
T. Caelli et al. (Eds.): SSPR&SPR 2002, LNCS 2396, pp. 368-377, 2002.
 Springer-Verlag Berlin Heidelberg 2002

Texprint: A New Algorithm to Discriminate Textures
Structurally*

Antoni Grau1, Joan Climent1, Francesc Serratosa1, and Alberto Sanfeliu2

1Dept Automatic Control, Technical University of Catalonia UPC
c/ Pau Gargallo, 5 E-08028 Barcelona, Spain

{agrau,climent}@esaii.upc.es
Universitiy Rovira i Virgili Tarragona

2 Institute for Robotics, UPC/CSIC
c/ Lloren s i Artigues, 4-6 E-08028 Barcelona, Spain

asanfeliu@iri.upc.es

Abstract. In this work a new algorithm for texture analysis is
presented. Over a region with size NxN in the image, a texture print is
found by means of counting the number of changes in the sign of the
derivative in the gray level intensity function by rows and by columns.
These two histograms (Hx and Hy) are represented as a unique string R
of symbols. In order to discriminate different texture regions a distance
measure on strings based on minimum-cost sequences of edit operations
is computed.

1 Introduction

Texture provides an important feature to characterize and discriminate regions. In
general, textural features extraction methods can be classified in statistical and
structural methods [5]. In statistical approach, texture is characterized by a set of
statistics that are extracted from large ensemble of local properties representing
interpixel relationships. On the other hand, structural methods are based on the model
that texture is made of a set of elements arranged with some regular placement rule.
In [10] sets of connected pixels with similar gray level as elements are extracted and
characterized by size, directionality and shape. In [11] texture elements by a region
growing procedure are analyzed and the spatial arrangement among them by
regularity vectors is described. For texture discrimination, in [7] a syntactic model for
the generation of structured elements is proposed. In this work we present a new
algorithm to generate the texture print (texprint) over regions in an image. This
texture print will be the basis for a comparison between texture images and a further
discrimination step among texture regions. Because texture is not a perfect pattern
repeated along images with similar texture, it is not possible to use an exact matching
algorithm to compare texprints. To perform such comparison the Levenshtein distance

* This work has been funded by Spanish Department of Science & Technology, DPI2001-2223.

Texprint: A New Algorithm to Discriminate Textures Structurally 369

between texprints, which are represented by strings, will be found. If the distance is
short enough, these texprints correspond to similar textures. We propose the use of
string-to-string correction problem as placement rules of elements (primitives)
obtained statistically. This technique can be applied to pattern recognition [6], [9] and
[11]. This paper is organized as follows: in Section 2 we present the algorithm to
extract the texprint. In Section 3 we propose the use of Levenshtein distance as a
measure to discriminate textures with different texprint. Experimental results are
shown in Section 4.

2 Algorithm for Extracting the Texprint

In this Section the algorithm used to compute and generate the texprint from a
textured image is described. First, the original image is normalized in order to make
further steps invariant to illumination changes. Then, the input image is divided into
regions, or windows, with NxN-pixels size. For each region W, the algorithm finds
two histograms. First histogram, Hx, is calculated from pixels in the W region in X
axis. Second histogram, Hy, is calculated in Y axis. Each position in both histograms
is incremented after the evaluation of a condition over a row (for Hx) or over a
column (for Hy). The condition is defined as: there will be an increment in a position
of the histogram, Hx(i) or Hy(i), if there is a change in the sign of the first derivative
of the gray level intensity in its row or in its column, respectively. This is a measure
of the texture appearing in the image. We have seen that images with no texture
(smooth texture) present some non-null histograms, for this reason a second condition
is defined: the difference between pixels with different derivative has to be greater
than a certain threshold T. The use of a threshold is due to the fluctuation in the image
during the acquisition process.

The algorithm, for Hx, can be formalized as follows.

