
T. Caelli et al. (Eds.): SSPR&SPR 2002, LNCS 2396, pp. 424-432, 2002.
 Springer-Verlag Berlin Heidelberg 2002

Performance Analysis and Comparison of Linear
Combiners for Classifier Fusion

Giorgio Fumera and Fabio Roli

Dept. of Electrical and Electronic Eng., University of Cagliari
Piazza d�Armi, 09123 Cagliari, Italy
{fumera,roli}@diee.unica.it

Abstract. In this paper, we report a theoretical and experimental
comparison between two widely used combination rules for classifier
fusion: simple average and weighted average of classifiers outputs. We
analyse the conditions which affect the difference between the
performance of simple and weighted averaging and discuss the relation
between these conditions and the concept of classifiers� �imbalance�.
Experiments aimed at assessing some of the theoretical results for cases
where the theoretical assumptions could not be hold are reported.

1 Introduction

In the past decade, several rules for fusion of classifiers outputs have been proposed
[10]. Some theoretical works also investigated the conditions which affect the
performance of specific combining rules [1,2,3]. For the purposes of our discussion,
the combining rules proposed in the literature can be classified on the basis of their
�complexity�. Simple rules are based on fixed combining methods, like the majority
voting [1] and the simple averaging [2,3]. Complex rules use adaptive or trainable
techniques, like the weighted voting [4] and the Behaviour Knowledge Space rule [5].
Researchers agree that simple combining rules work well for ensembles of classifiers
exhibiting similar performance (�balanced� classifiers). On the other hand,
experimental results showed that complex combining rules can outperform simple
ones for ensembles of classifiers exhibiting different performance (�imbalanced�
classifiers), supposed that a large and independent validation set is available for
training such rules [10]. From the application viewpoint, it would be very useful to
evaluate the maximum performance improvement achievable by trained rules over
fixed ones for a classifier ensemble exhibiting a certain degree of imbalance. If such
improvement is not significant for the application at hand, the use of a trained rule
could be not worth, since the quality and the size of the training set can strongly
reduce the theoretical improvement. However, no theoretical framework has been
developed so far, which allows a clear quantitative comparison between different
combining rules.

In this paper, we focus on two widely used combining rules, namely, simple and
weighted averaging of classifiers outputs. Weighted averaging is often claimed to
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perform better than simple averaging for unbalanced classifier ensembles. However,
to the best of our knowledge, no work clearly analysed the conditions which affect the
difference between the performance of simple and weighted averaging. The
performance improvement achievable by weighted averaging was not clearly
quantified so far [2,3,11]. Moreover, experimental results, for instance, the ones
reported in [6], showed a small improvement.

In the following, we report a theoretical and experimental comparison between
weighted averaging and simple averaging. For our theoretical comparison, we used an
analytical framework developed by Tumer and Ghosh [2,3] for the simple averaging
rule, and extended it to the weighted averaging rule (Section 2). In Section 3, we
quantify the theoretical performance improvement achievable by weighted averaging
over simple averaging. We also discuss the conditions under which such improvement
can be achieved, and the connection with the concept of classifier �imbalance�. In
Section 4, experiments aimed at assessing some of the theoretical results for cases
where the theoretical assumptions could not be hold are reported.

2 An Analytical Framework for Linear Combiners

Following the work of Tumer and Ghosh [2,3], the outputs of an individual classifier
approximating the a posteriori probabilities can be denoted as:

� p i x( ) = pi x( ) + ε i x( )  , (1)

where pi(x) is the �true� posterior probability of the i-th class, and εi(x) is the
estimation error. We consider here a one-dimensional feature vector x. The multi-
dimensional case is discussed in [7]. The main hypothesis made in [2,3] is that the
decision boundaries obtained from the approximated a posteriori probabilities are
close to the Bayesian decision boundaries. This allows focusing the analysis of
classifier performance around the decision boundaries. Tumer and Ghosh showed that
the expected value of the added error (i.e., the error added to the Bayes one due to
estimation erros), denoted as Eadd, can be expressed as:

Eadd =
1
2s

E ε i xb( )− ε j xb( )( )2{ } , (2)

where E{} denotes the �expected� value, and s is a constant term depending on the
values of the probability density functions in the optimal decision boundary. Let us
assume that the estimation errors εi(x) on different classes are i.i.d. variables [2,3],
with zero mean (note that we are not assuming that the estimated a posteriori
probabilities sum up to 1). Denoting their variance with σε

