(A′

k,Ak)}r+s
k=1 we therefore have the interpolative constraints, (Fi j , K(A′

k, ·)) =
Fi j(A′

k) = Ak | i j for each k = 1, . . . , (r + s) and i, j = 1, . . . , n. As shown in [20],
the minimum-norm interpolator has the form F̃i j(·) =

∑r+s
l=1 Cl | i j K(A′

l, ·)
where the coefficients Cl | i j are the unknown parameters. Evaluation of the
function F̃ij at the points X = A′

k yields the following system of simultane-
ous equations,

Ak | i j =
r+s∑
l=1

Cl | i j K(A′
l,A

′
k) , k = 1, . . . , r + s , (7)

for i, j = 1, . . . , n. Assembling these results into a matrix, we obtain

Ak =
r+s∑
l=1

Cl Gl k (8)

where Cl := (Cl | i j), Gl k := K(A′
l,A

′
k) and k = 1, . . . , r + s.

By introducing the matrices A ∈ R
n2×(r+s) and G ∈ R

(r+s)×(r+s) where
A := (vecA1, . . . , vecAr+s) and G := (G1, . . . ,Gr+s), we can express the com-
plete problem in the form of a single matrix equation, namely A = CG, where
the only unknown is the matrix C := (vecC1, . . . , vecCr+s). Conditions under
which the Gram matrix G is invertible are stated in [23]. These conditions are
assumed to be satisfied by the attribute matrices of an attributed graph, and
hence the coefficients of the interpolator are described by the matrix expression,

C = AG−1 . (9)

Up to this point the development coincides with that of the RIGM algorithm [21].
The way in which the permutation sub-matrix is inferred is totally different and
is presented next.

3.2 Inferring the Unconstrained Kronecker Match Matrix

Proposition 1. An Unconstrained Kronecker Match Matrix is given by

Φ̂ =

 Φ̂T
1
...

Φ̂T
n2

 (10)

where

Φ̂T
i =

(
r+s∑
l=1

Cl|ivecA′
l

)T

, (11)
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C := (vecC1, . . . , vecCr+s), vecCl := (Cl|i) and i = 1, ..., n2.

Proof. Eq. (8) can be written in the form

vecAk = vec

(
r+s∑
l=1

Cl Gl k

)
=

r+s∑
l=1

vec(Cl)Gl k = CGk (12)

with C := (vecC1, . . . , vecCr+s) and Gk := (G1 k, . . . , Gr+s, k)
T . By comparing

Eq. (12) with Eq. (3) it is clear that

vecAk = CGk = Φ̂ vecA′
k. (13)

Expanding Eq. (13) and performing a row-wise decomposition we obtain

Ak|i =

(
r+s∑
l=1

Cl|ivecA′
l

)T

vecA′
k, (14)

where vecAk := Ak|i, k = 1, ..., r + s and i = 1, ..., n2. From Eq. (14) it follows

that Φ̂T
i =

(∑r+s
l=1 Cl|ivecA′

l

)T

which concludes the proof. 
�

3.3 Inferring an Approximation to P from Φ̂

Observation 2 If an Unconstrained Permutation Sub-matrix P̂ is used as the
weight matrix of an optimal assignment problem, the solution of which is a
permutation sub-matrix P representing the optimal assignment of P̂, then the
permutation sub-matrix P is the closest to P̂ in the mean-square-error sense,
that is, ‖P− P̂‖F is a minimum where ‖·‖F denotes the Frobenius norm [22].

Some optimal assignment algorithms might require P̂ to be a positive matrix.
If P̂ is not a positive matrix, we can add a constant to P̂ to ensure that all its
elements are non-negative.

Proposition 2. Let P be the permutation sub-matrix closest to P̂ in the mean-
square-error sense. If the Unconstrained Kronecker Match Matrix is given as
Φ̂ = P̂⊗P̂, then P will also be the permutation sub-matrix closest to P̃ in the
same sense where

P̃ij :=

∑
k,l Φ̂kl

n
, (15)

Φ̂ := Φ̂kl, i = 1, ..., n, j = 1, ..., n′, k = (i − 1)n + 1, ..., (i − 1)n + n, l =
(j − 1)n′ + 1, ..., (j − 1)n′ + n′ and

∑
i,j P̂ij is positive.

