
MRD Hashing

Rei Safavi-Naini ?, Shahram Bakhtiari, and Chris Charnes

School of IT and CS, University of Wollongong, Northfields Ave
Wollongong 2522, Australia

[rei, shahram, charnes]@uow.edu.au

Abstract. We propose two new classes of hash functions inspired by
Maximum Rank Distance (MRD) codes. We analyze the security and de-
scribe efficient hardware and software implementations of these schemes.
In general, the system setup remains computationally expensive. How-
ever, for a special class of parameters we show that this computation can
be completely avoided.

1 Introduction

A Message Authentication Code (MAC) is a symmetric key cryptographic prim-
itive that ensures message integrity against active spoofing. A MAC consists
of two algorithms. A MAC generation algorithm, Gk, that takes an arbitrary
message s from a set S of messages and produces a tag, t = Gk(s). The tag
is appended to the message to produce an authenticated message, m = s‖t. A
MAC verification algorithm takes an authenticated message of the form s‖t, and
produces a true/false value depending on whether the message is authentic or
fraudulent. The secret key k is only known to the legitimate communicants and
hence a valid tag can only be computed by them. An outsider tries to generate
a fraudulent message that is acceptable by the receiver.

Computationally secure MACs are usually constructed from hash functions
by using a secret key during the hashing process. Secure MACs are constructed
by examining the computational complexity of various attacks [10,11], and by
choosing the system parameters so that the complexity of the best attack exceeds
the computational resources of the enemy. Constructions of these type are always
subject to revision as new attacks become available.

In provably secure MACs an intruder has a provably small chance to tamper
with the message, and no limit on the computational resources of the enemy
is assumed. Wegman and Carter [16] investigated unconditionally secure MACs
and gave a construction for a key-efficient MAC with provable security. This con-
struction uses an ε-almost strongly universal2 (ε-ASU2) class of hash functions.
By Stinson’s [14] composition method a new ε-ASU2 can be created starting with
a given ε-ASU2 class and an ε-AU2 class. Hence the question of constructing se-
cure MACs reduces to the problem of constructing computationally efficient
ε-AU2 functions.
? Support for this project was partly provided by Australian Research Council.

S. Vaudenay (Ed.): Fast Software Encryption – FSE’98, LNCS 1372, pp. 134–149, 1998.
c© Springer-Verlag Berlin Heidelberg 1998

MRD Hashing 135

Wegman and Carter’s construction was refined by Krawczyk [6], who showed
that a secure MAC only requires an ε-almost XOR universal2 (ε-AXU2) hash
function.

In this paper we make two contributions. Firstly, we introduce two new classes
(ε-AU2 and ε-AXU2) of hash functions, which are inspired by MRD codes and
demonstrate their efficiency it terms of key size and the ease and speed of hash-
ing. These schemes are examples of Shoup’s [13] evaluation hashing, where poly-
nomial evaluation over GF (2n) is replaced by matrix multiplication over GF (2),
resulting in a fast software implementation. These schemes have desirable proper-
ties such as small key size and flexibility in the block size of the hashed messages.
However the system setup is in general a computationally expensive. Next, we
completely describe the 2-polynomials in Galois fields of prime degree in which
2 is primitive. This result allows us to avoid the setup phase computation.

Section 2 has the preliminaries. In section 3 we describe the two classes of
hash functions. Section 4 presents a MAC based on MRD hashing and compares
it with one based on bucket hashing, and summarises the results on the 2-
polynomials. Section 5 concludes the paper.

2 Preliminaries

Unconditionally secure MAC systems are especially important because they give
efficient authentication systems that have provable security properties. With this
approach, the security of a MAC system is assessed by the best chance that
active spoofer has in constructing a fraudulent message-tag pair, s‖t, which is
acceptable to the receiver, after observing a sequence of p message-tag pairs,
s1‖t1, · · · sp‖tp sent over the communication channel.

Definition 1. [16] A MAC for which the best chance of the enemy in the above
described attack is at most ε, is called ε-secure.

Wegman and Carter proposed the construction of a ε-secure MAC using ε-
ASU2 class of hash functions. Let Σm and Σn denote the set of binary strings of
length m and n, respectively. A hash function h is a mapping from Σm to Σn.
Let H denote a class of hash functions, H = {h : Σm → Σn}.

Definition 2. [14] A class of hash functions, H, is ε-AU2 if for all x 6= x′ ∈ Σn,
we have |{h ∈ H : h(x) = h(x′)}| ≤ ε|H|.

Definition 3. [14] A class of hash functions, H, is ε-ASU2 if the following two
conditions are satisfied:

– for every x ∈ Σm and y ∈ Σn, |{h ∈ H : h(x) = y}| = |H| × 2−n;
– for every pair x, x′ ∈ Σm and x 6= x′, and every pair y, y′ ∈ Σn we have

|{h ∈ H : h(x) = y, h(x′) = y′}| ≤ ε|H| × 2−n.