For each row, i
For all the pixels in this row, k
Evaluate condition 1
Evaluate condition 2
If (condition 1 AND condition 2) then Hx(i)++

endfor
endfor

Here, Condition 1 is �(S = Sign (k+1) * Sign (k+2)) < 0�
where Sign (k+1) = I(i, k) - I(i,k+1); and

Sign (k+2) = I(i, k+1) - I(i, k+2).

The image function is represented by I, indexed by rows and colums (r,c). Following,
we can define Condition 2: �ABS(S)>Threshold T�, where ABS is the absolute value.

If condition 1 is false there is no change in the increasing or decreasing of the gray
level values. For the Hy histogram, conditions are similar with the unique difference
that the pixels to be evaluated are taken by columns (Y axis). These histograms
represent the texprint of the evaluated window W.

370 Antoni Grau et al.

3 Discrimination Step

Since we propose an structural approach, the prints represented by Hx and Hy can be
considered as two strings of symbols (characters) (RHx and RHy). If these strings are
concatenated (⊕) a new string R with double length is obtained (R = RHx ⊕ RHy).
Therefore, the characteristic that defines the texture print over a region is the string R
(the new texture print). The problem in the discrimination step is now reduced and it
is defined as follows: two texture regions p and q are similar iif their texture prints Rp
and Rq approximate match.

The problem of string-matching can generally be classified into exact matching and
approximate matching. For exact matching, a single string is matched against a set of
strings and this is not the purpose of our work. For approximate string matching,
given a string v of some set V of possible strings, we want to know if a string u
approximately matches this string, where u belongs to a subset U of V. In our case, V
is the global set of texture prints and u and v are texture prints obtained from different
texture images. Approximate string matching is based on the string distances that are
computed by using the editing operations: substitution, insertion and deletion [12].

Let Σ be a set of symbols and let Σ* be the set of all finite strings over Σ. Let Λ denote
the null string. For a string A = a1a2...an ∈ Σ*, and for all i, j ∈{1, 2,..., n}, let A<i, j>
denote the string aiai+1...aj, where, by convention A<i, j> = Λ if i > j.
An edit operation s is an ordered pair (a, b) ≠ (Λ,Λ) of strings, each of length less
than or equal to 1, denoted by a → b. An edit operation a → b will be called an insert
operation if a = Λ, a delete operation if b = Λ, and a substitution operation otherwise.
We say that a string B results from a string A by the edit operation s = (a → b),
denoted by A → B via s, if there are strings C and D such that A = CaD and B= CbD.
An edit sequence S:= s1s2...sk is a sequence of edit operations. We say that S takes A
to B if there are strings A0, A1, ..., Ak such that A0 = A, Ak = B and Ai-1 → Ai via si for
all i ∈ {1, 2, ..., k}.
Now let γ be a cost function that assigns a nonnegative real number γ(s) to each edit
operation s. For an edit sequence S as above, we define the cost γ(S) by
γ(S):= Σi=1,..,kγ(si). The edit distance δ(A, B) from string A to string B is now defined
by δ(A, B):= min{γ(S) S is an edit sequence taking A to B}. We will assume that
γ(a → b)= δ(A, B) for all edit operations a → b. The key operation for string matching
is the computation of edit distance. Let A and B be strings, and D(i,j)= δ(A(1, i), B(1,
j)), 0 ≤ i ≤ m, 0 ≤ j ≤ n, where m and n are the lengths of A and B respectively, then:

D(i,j)= min{ D(i-1,j-1) + γ(A(i) → B(j)), D(i-1,j) +
γ(A(i) → Λ), D(i,j-1) + γ(Λ → B(j)) } (1)

for all 1 ≤ i ≤ m, 1 ≤ j ≤ n. Determining δ(A, B) in this way can in fact be seen as
determining a minimum weighted path in a weighted directed graph. Note that the
arcs of the graph correspond to insertions, deletions and substitutions. The
Levenshtein distance (metric) is the minimum-cost edit sequence taking A to B from
vertices v(0,0) to v(n,m). In our case both strings have the same length (N) and the
algorithm used is O(N2), [2].

