A Kernel Approach
to Metric Multidimensional Scaling

Andrew Webb

QinetiQ, St. Andrews Road, Malvern, WR14 3PS
webb@signal.qinetiqg.com

Abstract. The solution for the parameters of a nonlinear mapping in
a metric multidimensional scaling by transformation, in which a stress
criterion is optimised, satisfies a nonlinear eigenvector equation, which
may be solved iteratively. This can be cast in a kernel-based framework in
which the configuration of training samples in the transformation space
may be found iteratively by successive linear projections, without the
need for gradient calculations. A new data sample can be projected using
knowledge of the kernel and the final configuration of data points.
Keywords. multidimensional scaling; kernel representation; nonlinear
feature extraction;

1 Introduction

Multidimensional scaling by transformation (MST) describes a class of proce-
dures that implements a nonlinear, dimension-reducing mapping that minimises
a criterion, stress, in the output or representation space with the aim of retain-
ing the structure and important relationships within the original dataset defined
in the data or observation space. Often, these mappings are characterised by
feed-forward neural network models (for example, multilayer perceptrons [6,7,9],
or radial basis functions [3,16]) whose parameters are adjusted to optimise the
stress. The stress criterion is strongly related to the conventional metric multi-
dimensional scaling objective function [3], sometimes termed Sammon mappings
in the pattern recognition literature after (Sammon, 1969 [14]), with generalisa-
tions to include subjective information [8] and class information [5,16].

Many linear methods of feature extraction are based on matrices of first and
second order statistics. These include transformations based on principal com-
ponents analysis and linear discriminant analysis and variants [18], and lead to
eigenvector / generalised eigenvector equations for the weights of the transfor-
mation.

Many methods of nonlinear feature extraction, and also methods for discrim-
ination and regression, are linear models. The nonlinear transformation from the
data space to the output space is expressed as a linear combination of basis func-
tions. This linear transformation can be determined by first explicitly mapping
the input data to the feature space defined by the outputs of the basis functions
and then choosing the linear transformation that optimises a criterion defined in
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the output space. This criterion may be, for example, a least squares error, stress
(in multidimensional scaling) or variance and, in the case of nonlinear principal
components analysis, leads to eigenvector equations for the weights.

An alternative to the approach of explicitly mapping data to an interme-
diate feature space and then determining the nonlinear transformation is to
design nonlinear data processing algorithms using linear techniques in an im-
plicit feature space induced by kernel functions defined on the data space. These
algorithms include support vector machines, kernel principal components anal-
ysis [15] and kernel multidimensional scaling [20]. In this paper we show that
MST in which a stress function is minimised (and so differs from [20] which is
the application of classical scaling in the feature space) can also be expressed in
such a framework.

2 Statement of the Problem

Let X = {x1,...,zny € RR"} denote the dataset of N n-dimensional measure-
ment vectors, x;,7 = 1,..., N. Each measurement vector x; may also have an
associated class label, z; € {1,...,C}, the class to which @; belongs, where C'
is the number of classes. MST seeks a transformation f : R" — R™ from n-
dimensional space to m-dimensional space (m < n) such that a loss function of
the form,

N N
o? = Z;Z;aij(%j —dz‘j(X))2 (1)

is minimised, where a;;,7,j = 1,..., N are positive weights that may depend on
the classes of x; and x;; the term d;;(X) given by

dij(X) = [z — x|
is a distance in the observation space and
ai; = |f(xi) — f(z)
is a distance in the representation space. The distances are usually taken to be

Euclidean, but other forms may be considered [17]. Minimisation of the loss, o2,

is performed with respect to the functional form of the transformation, f. A
convenient choice for f is a basis function expansion of the form

l
f(x) = ij%(fﬂ) (2)

for a set of basis functions, {¢;,j =1,...,1}, where {w; e R™,j =1,...,l}is
a set of weights optimised by the procedure. Equation (2) may be written

flz) = Wie(x) (3)

where W is the [ x m matrix with (i, j) elements w;; and ¢ = [¢1(z)|. .. |¢i ()]
is the [-dimensional vector of nonlinear responses.
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3 Iterative Solution

The minimisation of 0% (Equation (1)) with respect to W, the parameters of
the nonlinear transformation f, may be performed using standard nonlinear
optimisation schemes [12] that require evaluation of the gradient of o2 with
respect to W. It may also be performed without gradient calculations [16,19]
using an iterative majorisation approach. Given an initial starting point for the
parameters, a majorising function is specified that touches the loss function to
be minimised at this point, but everywhere else lies above it. The majorising
function is simple to minimise and the position of the minimum is used as the
starting point for the next iteration (see Figure 1).