These definitions can be expressed in terms of probabilities. For example, for
an ε-AU2 class hash function, Prh[h(x) = h(x′)] ≤ ε for all x, x′ ∈ Σm, x 6= x′.

136 Rei Safavi-Naini, Shahram Bakhtiari, Chris Charnes

Wegman and Carter’s construction, which is the basis of our system is the follow-
ing. Let H be an ε-ASU2 class of hash function from Σm to Σn. The transmitter
and the receiver share a secret key that consists of two parts. The first part
identifies an element h ∈ H, and the second part is a randomly generated one-
time pad r = r1, r2 · · · of n-bit numbers. The transmitter and receiver maintain
a counter, count, which is initialised count := 1 and is incremented by one after
each message. The tag value of the `th message, x`, is h(x`) + r`. The receiver
can reconstruct this tag and verify the authenticity of the received message.
Wegman and Carter proved that this construction is ε-secure and the key size
is asymptotically optimal. Replacing the one-time pad with a pseudorandom se-
quence generator in the MAC, reduces unconditional security to computational
security.

Definition 4. [6] A class of hash functions is called ε-otp-secure if it is ε-secure
in the one-time pad construction of Wegman and Carter.

Krawczyk showed in [6] that provable security in the above sense does not
really require the ε-ASU2 property:

Definition 5. [6] A class of hash functions is called ε-almost XOR universal2,
or ε-AXU2, if for all x 6= x′ ∈ Σn and any c ∈ Σm, we have
Prh[h(x) ⊕ h(x′) = c] ≤ ε.

Theorem 6. [6] A class of hash functions is ε-otp-secure if and only if it is
ε-AXU2.

Stinson proved that composition of hash functions can be effectively used to
replace the construction of ε-ASU2 by ε-AU2 hash functions.

Proposition 7. [14] Let H1 = {h : Σm → Σn} be ε1-AU2 and H2 = {h : Σn →
Σk} be ε2-ASU2. Then H1 ◦ H2 = {h : Σm → Σk} is (ε1 + ε2)-ASU2.

A similar result holds for composition of ε1-AU2 and ε2-AXU2 classes of hash
functions [12].

The advantage of the composition method is that to achieve computation-
ally efficient hashing, it suffices to construct an efficient ε-AU2. This result has
shifted the emphasis of research in the recent years to the construction of com-
putationally efficient ε-AU2 functions. Johanson [4], Taylor [15], Krawczyk [6,7],
Rogaway [12], and Shoup [13] have investigated computationally efficient MACs
that have relatively small key size. The most efficient construction is bucket
hashing [12].

3 MRD-MAC

In this section we firstly introduce a class of functions PMRD(t) from Fn to Fn

which is inspired by MRD codes, and describe its properties. We describe two
classes of hash functions: H1

MRD(t) and H2
MRD(t) which are based on PMRD(t).

Finally, we make some remarks on the implementation of the two classes.

MRD Hashing 137

In the rest of this paper we use the correspondence between binary strings s =
s0s1 · · · sn−1 and elements of GF (2n), represented as binary n-tuples
(s0s1 · · · sn−1).

3.1 H1
MRD(t) and H2

MRD(t)

Maximum Rank Distance (MRD) codes were studied in [3]. They were used by
Chen [2] for the purpose of identification, and Johansson [4] for arbitrated au-
thentication. Although our proposed MAC system is inspired by MRD codes, we
will give an independent presentation of these because we do not use directly any
results from the theory of these codes. Throughout the section we assume a basic
knowledge of the theory of finite fields. Some of the important definitions are
included in Appendix 5. We refer the reader to [8] for an excellent introduction
to this topic.

Let L(x) be a linearized polynomial (more precisely a 2-polynomial; see
[8]) β = (β1, β2, . . . , βn)= (β, β21 · · ·β2n−1

), denotes a normal basis for Fn =
GF (2n). The n-tuple (L(β1), L(β2), . . . L(βn)), defines an n × n binary matrix
CL, where the i-th column is the binary representation of β2i−1

. So a linearized
polynomial L(x) defines a mapping fL : Fn → Fn, given by fL(u) = CL.u = v,
where ‘.’ denotes matrix multiplication and u, v ∈ Fn are n× 1 binary vectors.

Proposition 8. Let u = (u0u1 · · ·un−1) ∈ Fn. Then fL(u) can be evaluated
by finding the value of L(x) at u.β where u and β are n-dimensional row and
column vectors, respectively.

The set of all mappings fL defined above when degree of L(x) is at most
2t is denoted by PMRD(t). The important properties of PMRD(t) are stated in
Lemma 9.

Define an array C whose rows are labelled by fL, columns are labelled by the
elements of Fn, and the entry in row fL and column α is fL(α). I.e., C(fL, α) =
fL(α), α ∈ Fn. Let Vn denote the n-dimensional vector space over GF (2). For
a mapping f : Vn → Vn, the null space Nf , is the collection of vectors v ∈ Vn

such that f(v) = 0. Nf is a subspace of Vn in the case of linear mappings. Let
2dα denote the degree of the minimum linearized polynomial of α.

