The First Two Rounds of MD4 are Not One-Way

Extended Abstract

Hans Dobbertin
German Information Security Agency
P. O. Box 200363
D-53133 Bonn
dobbertin@skom.rhein.de

In [1] it was shown that there are very effective attacks leading to collisions for the hash function MD4 designed by R. Rivest [3]. A summary of the status of hash functions of the MD4-family with respect to collision-resistence can be found in [2] and [4]. However, attacking the one-wayness of a hash function is a much more demanding challenge, and in case of success it has much more devastating consequences. No result along this line is known for MD4 and its successors. Therefore it is worth to explore how the recently developed new analytic methods for finding collisions can be applied to construct preimages or second preimages. As a first step, we state here the following partial result:

Denote by MD4 ${ }^{[12]}$ the reduced version of MD4, where the third round of its underlying three-round compression function is cancelled, but everything else of its specification is kept (e.g. initial value, padding rule).

$$
\mathrm{MD}^{[12]} \text { is not one-way. }
$$

It takes less than one hour to find preimages on a PC. Second preimages take a few minutes or even less than a millisecond if the initial value is free.

Example. Assume we want to find a preimage of

$$
V=0 \times 000000000 \times 000000000 \times 000000000 \times 00000000
$$

We have constructed the following message $M=M_{0}\left\|M_{1}\right\| \ldots \| M_{28}$, which is hashed to this value V by MD4 ${ }^{[12]}$:

$M_{0}=0 \times \mathrm{EB5B6AC17}$	$M_{8}=0 \times \mathrm{xF9405C3}$	$M_{16}=0 \times 814 \mathrm{~F} 4825$	$M_{24}=0 \times 847064 \mathrm{AD}$
$M_{1}=0 \times 85 \mathrm{~B} 6 \mathrm{AC} 17$	$M_{9}=0 \times \mathrm{xF9405C3}$	$M_{17}=0 \times 814 \mathrm{~F} 4825$	$M_{25}=0 \times 05 D D D 0 F 5$
$M_{2}=0 \times 85866 \mathrm{C} 17$	$M_{10}=0 \times 5 F 9405 \mathrm{C} 3$	$M_{18}=0 \times 814 \mathrm{~F} 4825$	$M_{26}=0 \times \mathrm{D} 462 \mathrm{FA} 71$
$M_{3}=0 \times 85574 \mathrm{~A} 58$	$M_{11}=0 \times C 26 E A 1 D 5$	$M_{19}=0 \times 814 \mathrm{~F} 4825$	$M_{27}=0 \times 56$ A79DEC
$M_{4}=0 \times 4353212 \mathrm{D}$	$M_{12}=0 \times 015 \mathrm{CB5D} 0$	$M_{20}=0 \times 9919 \mathrm{C} 508$	$M_{28}=0 \times 00000080$
$M_{5}=0 \times 4353212 \mathrm{D}$	$M_{13}=0 \times 81$ BBD193	$M_{21}=0 \times 9919 \mathrm{C} 508$	
$M_{6}=0 \times 4353212 \mathrm{D}$	$M_{14}=0 \times 1$ DEF9763	$M_{22}=0 \times 9919 \mathrm{C} 508$	
$M_{7}=0 \times 3 \mathrm{E} 30333 \mathrm{E}$	$M_{15}=0 \times 4 D E 9028 B$	$M_{23}=0 \times 2 \mathrm{FD} 7 \mathrm{BOF} 9$	

We anticipate that a similar attack works for the last two rounds of MD4.

