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Abstract. The notion of smooth entropy allows a unifying, generalized 
formulation of privacy amplification and entropy smoothing. Smooth en- 
tropy is a measure for the number of almost uniform random bits that 
can be extracted from a random source by probabilistic algorithms. It 
is known that the R h y i  entropy of order at least 2 of a random vari- 
able is a lower bound for its smooth entropy. On the other hand, an 
assumption about Shannon entropy (which is RBnyi entropy of order 1) 
is too weak to guarantee any non-trivial amount of smooth entropy. In 
this work we close the gap between Rknyi entropy of order 1 and 2. In 
particular, we show that RBnyi entropy of order o for any 1 < a < 2 
is a lower bound for smooth entropy, up to a small parameter depend- 
ing on a,  the alphabet size and the failure probability. The results have 
applications in cryptography for unconditionally secure protocols such 
as quantum key agreement, key agreement from correlated information, 
oblivious transfer, and bit commitment. 

1 Introduction 

Entropy smoothing is the process of converting an arbitrary random source into 
a source with smaller alphabet and almost uniform distribution. Smooth entropy 
is an  information measure that has been proposed recently [7] to quantify the 
number of almost uniform bits that  can be extracted by a probabilistic algorithm 
from any member of a set of random variables. It unifies previous work on privacy 
amplification in cryptography and on entropy smoothing in theoretical computer 
science and enables a systematic investigation of entropy smoothing and its 
efficiency. 

The main question of entropy smoothing is: Given an arbitrary random 
source, how many uniformly random bits can be extracted? The formalization of 
smooth entropy allows for an arbitrarily small deviation of the output bits from 
perfectly uniform random bits that  may include a small correlation with the ran- 
dom bits used for smoothing. The inclusion of randomized extraction functions 
is the main difference between entropy smoothing and “pure” random number 
generation in information theory [19], where no additional random sources are 
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available. However, entropy smoothing does not consider the auxiliary random 
bits as a resource, unlike extractors used in theoretical computer science [17]. 

In cryptography, entropy smoothing is known as privacy amplification. ln- 
troduced in 1985 [3,4] and later generalized [2], it has become a key component 
of unconditionally secure cryptographic protocols with such various purposes as 
key agreement from correlated information [16], key agreement over quantum 
channels [1,5], oblivious transfer [6], and bit c:onimitment [lo]. 

Privacy amplification, for short, is a process that allows two parties to distill 
a secret key from common information about which an adversary has partial 
knowledge. The two parties do not know anything about the adversary’s knowl- 
edge except that it satisfies a general bound. By using a publicly chosen corn- 
pression function, they are nevertheless able to extract a short key from their 
common information such that the total knowledge of the adversary about the 
key is arbitrarily small. 

Apart from the applications in cryptography, entropy smoothing is also at the 
core of many constructions in complexity theory. Examples are pseudorandom 
generation [11,14], derandomization of algorithms [15], hardness results in com- 
putational learning theory [13], and computing with degenerate, weak random 
sources [20]. A survey of these applications is given by Nisan [17]. 

Bennett et al. [4,2] and Impagliazzo et al. [la] independently analyzed entropy 
smoothing by universal hash functions [S] and showed that the length of the 
almost uniform output depends on the Rknyi entropy of order 2 of the input. 
Privacy amplification can therefore be applied if the two parties assume a lowcr 
bound on the R h y i  entropy of order 2 of the adversary’s knowledge about their 
information. By the properties of R6nyi entropy, it is straightforward to extend 
this result to R h y i  entropy of any order cy > 2. 

On the other hand, it is known that a lower bound in terms of R h y i  entropy 
of order 1 (which is equivalent. to entropy in tjhe sense of Shannon) is not sufficient 
to extract a non-trivial amount of uniform bits [2]. 

In this work, we close this gap and prove a lower bound on smooth entropy 
in terms of R h y i  entropy of order cy for any N between 1 and 2. Our result 
shows that the number of almost uniform bits that can be extracted with high 
probability from a random variable is given by its R h y i  entropy order a,  for 
any cy > X, up to a correcting term depending on a ,  the alphabet size and the 
failure probability. The correcting term becomes dominating for a + 1. 

In a second part, we show that tighter lower bounds for smooth entropy 
can be obtained if one makes additional assumptions about the distribution. In 
particular, we show how an assumption about the so-called profile of the random 
variable leads to a lower bound on its smooth entropy that can be much tighter 
than the one given by Rbnyi entropy. 