It is shown in [16] that the weights W may be determined iteratively using

the equation
SWtt) — oR(W®)yw® (4)

for symmetric [ x [ matrices S and R given by

S = 2303 ai(@la) - pla) (@) - dla;)”

ANPT (I - %nT) &

where the «;; are taken to be unity in the last equality and & =
[p(x1)]...|¢p(xn)]T is the N x [ matrix of nonlinear features; and

RW®) = 287 (C - C)® (6)

Wito Wi Wy W

Fig. 1. Tllustration of iterative majorisation principle: minimisation of S(W) is
achieved through successive minimisations of the majorisation functions, F'
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where C = C(W?") is the N x N matrix that depends on the configuration at
stage ¢ through the ¢;; with (¢, j) element

cij = {dij (X)/q;(W®) gi; (W) >0
’ 0 gi; (W) =0

and C = Diag{C1}, the diagonal matrix with (,7) element (C1);.

An alternative derivation for the iterative equation for W may be obtained
by showing that W satisfies a nonlinear eigenvector equation with an algorithm
for its solution based on the inverse iteration method for the ordinary eigenvector
equation [19)].

4 Kernel Representation

4.1 TIterative Solution Using Kernels

We now re-cast the iterative solution for the weights as an iterative solution for
the final configuration in the transformed space that requires the specification
of a kernel defined on the data space.

Defining H as the N x N idempotent centring matrix

— 1 T
i (1 )

sothat HH = H and H = H", and using (5) and (6) Equation (4) may be
written ~
NH®)"(HS)WY = (HS) (C - C)(HP)WD (7)

Writing P = (H@)W(t), the N x m matrix of centred data coordinates in
the projected space at stage ¢, then Equation (7) may be written

N(H®)"PHY = (H®)"(C - c)PY (8)
Taking the pseudo-inverse of (H®)”, we can express P ag
NP = (H®)(H®)")(H®)(H®)T (C - C)P" (9)

Equation (9) above provides an iterative equation for the coordinates of
the transformed data samples. This is the procedure followed in standard ap-
proaches to multidimensional scaling [4]. The difference here is that constraints
on the form of the nonlinear transformation describing the multidimensional scal-
ing projection are incorporated into the procedure through the N x N matrix
(H®)(HP)".

The matrix (H®)(H®)T depends on dissimilarities in feature space and may
be written

(H®)(H®)" = HFH (10)
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where the N x N matrix, F has (i, 7) element f;; = —%5%, where

oy = (p(m:) — d(x;))" (p(x:) — ()

is the squared Euclidean distance in feature space. Denoting the inner product
¢” (z;)¢p(x;) by the kernel function K (z;,x;), then F' may be written

1 T
-1k 11
; (11)

1
F = K- k1" -
2
where K is the matrix with (7, j) element K (x;, «;) and the ith element of the
vector k is K (x;, ;). Substituting for F' from Equation (11) into (10) gives

(H®)(H®)" = HKH (12)

Thus, the iterative procedure for the projected data samples depends on the
kernel function K, which must satisfy the usual conditions [2] to ensure that it
is an inner product on some feature space. Example kernels are polynomials and
gaussians.

However, note that if the pseudo-inverse is used to calculate POY from
PW in (9), then the only influence of the kernel is through the space spanned
by the (non-zero) eigenvectors of HK H. That is, if we write HKH as its
singular value decomposition, UTZTUTT, for N x r matrix of eigenvectors U,
and X, = Diag{o1,...,0,} for non-zero singular values o;,1 <14 < r, then

(HKH)'(HKH) = U, U?

and ~
NPHY — .Ut ¢ -c)p? (13)

Thus, the new coordinates comprise a transformation of the coordinates at step ¢
followed by a projection onto the subspace defined by the columns of U,.. The
final solution for the coordinates, which we denote by P, must lie in the subspace
defined by U,

The matrix C = C(P"Y) depends on the configuration of points in the
transformed space and is given by

i — aijdij(X)/qi; (P") g,;(P") >0
! 0 q;;(PV) =0

where g;; (P(t)) is the distance between transformed points ¢ and j at stage ¢.

