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Abstract. Bakhtiari et al recently proposed a fast message authen-
tication primitive called KHF. This paper shows that KHF is highly
vulnerable to differential cryptanalysis: it can be broken with about 37
chosen message queries. This suggests that the KHF design should be
reconsidered.

1 Introduction

Recent applications in secure networking have spurred research in cryptographic
primitives for message authentication. In particular, there is great demand for
a high-speed MAC that can be implemented in software. In 1996, Bakhtiari,
Safavi-Naini, and Pieprzyk proposed a new MAC primitive, called KHF, for fast
software message authentication [BSF95]. See Section 2 for a brief description of
their primitive.

One of the main contributions of the KHF work is its careful attention to
using Boolean functions which can be shown to have very good non-linearity, as
well as other desirable theoretical properties. Nonetheless, this paper shows how
to break KHF efficiently, despite its solid theoretical foundation in cryptographic
Boolean function theory.

In this paper we show how to break KHF with differential cryptanalysis
[BS93]. The attack requires just 37 chosen messages, and is described in Section 3.

2 Description of KHF

We give a brief overview of the KHF message authentication algorithm here,
omitting those details that are irrelevant to our attack.

Before processing, padding is prepended and appended to the message, and
the result is split into 32-bit blocks denoted by M1,M2, . . . ,Mn. Two 128-bit
state buffers (X1...4 and Y1...4) and a 512-bit redundancy buffer (B1...16) are
used internally. The key is fed into the initial values of the X,Y buffers and
optionally also into the padding, with the exact details depending on the mode
of operation.

We perform n rounds, one for each message block. The i-th round uses Mi,
Bi, and Y to update the three buffers: it calculates T = fi(Y1, Y2, Y3, Y4,Mi),
modifies X using T , xors Mi into Bai (where ai is derived from T ), and then
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modifies Y using T and Bi. (These modifications do not depend implicitly on
any unmentioned variables.)

The round functions fi are defined as

fi(A,B,C,D,E) =


(A&E)⊕ (B&C)⊕ ((B ⊕ C)&D) i = 1 mod 5
A⊕ (B&(A⊕D))⊕ (((A&D)⊕ C)&E) i = 2 mod 5
A⊕ (C&D&E)⊕ ((A&C)|(B&D) i = 3 mod 5
B ⊕ ((D&E)|(A&C)) i = 4 mod 5
D ⊕E ⊕ (((D&E)⊕A)& ∼ (B&C)) i = 0 mod 5

where the logical operations ⊕,&, |,∼ are performed on each bit of the 32-bit
words independently. Here⊕ represents bitwise exclusive-or, & represents bitwise
and, | represents bitwise or, and ∼ represents bitwise logical negation.

3 Analysis

First, we exhibit a useful high-probability differential characteristic [BS93] for
KHF.

The main observation is that a one-bit difference into the input of the round
function f is very likely to yield a zero output difference (i.e. a collision). This
arises from the fact that the fi operate on each bit position independently;
in other words, the KHF round functions have very poor diffusion properties
across bit positions. More precisely, flipping one bit in E leaves fi(A,B,C,D,E)
unchanged with the probabilities given below:

i mod 5 1 2 3 4 0
Prob 1/2 1/2 3/4 5/8 3/8

This corresponds to a differential characteristic for fi of the form (0, 0, 0, 0, 2j) 7→
0. Such characteristics hold with very high probabilities despite the focus on the
construction of f from highly non-linear Boolean function theory.

Next, we show how to extend the high-probability differential characteristic
for the f function into a characteristic for the whole algorithm. Forcing such
a difference into one Mi leaves T = fi(Y1, Y2, Y3, Y4,Mi) unchanged, and thus
leaves the X and Y buffers unchanged; however, the Bai word does change.
Therefore, to obtain a collision for the entire KHF calculation, we introduce
the same one-bit difference into two message words, Mi and Mj where i < j.
While this introduces a difference into the B buffer at the i-th round, we hope
that it gets canceled out later in the j-th round before the difference has a
chance to propagate. This gives us two conditions for success: first, we must have
ai = aj ; second, we require that Bai is not present in the list Bi, Bi+1, . . . , Bj−1.
(Subscripts on B are taken modulo 16.)