Lemma 9. Array C has the following properties.

1. The column labelled by 0 contains only 0 ∈ Fn. The column labelled by the
all one vector contains only 0, or 1 ∈ Fn.

2. If α ∈ Fn occurs in a row of C labelled by fL, then it occurs |NL| times,
where NL is the null space of fL.

3. If L(x) has even number of terms then |NL| ≥ 2. In this case fL(x) = fL(x)
where x is the binary complement of x.

4. The number of zeros in a column of C labelled by α ∈ Fn is Mα = 2t−dα .
Moreover if an element β occurs in this column, then it occurs Mα times.

5. For any two elements x, y ∈ Fn, x 6= y, the number of rows with fL(x) =
fL(y) is equal to Mx+y.

138 Rei Safavi-Naini, Shahram Bakhtiari, Chris Charnes

The proof of this lemma is sketched in Appendix 5.
In Lemma 9, property 3 shows that two values that are complements of each

other are mapped to the same value. This is an undesirable property for hashing.
It can be removed by restricting L(x) to polynomials with an odd number of
terms, or alternatively, by restricting input to a subset F ′

n of elements of Fn

consisting of elements of the form (α1, α2, · · ·αn−1, 0).
Let dmin = minα∈Fn

dα. We can assume that hash values of complements are
distinct in view of the two proposed methods. In PMRD(t), if we only consider
linearized polynomials of degree less than 2dmin , then the following properties
hold; they are direct consequences of Lemma 9.

Corollary 10. Let t < dmin. Then array C satisfies the following properties.

1. In every row of C an element of Fn occurs at most once.
2. ∀x ∈ Fn and x 6= 0, 1, |{fL : fL(x) = 0}| = |{fL : fL(x) = 1}| = 0. That is,

a column labelled by x ∈ Fn and x 6= 0, 1 does not contain 0 or 1 ∈ Fn.
3. ∀x, y ∈ Fn and y 6= 0, 1 ∈ Fn, |{fL : fL(x) = y}| ≤ 1. That is, in a column

of C, an element x ∈ Fn and x 6= 0, 1 occurs at most once.
4. ∀x, y, z ∈ Fn and z 6= 0, 1 ∈ Fn, |{fL : fL(x) ⊕ fL(y) = z}| ≤ 1.

Property 3 shows that every element of Fn occurs at most once in a column.
Equivalently, two mappings give the same value when evaluated on the same
element of the field. Property 4 suggests that PMRD(t) is an ε-AXU2 class of
function.

However elements of PMRD(t) are mappings from Fn to Fn and cannot com-
press the input, which is a basic requirement in hashing.

In the following we define two classes of hash functions based on the class
PMRD(t). We assume that the complementary property is removed by restricting
the domain of elements of PMRD(t) to F ′

n.

Definition 11. [6] H = {h : Σm → Σn} is ⊕-linear if for all h ∈ H and all
x, x′ ∈ Σm, we have h(x⊕ x′) = h(x) ⊕ h(x′).

H1
MRD(t) :
For a mapping fL ∈ PMRD(t), define a mapping h

(1)
L : F ′

n × F ′
n → Fn as

h
(1)
L (x) = fL(x1) ⊕ x2, where x1, x2 ∈ F ′

n and x ∈ F ′
n × F ′

n. That is, the value
of h(1)

L for a 2n-tuple x = x1‖x2 is obtained by applying fL to x1 and XOR-ing
the result with x2. We note that effectively x contains 2n− 2 information bits

Theorem 12. H1
MRD(t) is a ⊕-linear ε-AU2 class of hash function with ε =

1
2t+1 . (Proof in Appendix 5.)

H2
MRD(t) :

For a mapping fL ∈ PMRD(t) and a binary string s = s0s1 · · · of length
2n − 2 define the hash value h(2)

L (s) =
∑2n−1

j=0 sjfL(αj) where α is a primitive
element of Fn.

In other words h(2)
L (s) is a weighted sum of the values of fL(x) at all nonzero

x ∈ Fn.

MRD Hashing 139

Theorem 13. H2
MRD(t) is a ⊕-linear ε-AXU2 class of hash function with ε =

1
2t+1 . (Proof in Appendix 5.)

3.2 Practical Considerations

H1
MRD(t)
The compression ratio of this ε-AU2 hash function is 2:1. To obtain higher

compression ratios, the composition method of Proposition 7 can be used. We
give the details in section 4.

Evaluating the hash values: is achieved by finding the product of a binary
matrix CL and a binary input vector. This can be efficiently implementated in
hardware and software.

The key: is a randomly chosen binary vector of length dmin. Once a key
k0k1 · · · is chosen, a linearized polynomial L(x) =

∑dmin−1
i=0 kix

2i

is determined
and the matrix CL is calculated. This is a fast computation.