The results can be applied immediately to any of the above-mentioned sce- 
narios using entropy smoothing and, in particular, to all applications of privacy 
amplification in cryptography. Our analysis shows t,hat entropy smoothing by 
universal hashing is, in general, much more efficient than what was guaranteed 
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by previous results using R h y i  entropy of order 2. This has important conse- 
quences for the efficiency of these protocols. 

The paper is organized as follows. Entropy and R6nyi entropy are int,roduced 
in Section 2 and a review of smooth entropy is provided in Section 3. Our results 
are based on the spoiling knowledge proof technique, which is introduced in 
Section 4. The main result is proved in Section 5, and Section 6 contains the 
derivation of the tighter bound in terms of the profile. 

2 Preliminaries 

We assume that the reader is familiar with the notion of entropy and the basic 
concepts of information theory [9]. We repeat some fundamental definitions in 
this section and introduce the notation. All logarithms in this paper are to the 
base 2. The cardinality of a set S is denoted by IS/. 

A random variable X induces a probability distribution PX over an alphabet 
X. Random variables are denoted by capital letters. If not stated otherwise, 
the alphabet of a random variable is denoted by the corresponding script letter. 
Families of random variables are denoted by X. 

The expected value of a real-valued random variable X is denoted by E[X]. 
The k-th m o m e n t  inequality for any real-valued random variable X,  any integer 
k > 0, and t E R+ is 

Another useful bound for any real-valued random variable X ,  any t E iR+, and 
any T E Iw is [14] 

The ( S h a n n o n )  entropy of a random variable X with probability distribution 
Px and alphabet X is defined as 

H ( X )  = - c P~y(z ) logPx(z ) .  
X E S  

The conditional entropy of X conditioned on a random variable Y is 

where H ( X ( Y  = 1 ~ )  denotes the entropy of the conditional proba,bility distribu- 
tion P X I Y = ~ .  The binary entropy f u n c t i o n  is 

h(P) = -PlogP - (1 - P) log(1 - PI .  
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The relative entropy or discrimination between two probability distributions 
= 0 and Px and P y  with the same alphabet X is defined as (using Olog 

plog$ = co) 

The Re'nyi entropy of order cy of a random variable X with alphabet X is 

for a 2 0 and a # 1 [MI. Because the limiting case of Rknyi entropy for a -+ 1 is 
Shannon entropy, we can extend the definition to H I  ( X )  = H ( X ) .  In the other 
limiting case 0: + 00, we obtain the min-entropy, defined as 

H,(X) = - logmaxPx(z) .  
XEX 

For a fixed random variable X,  Renyi entropy is a continuous positive de- 
creasing function of a. For 0 < a < p, 

Hcr(X) 2 H P ( W  (4) 

with equality if and only if X is uniformly distributed over some subset of X. In 
particular, log 1x1 2 H,(X) 2 0 for cy 2 0 arid H ( X )  2 H , ( X )  for a > 1. 

3 Review of Smooth Entropy and Privacy Amplification 

Smooth entropy [7] is an abstraction and a generalized formulation of privacy 
amplification [2] and entropy smoothing [12,14]. As an information measure, 
smooth entropy is defined operationally with respect to an application scenario 
(similar to channel capacity [9]). Its value cannot be computed immediately for a 
given probability distribution. This contrasts with other entropy measures such 
as Shannon or Rknyi entropy that arc defined formally in terms of a probability 
distribution. 

Consider a random variable X. We want to apply a smoothing function f : 
X + Y to X such that Y = f ( X )  is uniformly distributed over its ra.nge Y .  The 
size of the largest Y such that Y is still sufficiently uniform is a measure for the 
amount of smooth entropy inherent in X ,  relative to  the allowed deviation from 
perfect uniformity. To quantify this deviation we use a nonuniformity measure 
M that associates with every random variable X a positive number M ( X )  that 
is 0 if and only if Pay is the uniform distribution Pu over X. Examples for M 
are relative entropy D(Px IlPr/) = log 1x1 - H ( X )  or L1 distance llPx - Ptlll1 = 

The smoothing algorithm should be able to produce outputs that achieve 
some desired uniformity. More uniform outputs can usually be obtained by re- 
ducing the output size. We introduce the parameter s to control the trade-off 

C X E X  IPX(Z) - hl. 
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between the uniformity of the output and the amount of entropy lost in the 
smoothing process. 