Texprint: A New Algorithm to Discriminate Textures Structurally 371

4 Results

Free parameters N and T (size of the region and threshold, respectively) can not be
found in a formal way and it is only from experiments and empirical proofs that a set
of optimal values we can obtained to best discriminate textures. First, we show the
texture images used in this experiment. These images have been obtained from [1]
representing an universal accepted set of textures in many works. We used 20 Brodatz
images, figure 1, highly representative form natural textures.

D38 D28 D29 D16 D24

D32 D12 D74 D78 D2

D9 D59 D5 D23 D54

D67 D92 D84 D22 D15

Fig. 1. Brodatz�s texture images used in this experiment and their indexes, from [1]

Due to the uncertain parameters N and T, firstly we will find visually the texprints
searching for some information 'at a glance'. In figure 2, the shape of the texprint can
be observed for texture D67, pellets. We choose three values for the threshold T (0, 8
and 16, every column in figure 2) and five values for the regions of exploration (8, 16,
32, 48 and 64, every row in figure 2). In each plot, histograms Hx and Hy have been
already concatenated. Their shape was predictable: the bigger the region of
exploration, the higher the histogram values, that is, there are more changes of sign in
the derivative. Respect the consequences of the threshold, it can be seen its
attenuative effect, reducing the number of changes. In such a situation, it is not
necessary to normalize the histogram values because, once a region size is chosn, this
will be the unique size for all the experiments.

Visually, it is not possible to discriminate any texture from the shape of the texprint,
but intuitively it contains some outstanding information about the texture of the
image. Therefore, a numerical method is needed in order to evaluate the differences

372 Antoni Grau et al.

between texprints. The Levenshtein distance will be the measure of how different the
prints are.

0

5

0 8 16

0

10

0 16 32

0

15

0 32 64

0

10

20

0 48 96

0

20

0 64 128

0

5

0 8 16

0

10

0 16 32

0

15

0 32 64

0

20

0 48 96

0

20

0 64 128

0

5

0 8 16

0

10

0 16 32

0

15

0 32 64

0

20

0 48 96

0

20

0 64 128

Fig. 2. Some texprints for texture "pellets", D67

As the visual observation of plots do not supply rellevant information, the next step is:
for each texture image we compute the distances among texprints in the same image.
For this proof, different region sizes have been evaluated (N ranging from 5 to 64),
taken randomly over the image. In a similar way, different values for the threshold T
have been evaluated (T ranging from 1 to 20). The computed distances are an average
of 50 distances for a given N and T.

The distances between texprints obtained from the same texture are low and they
follow a pattern: when the region of exploration grows and the threshold is low, the
distance between texprints is higher. This result was predictable: the accumulated
number of variations depends directly on the size of the region, while the attenuative
effect of the threshold T disappears when its value is low. A sample of this proof can
be seen in figure 3. For different values N and T a surface map indicates the distance
between texture regions in D38 texture (left) and D15 texture, right of figure 3. The
costs for insertion and deletion are constants, while the cost of substitution is the
difference between the symbols of the string to be substituted. The maximum
distances can be found in the upper right corner of each map indicating, with with
values for the threshold T and low size of the regions, N. In the rest of the T and N
values the distance is lower than 2.

The next step in texture discrimination is to observe the distances between different
textures and to evaluate whether they are significative enough. We compute the
distances among the whole set of textures by pairs of textures. Once more, we use

Texprint: A New Algorithm to Discriminate Textures Structurally 373

different values for the region of exploration (N=5 to 64) and for the threshold (T=0 to
20). Each distance is averaged for 50 distances with N and T fixed.