Set-up phase: The main cost of the system is during the set-up phase in order
to calculate dmin for a given n. The results of our experiment for n < 19 are given
in Table 1. We have only considered prime values for n although theoretically
this restriction is not necessary.

n dmin ε

5 4 2−4

7 3 2−3

11 10 2−10

13 12 2−12

17 8 2−8

Table 1. Parameters for H1
MRD(t) for n < 19. dmin is the smallest degree of

minimal linearized polynomials of all field elements, which is the same as the
the number of key bits, and ε is the security parameter of the ε-AXU2 class.

It can be seen that some values like n = 11 and 13 give the maximum value
for dmin (that is, dmin = n− 1), but others like n = 17 give small t. This table
was produced by calculating the degree of the minimum linearized polynomial
of the representative field elements of the conjugate groups. For higher values
of n this approach becomes increasingly inefficient. But since it needs to be
done only once during the life time of the system, the overhead of the required
computation is acceptable for n < 40. For higher values of n, we require more
efficient algorithms for finding dmin. In section 4.3 we present results which
allows us to avoid this computation in extensions GF (2p), where p is a prime
and 2 is a primitive mod p.

For practical applications a range of suitable values for n must be calculated
and published. The user can then choose the n that gives the required level of

140 Rei Safavi-Naini, Shahram Bakhtiari, Chris Charnes

security and is most suitable for the message sizes considered.

H2
MRD(t)

This is an ε-AXU2 with a compression ratio of 2n − 1 to n. To avoid the
generation of fraudulent messages by appending extra zeros at the end of a
message, we assume that s2n−2 is always 1.

Implementation: can be efficiently done in hardware and software. Evaluating
h

(2)
L (s) could be similar to LFSR hashing used in [6]. Figure 1 gives a schematic

diagram for this evaluation. The LFSR has fixed and public taps and produces
a maximum length sequence (feedback polynomial is primitive). As the LFSR
goes through consecutive states σ1, σ2, · · ·, the circuit cL which implements the
linear transformation defined by CL produces a sequence of elements of Fn cor-
responding to the values of fL(σ1), fL(σ2), · · ·. The last part is an accumulator
that calculates the weighted sum of fL(σi).

LFSRmessage

Accumulator

Circuit implementing C

+

Ll

Fig. 1. Implementation of H2
MRD(t)

The circuit cL can be implemented as an accumulator as shown in Figure 2.

C (1)L

LC (n)

LC (2)

s1

s2

sn

Fig. 2. Implementation of cL

Each column CL(i), i = 1, · · · , n of CL is stored in a register and the binary
n-tuple, which is the state of the LFSR, determines the subset of the registers
that are XOR-ed to produce the output.

MRD Hashing 141

CL(i), i = 1, · · ·n form the key information (they are computable from the
dmin key bits) and so must be kept secret.

The hashing method can also be efficiently implemented in software. Storing
the consecutive outputs of the LFSR allows a parallel software evaluation of the
hash function.

4 MAC from H1
MRD(t)

We use Proposition 7 to construct an ε-AXU2 class of hash functions.
Two such classes are HM [m,n] defined in [1], and HK [m,n] defined in [6].

The first class maps Σm to Σn. Its elements can be described by binary m× n
matrices. Let h ∈ HM [m,n]. Then h(x) = h.x where h is an m× n matrix and
x ∈ Vn.

Theorem 14. [1] HM [m,n] is an ε-AXU2 class with ε = 2−n.

The second class maps Σm to Σn. Its elements are described by irreducible
polynomials of degree n over GF (2). To find the hash value of b ∈ Σm using a
hash function described by p(X), which is assumed to be an irreducible poly-
nomial of degree n, a polynomial b(X) =

∑n−1
i=0 biX

i in a formal variable X is
formed. The remainder of dividing Xnb(X) by p(X) yields an n-tuple which is
the required hash value.

Theorem 15. [6] HK [m,n] is an ε-AXU2 class with ε = m+n
2n−1 .

Using proposition 7 we have the following compositions.

1. HK [n, k] ◦ H1
MRD(t) : F ′

n × F ′
n → Σk is a (21+t + n+k

2k−1)-AXU2 class of hash
function.

2. HM [n, k] ◦ H1
MRD(t) : F ′

n × F ′
n → Σk is a (21+t + 2−k)-AXU2 class of hash

function.

In the rest of this section we will use the second composition; in which the
digest is evaluated by matrix multiplication over GF (2).

4.1 A Comparison

The following comparison between the MAC described above, and the MAC
obtained from Bucket Hashing (BH) gives some insight into the actual values of
the parameters and application of the proposed hash functions.

In this comparison we assume the word size of 1 bit although in an efficient
software implementation word size corresponds to the word size supported by
the hardware. The following proposition shows that the results of our analysis
are directly applicable to larger word sizes.

Proposition 16. If H = {h : A → B} is ε1-AXU2, then H′ = {h′ : Am →
Bm}, with h′(x) = h(x1)| · · · |h(xm), where x = (x1| · · · |xm), is ε-AXU2. (The
proof is a straightforward extension of Proposition 2 in [12].)