Probabilistic smoothing functions are formalized by extending the input of 
f with an additional random variable T that niodels the random choices of f. 
However, T must be independent of X and its value must be known to  ensure 
that no randomness from T is inserted into E’. The size of T is explicitly ignored. 

It can be tolerated that the uniformity bound for an extraction process fails 
if an error event & occurs. E should have small probability, denoted by E ,  and 
may depend on X. The uniformity is calculated only in the case that the com- 
plementary event Z occurs. 

In many applications it is only known that the random variable X has some 
property that is shared by many others. Therefore, smooth entropy is defined 
for a family of random variables X with the same alphabet. The same smoothing 
algorithm is required to work for all probability distributions in the family. 

Definition 1 (171). Let M be a nonuniformity measure and let A : IR -+ IR be a 
decreasing non-negative function. A family X of random variables with alphabet 
X has smooth entropy @(X) within A(s) [in terms of M ]  with probability 1 - c 
if 9 (X)  is the maximum of all $ such that for any security parameter .$ 2 0, a 
random variable T and a function f : X x ‘T -+ y exist with (yl = [2$-‘] such 
that for all X E X there is a failure event t‘ that has probability a t  most 6,  and 
the expected value over T of the nonuniforxnity M of Y = f (X, T ) ,  given T and 
&, is at  most A(s). Formally, 
- 

VX E X : Y = f ( X , T )  , 35 : P[I] _< c ,  M ( Y J T Z )  5 A(s)}. 

For singleton sets { X } ,  we also use !P(X) instead of’ S ( { X } ) .  The failure 
probability t can be integrated into the uniformity parameter A ( s )  for certain 
nonuniformity measures such as L1 distance. 

The principal method for extracting smooth entropy is based on universal 
hashing. A universal hash function [ S ]  is a set G of functions X + y such that 
for all distinct ~ 1 , x 2  E X ,  there arc at  most [Gl/lyl functions g in G such that 

Privacy amplification is fundamental for many unconditionally secure cryp- 
tographic protocols [2]. Assume Alice and Bob share a random variable W ,  while 
an eavesdropper Eve knows a correlated random variable V that summarizes her 
knowledge about W .  The details of the distribution PWV, and thus of Eve’s in- 
formation V about W,  are unknown to Alice and Bob, except that, they assume 
a lower bound on the Rknyi entropy of order 2 of PWiV=%, for the particular value 
2, that Eve observes. 

Using an authentic public channel, which is susceptible to eavesdropping but 
immune to tampering, Alice and Bob wish to  agree on a function g such that 

s?(x:1) = g ( 4 .  
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Eve knows nearly nothing about g( W ) .  The following theorem by Bennett et 
al. [a] shows that if Alice and Bob choose g at  random from a universal hash 
function G : W -+ y for suitable y ,  then Eve’s information about Y = g(W)  is 
negligible. 

Theorem 1 (Privacy Amplification Theorem [Z]).  Let  X be a random var- 
iable over the alphabet X with Re‘nyi entropy H z ( X ) ,  let G be the ramdom variable 
corresponding t o  the random choice (with uni form distribution) of a member. of  
a universal hash f u n c t i o n  G : X + y ,  and let Y = G(X). T h e n  

21og IYI-Hz(X) 
( 5 )  __ H(YIG) L 1% IYl- lII2 

The theorem can be applied in the described scenario by replacing Px with 
the conditional probability distribution Pwlv=?, . The Privacy Amplificat,ion The- 
orem implies that H , ( X )  is a lower bound for smooth entropy. It is crucial that 
the sane  smoothing algorithm can be applied to any X from a family X of 
random variables and produce an output of the desired size and uniformity. 

Corollary 2 ([7]). T h e  smooth entropy of a family  X of random variables with- 
in 2-”/ In 2 in terms  of relative entropy with probability 1 is  at least the minimum 
Re‘nyi entropy of order 2 of any  X E X. 