2 , we obtain from Eq. 2:

Eadd =
σ ε

2

s
 . (3)

Let us now evaluate the expected value Eadd
ave  of the added error for the weighted

averaging of the outputs of an ensemble of N classifiers. We consider the case of
normalised weights wk:
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wkk =1

N∑ = 1, wk ≥ 0 k = 1,…, N  . (4)

The outputs of the combiner can be expressed as:

� p i
ave x( ) = wk � p i

k x( )
k =1

N∑ = wk pi x( )+ ε i
k x( )( )k =1

N∑ = pi x( )+ ε i x( )  , (5)

where

ε i x( ) = wkε i
k x( )

k =1

N∑ (6)

is the estimation error of the combiner. By proceeding as shown above for an
individual classifier, one obtains the following expression for Eadd

ave :

Eadd
ave =

1
2s

E ε i xb
ave( )− ε j xb

ave( )( )2{ } , (7)

where xb
ave  denotes the decision boundary estimated by the combiner. We assume

again that, for any individual classifier, the estimation errors ε i
k x( )  on different

classes are i.i.d. variables with zero mean, and denote their variances with σ
ε k
2 . We

also assume that the errors ε i
m x( )  and ε i

n x( )  of different classifiers on the same class
are correlated [2,3], with correlation coefficient ρi

mn , while they are uncorrelated on
different classes. Under these assumptions, we obtain from Eq. 7:

Eadd
ave =

1
s

σ
ε k
2 wk

2

k =1

N

∑ +
1
s

ρ i
mn + ρ j

mn( )σ ε m σ
ε n wm wn

n≠ m
∑

m=1

N

∑  . (8)

This expression generalises the result obtained in [2,3] for simple averaging to the
case of weighted averaging. For the purposes of our discussion, let us assume that the
correlation coefficients of the different classes are equal: ρi

mn = ρ j
mn = ρmn . From

Eq. 3 it follows that Eadd
ave  can be rewritten as follows:

Eadd
ave = Eadd

k wk
2

k =1

N

∑ + 2ρ mn Eadd
m E add

n

n ≠m
∑ wm wn

m =1

N

∑  . (9)

Let us now analyse Eq. 9. We first consider the case of uncorrelated estimation errors
(i.e., ρmn=0 for any m≠n). In this case Eq. 9 reduces to:

Eadd
ave = Eadd

k wk
2

k =1

N

∑  . (10)

Taking into account the constraints of Eq. 4, it is easy to see that the optimal weights
of the linear combination, that is, the ones which minimise the above Eadd

ave , are:

wk =
1

Eadd
m

m =1

N

∑
 
  

 
  

−1
1

Eadd
k  . (11)

Eq. 11 shows that the optimal weights are inversely proportional to the expected
added error of the corresponding classifiers. Accordingly, for equal values of the
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expected added error, the optimal weights are wk=1/N. This means that simple
averaging is the optimal combining rule in the case of classifiers with equal
performance (�balanced� classifiers).

Consider now the case of correlated estimation errors (Eq. 9). In this case it is not
easy to derive an analytical expression for the optimal weights. However, from Eq. 9
it turns out that the optimal weights are wk=1/N if all classifiers exhibit both equal
average performance and equal correlation coefficients. Otherwise, different weights
are needed to minimise the expected added error Eadd

ave  of the combiner. This means
that even for equal average accuracies, simple averaging is not the optimal rule, if the
estimation errors of different classifiers exhibit different correlations.

3 Performance Analysis and Comparison

In this section, we quantitatively evaluate the theoretical improvement achievable by
weighted averaging over simple averaging. To this end, we use the theoretical model
described in Sect. 2. In the following we denote with ∆Eadd

ave  the difference between
the expected added error achieved by simple averaging and the one achievable by
weighted averaging using the optimal weights given in Eq. 11. Without loss of
generality, we consider the N classifiers ordered for decreasing values of their
expected added error Eadd

k , so that Eadd
1 ≥ Eadd

2 ≥ … ≥ E add
N .