142 Rei Safavi-Naini, Shahram Bakhtiari, Chris Charnes

We consider a typical value for BH parameters and consider an example of
our scheme with a similar value for ε. In particular we consider a BH that maps
1024-bit messages to 140-bit digests and has a collision probability of around
2−31. The family of hash function is (2−31)-AU2 with (420 × log2 140) bits of
key. Since BH is not ε-AXU2, it needs to be composed with an ε-AXU2 to
obtain the required security (cf. Proposition 7). In our scheme we should choose
n > 32. In Section 4.3 we show that to find a suitable value for n, one needs
only to verify that 2 is a primitive element modulo the prime n. That is, 2i, for
i = 1, . . . , n − 1, should generate all the elements of the set {1, 2, . . . , n − 1}.
Table 2 shows that the first suitable value for n is 37. This is the least prime
greater than 32 for which 2 is a primitive element. Therefore in our comparison
we assume n = 37.

n g n g n g n g n g

5 2 7 3 11 2 13 2 17 3
19 2 23 5 29 2 31 3 37 2
41 6 43 3 47 5 53 2 59 2
61 2 67 2 71 7 73 5 79 3
83 2 89 3 97 5 101 2 103 5

107 2 109 6 113 3 127 3 131 2
137 3 139 2 149 2 151 6 157 5
163 2 167 5 173 2 179 2 181 2
191 19 193 5 197 2 199 3 211 2
223 3 227 2 229 6 233 3 239 7
241 7 251 6 257 3

Table 2. List of the smallest primitive elements (g) of prime numbers (n) in the
range [5 . . . 257].

Message block length: In bucket hashing, for a given level of security, the size
of the digest is lower bounded and is usually larger than what is used in MAC
systems. Although other hash functions can be applied to reduce the size of the
digest, the size of the original message block will remain large. For example for
a 140 word digest a 1024 word message size must be used. For 32 bit machines
this results in a large value for the minimum size of the message. If the message
length is 20 words then the digest is 7 times longer than the message, and for 32
bit machines maps 640 bits to 4480 bits. So in BH, there is a large overhead in
the computation when the message length is small [13]. Several layers of hashing
in Rogaway’s TOY-MAC makes no sense when the message length is small and
the operations on the padding of the message (to increase its length to the
acceptable minimum) is wasteful.

In our method for the same value of ε the message block length can be as
small as 74 words (when n = 37). In this case dmin = 236 and so the key is

MRD Hashing 143

k = (log2 dmin − 1) = 35 bits. By choosing a larger suitable n we can increase
the message block length and also the required level of security.

Key length: Similarly to message lengths, our system can be used for various
key lengths which can be as small as 35 bits. BH uses 420 bits which is too long
when used in a computational secure model where the one-time pad is replaced
with a pseudorandom generator, which typically has a key length of around 128
bits. Rogaway [12] suggested the use of a pseudorandom number generator to
obtain the required key for hashing.

Digest length: In BH, the digest length is 140 bits which is much longer than
the required length (32-64 bits) in a MAC. Rogaway presented a TOY-MAC in
which there exist four extra hashing levels to reduce the digest length to 64 bits.
These extra levels result in an overall loss of efficiency of the system (particularly
when the message is not very long). In our scheme, the digest length can be as
low as 37 bits.

Memory: Our scheme does not require a large memory. With n = 37, it
only needs 172 bytes for CL. We note that for key distribution only the n-
tuple determining the polynomial L(x) can be used, but for hashing CL must
be calculated and saved. The message block requires 5 bytes, and 5 bytes are
needed for the digest.

4.2 Implementation

Our scheme was implemented and tested on different data. The implementation
can be divided into two parts. In the fist part, the key which is the n binary
coefficients of the a linearized polynomial of degree less than 2n−1, is extended
to an n× n binary matrix. This matrix is stored in memory and does not need
to be recalculated for each MAC calculation. In the second part, this matrix is
used for hashing a given message (cf. the example given in Appendix 5). Once
calculated, it is stored in the system for multiple use. The complexity of this
part is equivalent to the complexity of binary matrix multiplication, which has
been extensively studied in the literature [5].

4.3 Setup Phase

We can calculate the minimal linearized polynomials of elements in GF (2n)∗

using the σ-orbits (conjugacy groups). Since each element of an orbit has the
same minimal linearized polynomial. We only state the results here, the proofs
will be given elsewhere.

The Galois automorphisms of GF (2n) are generated by: σ : x → x2. This
group acts on GF (2n)∗ and partitions this set into orbits. Recall that a modulus
M of GF (qn) is a GF (q)-subspace which is invariant under σ, i.e. Mσ = M . A
modulus is a union of σ-orbits: M = Ω1 ∪· · ·∪Ωr. A q-polynomial is a linearized
polynomial L(z) whose coefficients lie in the ground field GF (q).

Lemma 17. Suppose L(x) is a linearized polynomial over GF (qn). The zeroes
of L(x) form a modulus iff L(x) is a q-polynomial.

144 Rei Safavi-Naini, Shahram Bakhtiari, Chris Charnes

Thus each modulus M determines a q-polynomial, which is defined as follows

L(x) =
∏

β∈M

(x− β).