Technical Details for Checking the Example. According to the padding rule, before processing, a message has to be extended by a bit string

$$
P=100 \ldots 0(\mathrm{bin}) \| \ell
$$

where ℓ is the 64 -bit representation of the bit-length of the (unextended) message. In P, between 1 on the left and ℓ on the right side, the minimal number of zeros is placed such that the bit-length of the extended message becomes a multiple of $512=16 \times 32$ (to allow an iterative application of the compression function, which takes 16 words as input). The above M has bit-length 29×32. This means that

$$
\ell=00000000000003 \mathrm{AO}(\mathrm{hex})
$$

and P is a 96 -bit string with the little-endian representation $P=P_{0}\left\|P_{1}\right\| P_{2}$:

$$
\begin{aligned}
P_{0} & =0 \times 00000080, \\
P_{1} & =0 \times 000003 A 0, \\
P_{2} & =0 \times 00000000 .
\end{aligned}
$$

Denote by MD4 ${ }^{[12]}$-Compress the compression function of MD4 ${ }^{[12]}$, i.e. the first two rounds of the MD4 compression function. In order to compute the MD4 ${ }^{[12]}$ hash value of M, first MD4 ${ }^{[12]}$-Compress is applied to M_{0}, \ldots, M_{15} with the following fixed initial value, which is a part of the specification of MD4:

$$
I V=0 \times 674523100 \times E F C D A B 89 \text { 0x98BADCFE } 0 \times 10325476
$$

This gives the output

$$
\begin{aligned}
C & =\mathrm{MD4}^{[12]} \text {-Compress }\left(I V ; M_{0}, \ldots, M_{15}\right) \\
& =0 \mathrm{xA} 86 \mathrm{FDECC} \text { 0x25BF84C9 0xDB95C842 0xD0B260B9. }
\end{aligned}
$$

C is then the initial value for the second application of MD4 ${ }^{[12]}$-Compress with $M_{16}, \ldots, M_{28}, P_{0}, P_{1}, P_{2}$ as input. The output is the hash value of M :

$$
\begin{aligned}
\operatorname{MD4}^{[12]}(M) & =\mathrm{MD}^{[12]}-\operatorname{Compress}\left(C ; M_{16}, \ldots, M_{28}, P_{0}, P_{1}, P_{2}\right) \\
& =0 \times 000000000 \times 000000000 \times 000000000 \times 00000000
\end{aligned}
$$

How to invert the first two rounds of MD4 compression

Suppose $I V=\left(I V_{0}, I V_{1}, I V_{2}, I V_{3}\right)$ and the compress value $C=\left(C_{0}, C_{1}, C_{2}, C_{3}\right)$ are given. Set $H=\left(H_{0}, H_{1}, H_{2}, H_{3}\right):=C-I V$. Our approach is described in the following tables (the underlined intries are those which are up-dated in the repsective steps):

input	register A	register B	register C	register D	step
	$I V_{0}$	$I V_{1}$	$I V_{2}$	$I V_{3}$	
X_{0}	$\underline{*}$	$I V_{1}$	$I V_{2}$	$I V_{3}$	step 0
X_{1}	$*$	$I V_{1}$	$I V_{2}$	$\underline{*}$	step 1
X_{2}	$*$	$I V_{1}$	$\underline{*}$	$*$	step 2
X_{3}	$*$	$\underline{*}$	$*$	$*$	step 3
X_{4}	$\underline{*}$	$*$	$*$	$*$	step 4
X_{5}	$*$	$*$	$*$		step 5
X_{6}	$*$	$*$	$\underline{*}$	$*$	step 6
X_{7}	$*$	$\underline{*}$	$*$	$*$	step 7
X_{8}	$\underline{P_{0}}$	$*$	$*$	$*$	step 8
X_{9}	P_{0}	$*$	$*$	$\underline{P_{3}}$	step 9
X_{10}	P_{0}	$*$	$\underline{P_{2}}$	P_{3}	step 10
X_{11}	P_{0}	P_{1}	P_{2}	P_{3}	step 11
X_{12}	\underline{K}	P_{1}	P_{2}	P_{3}	step 12
X_{13}	K	P_{1}	P_{2}	\underline{K}	step 13
X_{14}	K	P_{1}	\underline{K}	K	step 14
X_{15}	K	B_{3}	K	K	step 15