Proof. Observe that
P

k,l
bΦkl

n = P̂ij

∑
p,q P̂pq where k = (i−1)n+1, ..., (i−1)n+n,

l = (j − 1)n′ + 1, ..., (j − 1)n′ + n′, p = 1, ..., n, q = 1, ..., n′, i = 1, ..., n and
j = 1, ..., n′. This leads to

P̃ = αP̂ (16)
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where α is a constant. Noting that the optimal assignment procedure yields
the same answer when its weight matrix is multiplied by a positive constant
concludes the proof. 
�

By assuming that Φ̂, as given by Proposition 1, is the Kronecker Product of
an Unconstrained Permutation Sub-matrix P̂ with itself, we can therefore use
Proposition 2 to obtain a permutation sub-matrix P which will serve as an
approximation to P. The resultant algorithm has a complexity of O(n4) when
n > (r + s)2 and the Kuhn-Munkres optimal assignment algorithm is used to
approximate P.

4 Numerical Experiments

In order to evaluate the performance of the IBKPGM algorithm, the following
procedure was used: Firstly, the parameters n′, n , r and s were fixed. For ev-
ery iteration, a reference graph G′ was generated randomly with all attributes
distributed between 0 and 1. An n × n′ permutation sub-matrix, P, was also
generated randomly, and then used to permute the rows and columns of the
edge attribute adjacency matrices and the elements of the vertex attribute vec-
tors of G′. Next, an independently generated noise matrix (vector, respectively)
was added to each edge attribute adjacency matrix (vertex attribute vector, re-
spectively) to obtain the duplicate graph G. The element of each noise matrix or
vector was obtained by multiplying a random variable—uniformly distributed on
the interval [−1/2, 1/2]—by the noise magnitude parameter ε. Different graph
matching algorithms were then used to determine a permutation sub-matrix
which approximates the original permutation sub-matrix P . The proportion
correct vertex-vertex assignments was calculated for a given value of ε after
every 300 trials for each algorithm. From a probabilistic point of view, this ap-
proximates how well an algorithm performs for a given noise magnitude.

4.1 Numerical Results

The performance of the IBKPGM algorithm was compared to the performance
of the GAGM [1], EGM [10], CGGM [24], PTGM [9] and RIGM [21] algo-
rithms. A comparison is also made against the Faugeras-Price Relaxation La-
belling (FPRL) algorithm [25]. The computational complexity of the IBKPGM
algorithm is O(n4).

Figure 4.1 presents the estimated probability of correct vertex-vertex match
as a function of noise magnitude ε for the case (n, r, s) = (30, 3, 3). Globally, the
performance curves for the GAGM and CGGM algorithms are closely spaced
and well separated from the performance curves of the IBKPGM and FPRL al-
gorithms for large values of ε, which in turn are well separated from the perfor-
mance curves of the PTGM and EGM algorithms. In figure 2, the performance of
the IBKPGM algorithm is shown for values of n = 100, 150, and 200 where r = 3
and s = 3. Figure 3 depicts the estimated probability of correct vertex-vertex



80 Barend Jacobus van Wyk and Michaël Antonie van Wyk
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Fig. 1. Matching of (30,3,3) attributed graphs: Estimated probability of correct
vertex-vertex matching versus ε
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Fig. 2. Matching of (100,3,3), (150,3,3) and (200,3,3) attributed graphs: Esti-
mated probability of correct vertex-vertex matching versus ε

matching for the case (n′/n, r, s) = (15/5, 5, 5). The results of this experiment
indicate that the estimated probability of a correct vertex-vertex match is higher
than 0.8 for noise values up to nearly 0.3 when a third of the vertices are missing.
When only two or three vertices are missing, the experiment is trivial, since the
IBKPGM algorithm almost always finds the correct vertex-vertex match when
no noise is present. The curve IBKPGM(Augmented) indicates the performance
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Fig. 3. Matching of (15/5,5,5) attributed graphs: Estimated probability of cor-
rect vertex-vertex matching versus ε

of the IBKPGM algorithm when five additional attributes were added to each
edge and vertex of each graph. The additional attributes were derived from the
existing attributes by squaring them. This procedure significantly improves the
sub-graph matching performance of the IBKPGM algorithm for small values
of ε.

5 Conclusion

The Kronecker Product Graph Matching (KPGM) formulation was presented
and the Interpolator-Based Kronecker Product Graph Matching (IBKPGM) al-
gorithm, based on this formulation, was introduced. The IBKPGM algorithm
incorporates a general approach to a wide class of graph matching problems.

It was demonstrated that the performance of the IBKPGM algorithm is com-
parable to the performance of a typical gradient-based relaxation method such
as the FPRL algorithm when performing full-graph matching. The performance
curves of the IBKPGM are almost identical to those of the RIGM [21] algorithm.
This phenomenon cannot be explained at present, and is a topic for further in-
vestigation.
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