3.1 Combining Uncorrelated Classifiers

Let us first consider the case of uncorrelated estimation errors (i.e., ρmn=0 for any
m≠n). According to Eq. 10, ∆Eadd

ave  can be written as:

∆Eadd
ave =

1
N2 Eadd

k

k =1

N

∑ −
1

Eadd
k

k =1

N

∑
 
  

 
  

−1

 . (12)

By a mathematical analysis of Eq. 12 we proved that, for any given value of the
difference Eadd

1 − Eadd
N , the maximum of ∆Eadd

ave  is achieved when the N-2 classifiers
2,�,N-1 exhibit the same performance of the worst individual classifier, that is,
Eadd

1 = Eadd
2 = … = Eadd

N −1 > Eadd
N . For the sake of brevity, we omit this proof. According

to our model, this is therefore the condition under which, for a given value of the
difference Eadd

1 − Eadd
N , the advantage of weighted averaging over simple averaging is

maximum. Hereafter we will denote this condition as performance �imbalance�.
Under the above condition, in Fig. 1 we reported the values of ∆Eadd

ave  for values of
Eadd

1 − Eadd
N  ranging from 0 to 25%. Three different values of Eadd

N  for the best
classifier were considered (1%, 5%, and 10%), and two values of the ensemble size,
N=3,5. From Fig. 1, two conclusions can be drawn. First, weighted averaging
significantly outperforms simple averaging (say, more than 1%) only if the
performance of the individual classifiers are highly imbalanced (that is, for high
values of Eadd

1 − Eadd
N ), and if the performance of the best individual classifier is very
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high (that is, for low values of Eadd
N ). Moreover, the advantage of weighted averaging

decreases for increasing values of N (note that in practice it is unlikely to have a high
number of uncorrelated classifiers [8]).
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Fig. 1. Values of ∆Eadd
ave  (denoted as Esa-Ewa) for uncorrelated classifiers, for N=3 (left) and N=5

(right). The values of Eadd
i  are denoted as Ei

Consider now the optimal weights given in Eq. 11. It is easy to see that the highest
weight is assigned to the best individual classifier. Moreover, the weights of
classifiers 1,�,N-1 are equal, as these classifiers have equal values of the expected
added error. Their weight is reported in Fig. 2, plotted against Eadd

1 − Eadd
N , for the

same values of Eadd
N  and N as in Fig. 1.
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Fig. 2. Values of the minimum of the optimal weights, for N=3 (left) and N=5 (right)

The comparison of Figs. 1 and 2 shows that higher values of ∆Eadd
ave  correspond to

lower weights for classifiers 1,�,N�1. In particular, if the best individual classifier
performs very well (i.e., Eadd

N  is close to 0), a value of ∆Eadd
ave  greater than 1% can be

achieved only by assigning to the other classifiers a weight lower than 0.1. This
means that the performance of weighted averaging gets close to the one of the best
individual classifier, as the other classifier are discarded.

To sum up, the theoretical model predicts that weighted averaging can significantly
outperform simple averaging only if a classifier with very high performance is
combined with few other classifiers exhibiting much worse performance. However, in
this case, using only the best classifier could be a better choice than combining.
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3.2 Combining Correlated Classifiers

Let us now consider the case of correlated estimation errors (Eq. 9). We evaluated
∆Eadd

ave  by first computing numerically the optimal weights from Eq. 9. As in the case
of uncorrelated errors, it turned out that, for any given value of Eadd

1 − Eadd
N , the

maximum of ∆Eadd
ave  is achieved for Eadd

1 = Eadd
2 = … = Eadd

N −1 . Under this condition, in
Fig. 3 we report the values of ∆Eadd

ave  for N=3, and for values of ρmn in the range [�
0.4, 0.8]. Fig. 3 shows that the advantage of weighted averaging over simple
averaging is greater than in the case of uncorrelated errors. However, note that
achieving a significant advantage still requires that the performance of the individual
classifiers are highly imbalanced. Moreover, it turns out that the weight of one of the
worst classifiers is always zero.

Let us now consider the values of the correlation coefficients. For given values of
Eadd

3  and Eadd
1 − Eadd

3 , it turned out that the maximum of ∆Eadd
ave  is achieved when the

best individual classifier is little correlated with one of the others (in our case, ρ13 = �
0.4), while the other correlation coefficients must be as high as possible (ρ12 = ρ23 =
0.8). It seems therefore that the correlations must be imbalanced in an analogous way
as the performance.
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Fig. 3. Values of ∆Eadd
ave  for correlated classifiers, for N=3

To better analyse the effects of correlation, we evaluated ∆Eadd
ave  for varying values of

the correlations coefficients. We considered imbalanced values in the sense defined
above, that is, ρ13<ρ12=ρ23. In Fig. 4 the values of ∆Eadd

ave  are plotted against the value
of ρ12�ρ13, for three different values of ρ13. Two different cases are considered for
the expected added errors: Eadd