4.2 Projection of New Data Samples

The iterative procedure described above finds a configuration of the data sam-
ples in the transformed space. We would also like to determine where in the
transformed space a new sample maps to without having to calculate a weight
vector explicitly.
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Let P denote the final N x m matrix of coordinates of the N data samples
in the projected m-dimensional space. For a data sample x, the new projection,
z, is given by

z = WTg(x)

and using the solution for the weights (W = (H®)! P) we have

z = P (H®)|"¢(x)

— P'[HKH]'H®¢(z) (14)
- P'[HKH]'HI
where I = [I1,...,Ix]T and l; = k(x, ;). Thus, a new projection can be ex-

pressed using the kernels only, and not the feature space representation and is a
weighted sum of the final training data projections, P.

5 Choice of Kernel

We adopt a Gaussian kernel of the form
K(x,@;) = exp (—0(x; — x;)" (zi —x;))

with inverse scale parameter 6.

As 0 — oo, the matrix K — I and HKH — H = I — 117 /N, which is
independent of the training data.

As # — 0, the matrix K — 117 — D, where D is the matrix of squared
distances in the data space, D;; = |z; — x;|*>. The matrix HKH — —0HDH,
showing that the kernel is equivalent to the quadratic kernel' K (z;, ;) = |z; —
x;|?, which does not depend on 6.

6 Illustration

The technique is illustrated using a simulated dataset comprising 500 points
uniformly distributed over a part-sphere with added noise.

x1 = Acos(v)sin(¢) + ny
x9 = Acos(¢)cos(d) + no
T3 = ASID(1/)) + ng3

where ¢ = 2mu, 1 = sin” ' (v(1 + sin(¢max)) — 1) and u and v are uniformly-
distributed on [0,1]; A = 1 and nj, ny and ng are normally-distributed with
variance 0.1. A value of w/4 was taken for ¢y, so that the surface covers the

L Any scaling of a kernel does not affect the final configuration of training samples or
the point to which a test pattern is projected.
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Fig. 2. Lines of latitude on underlying surface

lower hemisphere (—m/2 < 1) < 0), together with the upper hemisphere up to a
latitude of 45 degrees. Figure 2 shows lines of latitude on the underlying sphere.

The algorithm is trained to convergence on the noisy sphere data and a
projection to two dimensions is sought. Figure 3 plots the normalised stress
(after the algorithm has converged),

52 Sy S (i — dig (X))?
- sz\il Zjvzl dij(X)2

as a function of 0 for a test dataset generated using the same distribution as the
training data.

For small values of 6, there is very little variation in the stress, showing that
a quadratic kernel is close to optimal. Figure 4 give a two-dimensional plot of
the training data and the points on the underlying surface (lines of latitude on
the sphere) for a value of § = 1.0. We see that the transformation has ‘opened
out’ the sphere to produce a two dimensional projection.

(15)

7 Summary

The main results of this paper can be summarised as follows.

1. The solution for the weights of a generalised linear model that minimise a
stress criterion can be obtained using an iterative algorithm (Equations (4)).
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stress

0.6

theta

20 40 60 80 100

Fig. 3. Normalised stress on test set as a function of ¢

Fig. 4. Projection of training data (left) and points on the underlying surface
(right) for the noisy sphere dataset

2. The iterative algorithm for the weights may be re-expressed as an iterative
algorithm for the projected data samples (Equation (9)), which depends on
a kernel function defined in the data space.

3. For a Gaussian kernel, there is one model selection parameter, 6, that can
be determined using a validation set.

4. The projection of new data points may be achieved using the solution for
the projected training samples (Equation (14)). The projection is a weighted
sum of the projected training samples.
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