To calculate the characteristic’s probability, we can model the ai as effectively
random integers selected from the set {1, 2, . . . , 16}, since we do not know the
value of T or Y . For best chance of success we suggest taking j = i + 1 and
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i = 3 mod 5; then the probability that both conditions hold is
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To recap, introducing the same one-bit difference into Mi and Mi+1 (for
some i = 3 mod 5) will yield a collision in the final output of KHF with this
1/36 probability. We have implemented the attack and empirically confirmed
this analysis.

We now describe how to break KHF using differential cryptanalysis. We have
given a class of differences which, when xored into the message input, yield a
collision in the KHF output with very high probability. This makes breaking the
KHF message authentication scheme easy. For example, to forge the MAC digest
KHF(K,M) on a message M under a chosen-plaintext threat model, we could
obtain the MAC digests Di = KHF(K,M ⊕ ∆i) (where each ∆i is one of the
xor differences of Hamming weight two described above) and look for repetitions
in the list of Di. With high probability the repeated value will be the desired
MAC digest KHF(K,M). By using the high-probability characteristic described
above, this attack will need only about 72 chosen plaintext queries1 to break a
system using KHF for message authentication.

Other attacks are also possible. For example, to learn KHF(K,M ||Y ) (where
|| denotes concatenation on 32-bit boundaries), we offer the following differential
attack needing 37 chosen plaintext queries. Find M ′ (of the same length as M)
so that KHF(K,M ||X) = KHF(K,M ′||X) (where X has the same length as Y
but is otherwise arbitrary), by using the differential attack developed above. The
collision KHF(K,M ||X) = KHF(K,M ′||X) typically arises because the internal
states after processingM and M ′ match. Now use a single chosen plaintext query
to learn KHF(K,M ′||Y ). The relation KHF(K,M ||Y ) = KHF(K,M ′||Y ) will
hold with very high probability; this lets us deduce KHF(K,M ||Y ), as desired.
Note that we have never used M ||Y in a chosen-message query, but we obtain
the MAC digest corresponding to M ||Y , so we have broken the MAC primitive.
The attack lets us break the KHF message authentication scheme with about 37
chosen plaintexts, on average.

This latter attack is based on the observation that “internal collisions” can
lead to MAC forgery. Of course, this property is hardly novel; it was one of the
central techniques used to break a number of MAC primitives in [PO95].

4 Conclusion

KHF was designed around a set of Boolean functions with excellent non-linearity
properties. The round function f on 32-bit input words was constructed by ap-
plying a good Boolean function to each bit position independently. This ensures

1 One caveat: this assumes that the message is sufficiently long (60 bytes) so that
we can easily find 72 two-bit ∆i values of the right form. Shorter messages can
also be attacked with similar differential characteristics that have a somewhat lower
probability; the disadvantage is that we will need slightly more chosen plaintext
queries.
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that we achieve the best possible diffusion within any one bit position, but its
fatal flaw is that it gives very poor diffusion across bit positions.

Our cryptanalysis of KHF takes advantage of this weakness in the round
function. We note that this design process—start with a good Boolean function
and extend it to a n-bit function by bitwise parallel evaluation—has fundamental
flaws: no matter how many good properties the Boolean function has, the full n-
bit round function will have very poor diffusion across bit positions. Paying too
much attention to the theoretical properties of the underlying Boolean function
can be dangerous, if that causes the rest of the algorithm structure to receive
less attention. It is important to start from a solid foundation, but that alone is
not enough.

To summarize, KHF suffers from serious vulnerabilities to differential attack,
and should be considered insecure. The flaws that we have found do not inspire
confidence in the design process, nor is it clear whether there is any simple way
to fix these flaws without radically modifying the structure of KHF. Therefore,
we recommend that the KHF design be abandoned.
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