1 3 5 7 9 11 13 15 17 19

5

11

17

23

29

35

41

47

53

59

64

8-10

6-8

4-6

2-4

0-2

1 3 5 7 9 11 13 15 17 19

5

11

17

23

29

35

41

47

53

59

64

Fig. 3. Left. Distance between texture D38 and D38. Right. Distance between D15 and D15

1 3 5 7 9 11 13 15 17 19

5

11

17

23

29

35

41

47

53

59

64

24-30

18-24

12-18

6-12

0-6

1 3 5 7 9 11 13 15 17 19

5

11

17

23

29

35

41

47

53

59

64

Fig. 4. Left. Distance between texture D38 and D78. Right. Distance between D74 and D92

In figure 4, the distance map of different textures can be seen. The maximum
distances has moved to the right center of the map, with high values of the threshold
and a medium size for the exploration region. The distances range from 10 to 30 in a
big area of the surface map.

Comparing the results between figure 3 and figure 4, the distances between
different textures are higher than the distances between a same texture and this effect
indicates that the discrimination can be possible. But, a further step is needed in order
to find an better value for the size of the regions and the value of the threshold. These
values are not always the same for any texture and it is necessary to find the values
that best discriminate. For this reason, the best (suboptimal) values can be found by
equation (2).

374 Antoni Grau et al.

TexA TexB

TexA TexA

Dist(W ,W)Best (N, T) max
Dist(W ,W) 1

=
+ (2)

1 4 7 10 13 16 19

5
11
17
23
29
35
41
47
53
59
64

0-20 20-40 40-60

1 4 7 10 13 16 19

5

14

23

32

41

50

59

0-10 10-20 20-30

a) b)

1 4 7 10 13 16 19

5

14

23

32

41

50

59

0-20 20-40 40-60 60-80

1 4 7 10 13 16 19

5

14

23

32

41

50

59

0-10 10-20 20-30

c) d)

Fig. 5. Plots for the Best N and T parameters, using textures a) D74 and D15; b) D74 and D24;
c) D9 and D15; d) D67 and D15

The values that most contribute to the discrimination between texture are those that
maximize the relation in equation (2). This quotient is the distance between different
texture divided by the distance between similar textures.

Texprint: A New Algorithm to Discriminate Textures Structurally 375

In figure 5, a few combinations for best finding the N and T parametres are shown.
The values that maximize the equation (2) are located at the right center of the plot,
that means, values ranging from 24 to 40 for the N (size of the exploration region) and
values from 14 to 19 for T, the threshold value. Therefore, we choose N=32 and T=16,
both values inside the intervals and also powers of 2, thinking about present and
future hardware implementations for reducing the algorithm cost-time, [3] and [4].

Thus, there is only a last important experiment. Once the values for N and T are
already fixed, we compute the distances among the whole set of available textures. In
table 1, these distances are shown and they are normalized respect the size of the
region, N, because the distance depends on the amount of nodes in the graph.

Table 1. Distances among textures

D38 2
D28 16 7
D29 33 29 14
D16 19 14 23 5
D24 14 11 27 12 3
D32 8 15 32 15 12 4
D12 18 12 30 12 10 13 5
D74 5 41 30 16 11 12 13 1
D78 23 46 21 14 18 22 18 21 10
D2 11 41 27 11 10 10 12 96 17 4
D9 18 40 27 15 12 16 10 13 17 12 6

D59 9 42 30 13 11 9 15 7 20 8 14 5
D5 10 42 29 15 10 7 12 7 20 10 12 8 5

D23 12 44 28 13 11 10 13 8 19 9 13 8 9 5
D54 15 41 27 13 11 12 11 11 17 12 11 10 11 10 7
D67 14 39 29 11 11 16 11 11 17 10 13 14 10 12 10 6
D92 19 40 23 10 12 14 12 16 15 14 12 16 15 15 12 11 8
D84 16 41 26 19 11 16 12 15 20 11 11 12 12 11 10 10 11 7
D22 8 37 29 12 10 7 15 7 20 9 11 6 7 8 10 11 10 11 3
D15 16 42 29 14 11 12 11 12 18 12 10 11 13 13 12 12 12 11 12 5
Tex
tures

D
38

D
28

D
29

D
16

D
24

D
32

D
12

D
74

D
78

D
2

D
9

D
59

D
5

D
23

D
54

D
67

D
92

D
84

D
22

D
15

The indexes of table 1 correspond to all the textures used in this experiment. The
distances between similar textures (the diagonal of table 1) are, in the whole cases,
lower than the distance between different textures. For this reason, we can affirm that
a discrimination between textures is achieved using, as a characteristics, histograms
Hx and Hy treated structurally. The quadratic order of the algorithm is not
problematic because the length of the strings are short enough to achieve good
discrimation results in less than 1 second in a 500-Mhz Pentium PC, for 512x512-
pixel input images.