For these facts consult [8].
Let Ω = {α2i} be a σ-orbit. We define the following GF (2)-span of the

vectors in this orbit
L(Ω) =< α,α2, . . . > .

Proposition 18. Let L(Ω) =< α,α2, . . . > where Ω = {α2i} is an σ-orbit,
then L(Ω)σ = L(Ω), i.e. L(Ω) is a modulus.

L(Ω) not always irreducible. It can have a 1-dimensional σ-invariant subspace
namely: V =< α+ α2 + · · · >.

Proposition 19. L(Ω) ' V ⊕ W , where V and W are σ-invariant GF (2)-
subspaces.

Let Tr(β), be the absolute trace of β ∈ GF (2n) over GF (2), then Tr(β) = 0,
or 1. Moreover, V =< α + α2 + · · · > is the zero subspace if Tr(α) = 0; it is a
1-dimensional σ-invariant subspace if Tr(α) = 1.

Suppose now that p is a prime such that 2 is a primitive mod p, i.e. 2p−1 ≡
1 mod p, and p− 1 is the least power of 2 for which this is true.

Theorem 20. Let L(Ω) ' V ⊕W , be decomposed into σ-invariant subspaces as
in Proposition 19. If 2 is a primitive mod p, then W is an irreducible modulus.

An analysis of the linearized polynomials corresponding to the irreducible
moduli in Theorem 20 leads to the following result.

Theorem 21. For any prime degree extension GF (2p) in which 2 is primitive
mod p, the minimal 2-polynomial of any β ∈ GF (2p)∗ is x2p

+ x if Tr(β) = 1.
It is x2(p−1)

+ x2(p−2)
+ · · · + x2 + x, if Tr(β) = 0.

5 Conclusions

We have introduced two new evaluation hashing schemes that have a number of
important and useful properties. In particular, the evaluation of digests reduces
to matrix multiplication over GF (2) which can be efficiently implemented. De-
veloping an efficient algorithm for calculating dmin in general requires further
research. However we have characterized a class of GF (2n) which require no com-
putation. We have also compared a MAC based on H1

MRD(t) with one based on
BH.

MRD Hashing 145

A Proofs

Proof of Lemma 9: (sketch)

1. For all L(x), x is a factor and hence L(0) = 0. For x = (11, · · · , 1) we have
x.β ∈ GF (2) (page 52, [8]).

2. In a linearized polynomial the set of zeros form a subspace NL of GF (2n)
(Theorem 3.50, [8]).
Now if L(x) = y for some y, then for all z ∈ NL we have L(x + z) =
L(x) + L(z) = y. Conversely, if L(x) = L(u) = y then L(x+ u) = 0 = L(z)
where z ∈ NL. Hence if an element occurs once, it occurs exactly |NL| times.

3. If L(x) has even number of terms then L(x) = x(x + 1)f(x) and we have
L(0) = L(1) = 0 and hence L(11, · · · , 1) = 0. This results in the following
complementary property

L(x) = L(x+ 11 · · · 1) = L(x) + L(11 · · · 1) = L(x)

4. Let u ∈ Fn. There is a unique minimum linearized polynomial L(x) such that
L(u) = 0. An example computation of this polynomial is given in Appendix
5. Now if L′(x) is a linearized polynomial such that L′(u) = 0, there exists a
linearized polynomial L′′(x) such that L′′(x) = L′(x)⊗L(x) (Theorem 3.68,
page 113 [8]). Let Mu denote the collection of linearized polynomials for
which u is a root and |Mu| = Mu. Then we have Mu = 2t−du , where du is
the degree of L(x). Now if L1 is a linearized polynomial satisfying L1(u) = v
and L2(x) ∈ Mu, then (L1 +L2)(u) = L1(u)+L2(u) = v and hence v occurs
2t−du in the column labelled by u.

5. For a pair x, y ∈ GF (2n), the number of rows, L(x), of C, such that L(x) =
L(y) is the same as the number of rows of C with L(x + y) = 0 and hence
the result.

ut
This completes the first part.

Proof of Theorem 12. We only need to show that,

|{h(1) ∈ H1
MRD(t) : h(1)(M) = 0}|
|H1

MRD(t)| ≤ 1
2t+1 , ∀M 6= 0 ∈ Σ2n.

Let M = (M1|M2). Since h(1)
L (M) = fL(M1) ⊕ M2 and |H1

MRD(t)| = 2t+1, we
have to prove that,

|{fL : fL(M1) = M2}| ≤ 1.

This is true because of Corollary 10. Note that since M 6= 0, M1 and M2 cannot
be both zero. We consider two cases.

– If M1 = 0, then fL(M1) = 0 6= M2 and so |{fL : fL(M1) = M2}| = 0 ≤ 1.
– If M1 6= 0, then based on Corollary 10 |{fL : fL(M1) = M2}| ≤ 1.