Round Two of MD4 compression

input	register A	register B	register C	register D	step
X_{0}	\underline{K}	B_{3}	K	K	step 16
X_{4}	K	B_{3}	K	\underline{K}	step 17
X_{8}	K	B_{3}	\underline{K}	K	step 18
X_{12}	K	$\underline{B_{2}}$	K	K	step 19
X_{1}	\underline{K}	B_{2}	K	K	step 20
X_{5}	K	B_{2}	K	\underline{K}	step 21
X_{9}	K	B_{2}	\underline{K}	K	step 22
X_{13}	K	B_{1}	K	K	step 23
X_{2}	\underline{K}	B_{1}	K	K	step 24
X_{6}	K	B_{1}	K	\underline{K}	step 25
X_{10}	K	B_{1}	\underline{K}	K	step 26
X_{14}	K	B_{0}	K	K	step 27
X_{3}	$\underline{H_{0}}$	B_{0}	K	K	step 28
X_{7}	$\overline{H_{0}}$	B_{0}	K	$\underline{H_{3}}$	step 29
X_{11}	H_{0}	B_{0}	H_{2}	$\overline{H_{3}}$	step 30
X_{15}	H_{0}	H_{1}	H_{2}	H_{3}	step 31

That is, we assume that the contents of the A-, D-, and C-registers equals a constant K in steps $12,16,20,24$, steps $13,17,21,25$, and steps $14,18,22,26$, respectively.

Idea. In round two the majority function g is applied, and by the described approach we can separate the contents in the B-registers from those in the other registers in round two.

Algorithm. Choose K and B_{0} randomly. Now X_{0}, \ldots, X_{11}, and X_{15} are fixed by the steps $16,20,24,28,17,21,25,29,18,22,26,30$, and 31 , respectively: for instance in step 16 we have the equation

$$
K=\left(K+g(B 3, K, K)+X_{0}+K_{1}\right) \ll 3=\left(K+K+X_{0}+K_{1}\right) \ll 3
$$

with $K_{1}=0 \times 5 A 827999$. Thus $X_{0}=(K \ll 29)-2 K-K_{1}$, and so on.
Now compute $P_{0}, P_{1}, P_{2}, P_{3}$ by applying X_{0}, \ldots, X_{11} in step $0, \ldots, 11$. The values $P_{0}, P_{1}, P_{2}, P_{3}$ allow next to determine X_{12}, X_{13}, X_{14} from the steps 12,13,14.

Use X_{15} in step 15 to compute B_{3}, X_{12} in step 19 to compute B_{2}, X_{13} in step 23 to compute B_{1}, and finally X_{14} in step 27 to compute another value for B_{0} which is "derived from above". If the latter B_{0}-value matches the chosen one, then we have found a preimage, otherwise try again.

Thus we need about 2^{32} trials to be successful. However, the algorithm can be speeded up by a factor of 100 or more if we use "continuous approximation" for the computation of B_{0} (where K is fixed respectively, in order to have sufficient continuity; see second part of the below C-progam).

References

1. H. Dobbertin, Cryptanalysis of MD4, Fast Software Encryption (Third Workshop on Cryptographic Algorithms, Cambridge 1996), Lecture Notes in Computer Science, Springer-Verlag 1996, pp. 55-72.
2. H. Dobbertin, The status of MD5 after a recent attack, CryptoBytes, The technical newsletter of RSA Laboratories, vol. 2/2, Sommer 1996, pp. 1-6.
3. R. Rivest, The MD4 message-digest algorithm, Request for Comments (RFC) 1320, Internet Activities Board, Internet Privacy Task Force, April 1992.
4. M.J.B. Robshaw, On recent results for MD2, MD4 and MD5, Bulletin 4, RSA Laboratories, November 1996 (see http://www.rsa.com/PUBS/).