1 = Eadd
2 = Eadd

3 = 5%  and
Eadd

1 = Eadd
2 = 10%, Eadd

3 = 5% .
Fig. 4 shows that imbalanced correlations significantly affect the performance of

simple averaging only when the individual classifiers have imbalanced performance.
Moreover, it turned out that the weight assigned to one of the worst individual
classifiers drops to zero as the imbalancing in performance or in correlation increases.
This means that discarding such classifier would not affect the performance of
weighted averaging, while simple averaging would perform significantly better. We
found that the classifier whose weight is minimum is the one highly correlated with
the best individual classifier. In Fig. 5 the value of the lowest of the optimal weights
is reported, with reference to the cases shown in Fig. 4.
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Fig. 5. Values of the minimum of the optimal weights for balanced (left), and imbalanced
(right) performance, as in Fig. 5

To sum up, according to our model, weighted averaging significantly improves the
performance of simple averaging only for ensembles of classifiers with highly
imbalanced performance and correlations. However, such improvement is often
achieved by discarding one of the worst classifiers, that is, assigning to it a weight
close to zero. When the optimal weights are significantly greater than zero, the
advantage of weighted averaging over simple averaging is quite small. It is worth
noting that the advantage of weighted averaging over simple averaging is smaller than
one can think of. This conclusion is in agreement with experimental results recently
reported [6]. Moreover, it should be noted that, in practical applications, it can be very
difficult to obtaining good estimates of the optimal weights.

4 Experimental Results

In this section, we report experiments aimed at comparing the performance of simple
averaging and weighted averaging for ensembles with different degrees of imbalance.

We used a data set of remote-sensing images related to an agricultural area near the
village of Feltwell (UK) [9]. This data set consists of 10,944 pixels belonging to five
agricultural classes. It was randomly subdivided into a training set of 5,820 pixels,
and a test set of 5,124 pixels. Each pixel is characterised by fifteen features,
corresponding to the brightness values in the six optical bands, and over the nine radar
channels considered.
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We considered ensembles made up of a k-nearest neighbours classifier (k-NN),
with a value of k equal to 15, and two multi-layer perceptron (MLP1 and MLP2)
neural networks. Two ensembles were selected so that the performance of individual
classifiers were imbalanced as defined in Sect. 3.1. We used MLPs with 15 hidden
units for ensemble 1, and two hidden units for ensemble 2. The test set error
percentages of the individual classifiers are shown in Table 1. The difference between
the error percentages of the worst and the best classifier is shown in the last column as
E1�E3. These values are averaged over ten runs corresponding to ten training set /
validation set pairs, obtained by sampling without replacement from the original
training set. The validation set contained the 20% of patterns of the original training
set, and was used for the stopping criterion of the training phase of the MLPs.

Table 1. Error percentages of the individual classifiers on the test set. E1-E3 indicates the
difference between the error percentages of the worst and the best classifier

k-NN MLP1 MLP2 E1-E3
ensemble 1 10.01 18.20 18.00 7.99
Ensemble 2 10.01 25.97 26.23 16.22

Table 2. Error percentages of weighted averaging (Ewa) and simple averaging (Esa) on the test
set

ensemble performance optimal weights
Esa Ewa Esa-Ewa k-NN MLP1 MLP2

Ensemble 1 12.09 9.69 2.40 0.689 0.080 0.231
Ensemble 2 16.81 9.79 7.02 0.838 0.006 0.156

In both ensembles, the k-NN was the best classifier. The two MLPs exhibited a
similar error probability, which was higher than the one of the k-NN of about 8%
(ensemble 1) and 16% (ensemble 2). As in these experiments we were not interested
in the problem of weight estimation, the optimal weights of the linear combination
were computed on the test set by �exhaustive� search. The average performance of
simple and weighted averaging are reported in Table 2, respectively as Esa and Ewa,
together with the values of the optimal weights.

For ensemble 1, where the difference E1�E3 between the performance of the best
and the worst classifier is about 8%, weighted averaging outperforms simple
averaging of 2.4%. This value increases to about 7% for ensemble 2, where E1-E3 is
about 16%. For both cases the weight of MLP1 is close to 0, and the performance of
weighted averaging is very close to the one of the best individual classifier. These
preliminary results are in agreement with the theoretical predictions. They show that
weighted averaging significantly outperforms simple averaging only for highly
imbalanced classifiers, and only by discarding one of the worst classifiers.
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