146 Rei Safavi-Naini, Shahram Bakhtiari, Chris Charnes

This proves the theorem. ut
Proof of Theorem 13. Because of the linearity of fL we have

h(2)(s) = Σ2n−2
j=0 sjfL(αj) = fL(Σ2n−2

j=0 αj) = fL(γs)

for γ = Σ2n−2
j=0 sjα

j ∈ Fn. To show that the class is ε-AXU2 we note that for
arbitrary x, y ∈ F2n−1 and z ∈ Fn, we have

|{h(2) ∈ H2
MRD(t) : h(2)(x) ⊕ h(2)(y) = z}|

|H1
MRD(t)| =

|{h(2) ∈ H2
MRD(t) : h(2)(x⊕ y) = z}|

|H1
MRD(t)|

But h(2)
L (x⊕ y) = fL(γx ⊕ γy) and so

|{h(2) ∈ H2
MRD(t) : h(2)(x⊕ y) = z}|

|H1
MRD(t)| ≤ 1

2t+1 .

ut

B Hashing Example for H1
MRD

Let n = 5, F5 = GF (25), f(x) = x5 +x2 +1 be a primitive polynomial of degree
n, and f(α) = 0 for some α ∈ F . We group the elements of F5 into conjugate
groups as shown in Table 3 and find the minimum linearized polynomial of each
group. Since the smallest degree of the minimum linearized polynomials is 16,
therefore we can use all linearized polynomial of degree less than 16 with odd
number of terms, and construct a matrix which represents our hash function.

Conjugate groups Minimal polynomials Linearized minimal polynomials
α, α2, α4, α8, α16 x5 + x2 + 1 x + x2 + x4 + x8 + x16

α3, α6, α12, α24, α17 x5 + x4 + x3 + x2 + 1 x + x32

α5, α10, α20, α9, α18 x5 + x4 + x2 + x + 1 x + x32

α7, α14, α28, α25, α19 x5 + x3 + x2 + x + 1 x + x2 + x4 + x8 + x16

α11, α22, α13, α26, α21 x5 + x4 + x3 + x + 1 x + x32

α15, α30, α29, α27, α23 x5 + x3 + 1 x + x2 + x4 + x8 + x16

Table 3. Conjugate groups with the corresponding minimal and linearized min-
imal polynomials. (Cf. Theorem 21.)

One can verify that {α3, α6, α12, α24, α17} are linearly independent and thus
a normal basis for GF (25). Let L(x) = x4. The vector corresponding to L(x) is:

cL = (L(α3), L(α6), L(α12), L(α24), L(α17))
= ((α3)4, (α6)4, (α12)4, (α24)4, (α17)4)
= (α12, α24, α17, α3, α6)
= (α3 + α2 + α, α4 + α3 + α2 + α, α4 + α+ 1, α3, α3 + α)

MRD Hashing 147

The matrix representation of the function fL is:

CL =




0 0 1 0 0
1 1 1 0 1
1 1 0 0 0
1 1 0 1 1
0 1 1 0 0




and h
(1)
L =

(
CL

I5

)
where I5 is the identity matrix. Now let M = [11010 01100]

which results in M1 = [11010]t and M2 = [01100]. We have, fL(M1) = CL ·M1 =
[00011] and so,

h
(1)
L (M) = fL(M1) ⊕M2 = [00011] ⊕ [01100] = [01111].

C Finite Fields

Consider Fn, the finite field with 2n elements. We consider only the binary fields,
although most of the results hold for general q-ary fields.

Fn is an n-dimensional vector space over GF (2). It can be constructed using
an irreducible polynomial, f(x), of degree n. Let α denote a root of f(x). Then
1, α, α2 · · ·αn−1 forms a basis of Fn. An element of Fn is a primitive element if
its powers generate all non-zero elements of Fn.

Elements of Fn are partitioned into conjugate groups (the σ-orbits). The
conjugate group of β consists of {β, β2, · · ·}. If the elements of {β, β2, · · ·β2n−1}
are linearly independent then they form a basis for Fn. A normal basis is a basis
of the form {β, β2 · · ·β2n−1}. Every field has at least one normal basis.

Let ψ denote an element of a finite field Fn. The minimum polynomial of ψ
is an irreducible polynomial f(x) over Fn such that f(ψ) = 0 and for any other
polynomial g(x) with g(ψ) = 0 has f(x) as a factor. It can be shown that every
element of the field has a unique minimum polynomial and all the conjugate
elements have the same minimum polynomial.

A polynomial of the form L(x) =
∑

i αix
2i

with αi ∈ GF (2) is called a
2-polynomial; we refer to these as linearized polynomials.

Linearized polynomials satisfy the following two properties:

L(α+ β) = L(α) + L(β), α, β ∈ F ;
L(cα) = cL(α), α,∈ F, c ∈ GF (2).

The ordinary product of linearized polynomials is not a linearized polynomial.
The Symbolic product of two polynomials L1(x) and L2(x), defined

L1(x) ⊗ L2(x) = L1(L2(x))

gives a linearized polynomial.
Let ψ ∈ F and f(x) denote its minimum polynomial. The minimum linearized

polynomial of ψ is a linearized polynomial L(x) such that f(x) is a factor of
L(x) and any other linearized polynomial for which L1(ψ) = 0 can be written
as L1(x) = L2(x) ⊗ L(x). It can be shown that L(x) is unique.