Appendix

C-program inverting the reduced MD4 with cancelled third compression round

The first part of the program below is a modifiction of the above algorithm, which allows to match the redundancy in the input required by the padding rule. On a Pentium PC the program finds a hash-preimage in about 15-20 minutes on the average.

```
#define UL unsigned long
#define shift(x,i) (UL) (((x)<<(i)) ^((x)>>(32-(i))))
#define f(x,y,z) ((x)&(y) & (~ (x))&(z))
#define g(x,y,z) (UL)((x)&(y) | (x)&(z) | (y)&(z))
#include <stdio.h>
main(int ac,char *av[]){
    int i,k,sh,trials,Zeros,Ones,record,weight;
    UL KK,KKK,KKKK,K1,diff,test;
    UL AX,BX,CX,DX,PO,P1,P2,P3,AY,BY,CY,DY;
```

```
UL X0, X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X12, X13, X14, X15;
UL Delta_A,Delta_BO,BO_basic,P2_basic;
UL AA,B0,B1,B2,B3,C0,C1,C2,C3;
UL HO,H1,H2,H3,HHO,HH1,HH2, HH3, HHHO, HHH1,HHH2 , HHH3;
UL QO,Q1,Q2,Q3,IVO,IV1,IV2,IV3;
UL M0,M1,M2,M3,M4,M5,M6,M7,M8,M9,M10;
UL M11,M12,M13,M14,M15,M16,M17,M18,M19;
UL M20,M21,M22,M23,M24,M25,M26,M27,M28;
UL PPO,PP1,PP2;
if(ac!=2){
    fprintf(stdout,"Usage: %s seed\n",av[0]);
    exit(1);
}
srand(atoi(av[1]));
K1 = 0x5A827999;
KK = 0x57902134;
KKK= 0x57902134;
/* We have here a special case of a more general algorithm. In
general KK and KKK are different, but have only a small Hamming
difference. How to choose these constants will be explained in
the complete paper about this attack.*/
Zeros=0;
Ones=0;
trials=0;
/* Here you can specify the hash value (HHO,HH1,HH2,HH3) */
HHO=0x0;
HH1=0x0;
HH2=0x0;
HH3=0x0;
/*********************************************************/
HHHO=HHO ;
HHH1=HH1;
HHH2=HH2;
нHH3=HН3;
/* Here starts the first part: searching M16,...,M28 */
START_I:
record = 33;
AA = KK;
H2 = rand();
H3 = rand()&0xfffffff7f;
HO = KK;
X15 = 0x0;
P1 = shift(KK,13)-KK-X15;
X14= 0x3A0;
KKKK = shift(KKK+KK+X14+K1,13);
H1 = shift(KKKK+g(H2,H3,KK)+X15+K1,13);
IVO=HHO-HO;
IV1=HH1-H1;
IV2=HH2-H2;
IV3=HH3-H3;
X0 = shift(KK,29)-AA-KK-K1;
X1 = shift(KK,29)-KK-KK-K1;
X2 = X1;
X3 = X1;
X4 = shift(KK,27)-KK-KK-K1;
```

```
X5 = X4;
X6 = X4;
X7 = shift(H3,27)-KK-KK-K1;
X12= shift(KK,19)-KK-KK-K1;
X13= shift(KKK,19)-KK-KK-K1;
X14= shift(KKKK,19)-KKK-KK-K1;
P2_basic = rand();
AX=IVO;BX=IV1;CX=IV2;DX=IV3;
AX = shift(AX+f(BX,CX,DX)+ X0, 3);
DX = shift(DX+f(AX,BX,CX)+ X1, 7);
CX = shift(CX+f(DX,AX,BX)+ X2,11);
BX = shift(BX+f(CX,DX,AX)+ X3,19);
AX = shift(AX+f(BX,CX,DX)+ X4, 3);
DX = shift(DX+f(AX,BX,CX)+ X5, 7);
CX = shift(CX+f(DX,AX,BX)+ X6,11);
BX = shift(BX+f(CX,DX,AX)+ X7,19);
Q0=AX;Q1=BX;Q2=CX;Q3=DX;
for(i=0; i<250; i++){
    trials=trials+1;
    sh=i&0x1f;
    diff=shift(1,sh);
    P2 = P2_basic^diff;