376 Antoni Grau et al.

5 Conclusions

We have seen that it is possible to demonstrate empirically certain questions when
their formalization is difficult to carry out. Texture has something to do with
variations of gray levels in the image and, it is under this assumption that we propose
an algorithm for generating a texture print of a region into a image. This print is
related to the changes in the sign of the derivative-gray-level intensity function by
rows and by columns. These accountings are represented by a string R that will be
approximate matched with strings obtained from other texture images. The result of
this matching will be measured as a distance based on minimum-cost sequences of
edit operations. This approximate matching is translation invariant. Through the
results presented above, we verify that texture is an implicit characteristic in the
images represented by its gray levels and, moreover, it is possible to discriminate
regions with different textures. As a future work, we can consider the cyclic string-to-
string correction problem as approximate matching reaching an important improve:
the comparison between texture prints will be invariant to rotations but, in the other
hand, the algorithm is O(N2 log N). Another challenge is to implement this algorithm
with a specific architecture to be used in, i.e., robot navigation.

References

1. P. Brodatz, Textures: A Photographic Album for Artist and Designers, Dover
Publishing Co., New York, 1966.

2. H. Bunke and A. Sanfeliu, Syntactic and Structural Pattern Recognition Theory
and Applications, Series in Computer Science, Vol. 7, World Scientific Publ.,
1990.

3. J. Climent, A. Grau, J. Aranda and A. Sanfeliu, "Low Cost Architecture for
Structure Measure Distance Computation", ICPR'98, Australia, pp. 1592-1594,
August 1998.

4. J. Climent, A. Grau, J. Aranda and A. Sanfeliu ,"Clique-to-Clique Distance
Computation Using a Specific Architecture", SSPR'98, Sydney, Australia, pp.
405-412, August 1998.

5. R.M. Haralick, "Statistical and Structural Approaches to Texture", Proc. of the
IEEE 67, No. 5, pp. 786-804, 1979.

6. H.-C. Liu and M.D. Srinath, "Classification of partial shapes using string-to-
string matching", Intell. Robots and Comput. Vision, SPIE Proc. Vol. 1002, pp.
92-98, 1989.

7. S.Y. Lu and K.S. Fu, "A Syntactic Approach to Texture Analysis", Computer
Graphics & Im. Proc., Vol. 7, No. 3, 1978.

8. T. Matsuyama, K. Saburi and M. Nagao, "A Structural Analyzer for Regularly
Arranged Textures", Computer Graphics and Image Processing, Vol. 18, pp.
259-278, 1982.

9. D. Sankoff and J.B. Kruskal, eds, Time Warps, String Edit and Macromolecules:
The Theory and Practice of Sequence Comparison, Addison-Wesley, Reading,
MA, 1983.

Texprint: A New Algorithm to Discriminate Textures Structurally 377

10. F. Tomita and S. Tsuji, Computer Analysis of Visual Textures, Kluwer Academic
Publishers, 1990.

11. W.H. Tsai and S.S. Yu, "Attributed string matching with merging for shape
recognition", IEEE Trans. Patt. Anal. Mach. Intell. 7, No. 4, pp. 453-462, 1985.

12. R.A. Wagner et al., "The string-to-string correction problem", J. Ass. Comput.
Mach. 21, No 1, pp. 168-173, 1974.

	Introduction
	Algorithm for Extracting the Texprint
	Discrimination Step
	Results
	Conclusions
	References