148 Rei Safavi-Naini, Shahram Bakhtiari, Chris Charnes

D How to Calculate Minimal Linearized Polynomials

Suppose that α ∈ Fn and f(α) = 0. To find the minimum linearized polynomial
p(x) for α we proceed as follows. Let q(x) denote the minimum polynomial of α.
We have

p(x) =
n∑

i=0

tix
2i

= m(x)q(x) (1)

where m(x) is a polynomial over GF (2). For i = 0, . . . , n, let ri(x) denote the
remainder of dividing x2i

by q(x). To satisfy equation (1) we must have

n∑
i=0

tiri(x) ≡ 0 mod q(x). (2)

Expanding (2), we obtain a set of n equations in n+ 1 variables t0, . . . , tn. The
solution that results in a polynomial with minimum degree determines p(x).
Note that this method requires the determination of the irreducible polynomials
corresponding to the σ-orbits. This adds to the computational complexity of this
algorithm, while the irreducible polynomials are not required in the final result.

References

1. J. L. Carter and M. N. Wegman, “Universal Class of Hash Functions,” Journal of
Computer and System Sciences, vol. 18, no. 2, pp. 143–154, 1979.

2. K. Chen, “A New Identification Algorithm,” in Cryptography: Policy and Algo-
rithms Conference (E. Dawson and J. Golic, eds.), vol. 1029 of Lecture Notes in
Computer Science (LNCS), (Queensland, Australia), pp. 244–249, Springer-Verlag,
July 1995.

3. E. Gabidulin, “Theory of Codes with Maximum Rank Distance,” Problems of In-
formation Transmission, vol. 21, no. 1, pp. 1–12, 1985.

4. T. Johansson, “Authentication Codes for Nontrusting Parties Obtained from Rank
Metric Codes,” Design, Codes and Cryptography, no. 6, pp. 205–218, 1995.

5. H. Krawczyk, “The Shrinking Generator; some practical consideration,” in Proceed-
ings of Fast Software Encryption Workshop, FSE ’93, pp. 45–46, LNCS, Springer-
Verlag, 1993.

6. H. Krawczyk, “LFSR-based Hashing and Authentication,” in Advances in Cryptol-
ogy, Proceedings of CRYPTO ’94 (Y. G. Desmedt, ed.), vol. 839 of Lecture Notes
in Computer Science (LNCS), pp. 129–139, Springer-Verlag, 1994.

7. H. Krawczyk, “New Hash Functions for Message Authentication,” in Advances in
Cryptology, Proceedings of EUROCRYPT ’95 (L. C. Guillou and J.-J. Quisquater,
eds.), Lecture Notes in Computer Science (LNCS), (Berlin), pp. 301–310, 1995.

8. R. Lidl and H. Niederreiter, Introduction to Finite Fields and their Applications.
Cambridge Uiversity Press, 1994.

9. U. Maurer, ed., Advances in Cryptology, Proceedings of EUROCRYPT ’96,
vol. 1070 of Lecture Notes in Computer Science (LNCS), (Saragossa), Springer-
Verlag, 1996.

10. B. Preneel, Analysis and Design of Cryptographic Hash Functions. PhD thesis,
Katholieke University Leuven, Jan. 1993.

MRD Hashing 149

11. B. Preneel and P. C. van Oorschot, “On the Security of Two MAC Algorithms,”
in Maurer [9], pp. 19–32.

12. P. Rogaway, “Bucket Hashing and its Application to Fast Message Authentica-
tion,” in Advances in Cryptology, Proceedings of CRYPTO ’95, Lecture Notes in
Computer Science (LNCS), pp. 30–42, Springer-Verlag, 1995.

13. V. Shoup, “On Fast and Provably Secure Message Authentication Based on Uni-
versal Hashing,” in Maurer [9], pp. 321–331.

14. D. R. Stinson, “Universal Hashing and Authentication Codes,” Design, Codes and
Cryptography, vol. 4, pp. 369–380, 1994.

15. R. Taylor, “Near Optimal Unconditionally Secure Authentication,” in Advances
in Cryptology, Proceedings of EUROCRYPT ’94 (preprints) (W. Wolfowicz and
A. de Santis, eds.), vol. 765 of Lecture Notes in Computer Science (LNCS), (Peru-
gia, Italy), pp. 245–255, may 1994.

16. M. N. Wegman and J. L. Carter, “New Hash Functions and Their Use in Au-
thentication and Set Equality,” Journal of Computer and System Sciences, vol. 22,
pp. 265–279, 1981.

	Introduction
	Preliminaries
	MRD-MAC
	${cal H}^1_{MRD}(t)$ and ${cal H}^2_{MRD}(t)$
	Practical Considerations

	 MAC from ${cal H}^1_{MRD}(t)$
	A Comparison
	Implementation
	Setup Phase

	Conclusions