    C3 = shift(P2+f(KK,AA,P1)+X14,11);
    P3 = shift(KK,25)-f(AA,P1,P2) - X13;
    PO = shift(AA, 29)-f(P1,P2,P3)-X12;
    X8 = shift(P0,29)-f(Q1,Q2,Q3)-Q0;
    X9 = shift(P3,25)-f(PO,Q1,Q2)-Q3;
    X10 = shift(P2,21)-f(P3,P0,Q1)-Q2;
    X11 = shift(P1,13)-f(P2,P3,P0)-Q1;
    C2 = shift(C3+KK+X8+K1,9);
    C1 = shift(C2+KK+X9+K1,9);
    C0 = shift(C1+KK+X10+K1,9);
    Delta_A = shift(H2,23)-g(H3,KK,KKKK)-K1-CO;
    Delta_A = Delta_A^X11;
    weight=0;
    for(k=0; k<32; k++){Delta_A=shift(Delta_A,1);weight=weight+(Delta_A&1);}
    if(weight<record+2){
        P2_basic = P2;
    }
    if(weight<record){
        record=weight;
        if(record<2){
if (record==1) {Ones=Ones+1;}
                fprintf(stdout,"Part I: Hamming dist. %i ",record);
        fprintf(stdout,"Trials %i ",trials);
        fprintf(stdout,"Ones %i Zeros %i\n",Ones,Zeros);
        fprintf(stdout,"%8.8X %i\n\n",Delta_A,i);
        }
    }
    if(weight==0) {
    Zeros = Zeros+1;
    test = g(KKKK,KK,CO)^KK;
    if(test!=0){goto START_I;}
    test = g(KKK,KK,C1)^KK;
    if(test!=0){goto START_I;}
```

```
        M16=X0;
        M17=X1;
        M18=X2;
        M19=X3;
        M20=X4;
        M21=X5
        M22=X6;
        M23=x7;
        M24=X8;
        M25=X9;
        M26=X10;
        M27=X11;
        M28=X12;
        PP0=X13;
        PP1=X14;
        PP2=X15;
        trials=0;
        HO=IVO;
        H1=IV1;
        H2=IV2;
        H3=IV3;
        IV0=0x67452301;
        IV1=0xef cdab89;
        IV2=0x98badcfe;
        IV3=0x10325476;
        H0=-IVO+HO;
        H1=-IV1+H1;
        H2=-IV2+H2;
        H3=-IV3+H3;
        goto START_II;
        }
        }
goto START_I;
/* Here starts the second part: searching M0,...,M15 */
START_II:
    record=33;
    KK = rand();
B0_basic=rand();
X0 = shift(KK,29)-KK-KK-K1;
X1 = shift(KK,29)-KK-KK-K1;
X2 = shift(KK,29)-KK-KK-K1;
X3 = shift(HO,29)-KK-KK-K1;
X4 = shift(KK,27)-KK-KK-K1;
X5 = shift(KK,27)-KK-KK-K1;
X6 = shift(KK,27)-KK-KK-K1;
X8 = shift(KK,23)-KK-KK-K1;
X9 = shift(KK,23)-KK-KK-K1;
X10= shift(KK,23)-KK-KK-K1;
for(i=0; i<250; i++){
trials=trials+1;
sh=i&0x1f;
diff=shift(1,sh);
B0=BO_basic^diff;
X7 = shift(H3,27)-g(HO,BO,KK)-KK-K1;
X11= shift(H2, 23)-g(H3,H0,B0)-KK-K1;
X15= shift(H1, 19)-g(H2,H3,H0)-K1-BO;
```

```
AX=IV0;BX=IV1;CX=IV2;DX=IV3;
AX = shift(AX+f(BX,CX,DX)+ X0, 3);
DX = shift(DX+f(AX,BX,CX)+ X1, 7);
CX = shift(CX+f(DX,AX,BX)+ X2,11);
BX = shift(BX+f(CX,DX,AX)+ X3,19);
AX = shift(AX+f(BX,CX,DX)+ X4, 3);
DX = shift(DX+f(AX,BX,CX)+ X5, 7);
CX = shift(CX+f(DX,AX,BX)+ X6,11);
BX = shift(BX+f(CX,DX,AX)+ X7,19);
AX = shift(AX+f(BX,CX,DX)+ X8, 3);
DX = shift(DX+f(AX,BX,CX)+X9, 7);
CX = shift(CX+f(DX,AX,BX)+X10,11);
BX = shift(BX+f(CX,DX,AX)+X11,19);
P0=AX;P1=BX;P2=CX;P3=DX;
X12 = shift(KK,29)-P0-f(P1,P2,P3);
X13 = shift(KK,25)-P3-f(KK,P1,P2);
X14 = shift(KK,21)-P2-f(KK,KK,P1);
B3 = shift(P1+KK+X15,19);
B2 = shift(B3+X12+KK+K1,13);
B1 = shift(B2+X13+KK+K1,13);
Delta_B0 = shift(B1+X14+KK+K1,13)-B0;
weight=0;
for(k=0; k<32; k++) {Delta_B0=shift(Delta_B0,1);weight=weight+(Delta_B0&1);}
if(weight<record+2){
    BO_basic = BO;
}
if(weight<record){
    record=weight;
    if(record<2){
        if (record==1) {0nes=Ones+1;}
        fprintf(stdout,"Part II: Hamming dist. 1 ");
        fprintf(stdout,"Trials %i ",trials);
            fprintf(stdout,"Ones %i\n",Ones);
        fprintf(stdout,"%8.8X %i\n\n",Delta_B0,i);
    }
}
if(weight==0){
    fprintf(stdout,"Cancel the third round ");
    fprintf(stdout,"of the MD4 compression function,\n");
    fprintf(stdout,"then the following message M=MO,...,M28 has ");
    fprintf(stdout,"the hash value\n");
    fprintf(stdout,"H = 0x%8.8X ",HHHO);
    fprintf(stdout,"0x%8.8X ",HHH1);
    fprintf(stdout,"0x%8.8X ",HHH2);
    fprintf(stdout,"0x%8.8X:\n\n",HHH3);
    fprintf(stdout,"MO = 0x%8.8X; ",X0);
    fprintf(stdout,"M1 = 0x%8.8X;\n",X1);
    fprintf(stdout,"M2 = 0x%8.8X; ",X2);
    fprintf(stdout,"M3 = 0x%8.8X;\n",X3);
    fprintf(stdout,"M4 = 0x%8.8X; ",X4);
    fprintf(stdout,"M5 = 0x%8.8X;\n",X5);
    fprintf(stdout,"M6 = 0x%8.8X; ",X6);
    fprintf(stdout,"M7 = 0x%8.8X;\n",X7);
    fprintf(stdout,"M8 = 0x%8.8X; ",X8);
    fprintf(stdout,"M9 = 0x%8.8X;\n",X9);
    fprintf(stdout,"M10= 0x%8.8X; ",X10);
    fprintf(stdout,"M11= 0x%8.8X;\n",X11);
    fprintf(stdout,"M12= 0x%8.8X; ",X12);
    fprintf(stdout,"M13= 0x%8.8X;\n",X13);
    fprintf(stdout,"M14= 0x%8.8X; ",X14);
    fprintf(stdout,"M15= 0x%8.8X;\n",X15);
    fprintf(stdout,"M16= 0x%8.8X; ",M16);
    fprintf(stdout,"M17= 0x%8.8X;\n",M17);
```

```
        fprintf(stdout,"M18= 0x%8.8X; ",M18);
        fprintf(stdout,"M19= 0x%8.8X;\n",M19);
        fprintf(stdout,"M20= 0x%8.8X; ",M2O);
        fprintf(stdout,"M21= 0x%8.8X;\n",M21);
        fprintf(stdout,"M22= 0x%8.8X; ",M22);
        fprintf(stdout,"M23= 0x%8.8X;\n",M23);
        fprintf(stdout,"M24= 0x%8.8X; ",M24);
        fprintf(stdout,"M25= 0x%8.8X;\n",M25);
        fprintf(stdout,"M26= 0x%8.8X; ",M26);
        fprintf(stdout,"M27= 0x%8.8X;\n",M27);
        fprintf(stdout,"M28= 0x%8.8X;\n\n",M28);
        fprintf(stdout,"The corresponding padding string is P0,P1,P2:\n");
        fprintf(stdout,"PO = 0x%8.8X; ",PPO);
        fprintf(stdout,"P1 = 0x%8.8X; ",PP1);
        fprintf(stdout,"P2 = 0x%8.8X;\n\n",PP2);
        exit(1);
    }
    }
    goto START_II;
}
```