Note that Shannon entropy cannot be used as a lower bound for smooth 
entropy. This was observed by Bennett et al. [2] and is illustrated in the following 
example. 
Example 1. Suppose that everything we know about a random variable X is 
H ( X )  2 t .  Then Px could be such that Px(z0) = p for some 2 0  E X with 
p = 1 - t/log(lXI - 1) and P * ~ ( X )  = (1 - p ) / ( l X i  - 1) for all z # 50.  X satisfies 
H ( X )  = h,(p) + (1 - p )  log(lXJ - 1) 2 t .  But X = xo occurs with probability p ,  
arid no matter how small a Y is extracted from X ,  its value can be predicted 
with probahi1it)y p .  Thus, witah knowledge of a, lower bound on H ( X )  alone, thc 
probability that X is guessed correctly cannot be reduced and only a small part 
of the randomness in X can be converted to  uniform bits. Therefore, the entropy 
of a random variable is not an adequate measure of its smooth entropy. In other 
words, there are random variablcs with asbitrarily large entropy and almost no 
smooth entropy. 0 

4 Spoiling Knowledge Proofs 

As noted above, R h y i  entropy of order 2 is a lower bound for smooth entropy. 
A counter-intuitive property of conditional R h y i  entropy of order a > 1 is that 
it can increase even on the average when conditioned on a random variable that 
provides side information. Suppose side information that increases the R h y i  
entropy is made available by an imaginary oracle. This increase can be exploited 
to prove lower bounds on smooth entropy that are much tighter than Rbnyi 
entropy of order 2. Side information of this kind was introduced by Bennett et 
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al. [2] and is called spoiling knowledge because it leads to less information about 
the output of the smoothing process. 

We examine side information that induces an event A such that P[d] is a t  
least 1 - c and Hy(X/d)  is large. This can then be transformed into a lower 
bound on smooth entropy with probability S - F of X .  A formal statement of 
this is given in the next theorem, where the binary random variable V models 
side information such that A corresponds to V = 0. 

Theorem 3. T h e  smooth entropy 9 ( X )  wi thin 2 - " /  In 2 with probability S - E of 
a random variable X is lower bounded b y  the m a x i m u m  of the conditional Re'nyi 
entropy Hz(XIV = 0 ) ,  where the maximizat ion ranges over all random variabZes 
V with alphabet { 0 ,  S} such that the jo in t  distribution Pxv i s  consistent with Pr: 
and satisfies Pv(0) 2 1 - t: 

Note that the oracle knows the particular distribution of the random variable 
that is to be smoothed (e.g. the adversary's knowledge in privacy amplification) 
and can prepare the side information dcpending on that distribution. 

For the construction of the lower bounds, we introduce special side informa- 
tion U with alphabet {0, . . . ,m}.  Let U = f ( X )  be the deterministic function 
of X given by 

If P*y(c) 5 2-"l 

1- log I'x (.)I otherwise. 
f ( l )  = 

We call side information U of this type 10.9-partition spoiling knowledge because 
U partitions the values of X int,o sets of approximately equal probability and 
because it is most useful with m = log 1x1. For such m, the values of the proba- 
bility distributions P.qu=u differ at most by a factor of two for all u except for 
u = m. 

In the following, let, 

pmin = zi; PX (x) and p,,,,, = max PX (x). 
S E X  

The following two lemmas show that R h y i  entropy of order 2 and Shannon 
entropy cannot differ arbitrarily for probability distributions where pmin and 
p,,, are a constant factor apart. 

Lemma 4. Let  X be a random variable with aZphabet X such tha t  pmax 5 c'pmin 
for  some c > 1. T h e n  

1 C 

1x1 - 1 + c '  
- Pmax 5 1x1 - 
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Proof. It is easy to  see that maximum of plnax - pn,in is reached when Px(z)  = 
pmin for all z except for the one that, has maximal probability pmax = c . pmin .  
The lemma follows directly. 0 

If the miiiimuiri arid maximum probability in a distribution Px do not differ 
by niore than a constant factor, then the Rknyi entropy of order 2 of X is at 
most a constant below the Shannon entropy. 

Lemma 5 .  Let X be a random variable with alphabet X such that p,,, 5 C.prnin 

for some c > 1. Then 

H 2 ( X )  > H(X)-210gc. 

Proof. Lemma 4 is used in the second inequality of the following derivation: 

H(X) - H2,(X) = H(X) + log c PX(2)Z 

5 1% 1x1 + log(lXI P L x )  

X E X  

= 2 log(lXI pmax) 

< 2logc 0 

5 A Bound Using R6nyi Entropy of Order cy > 1 

The connection between entropy smoothing and R h y i  entropy was established 
independently by Bennett et al. [2] and Impagliazzo et al. [12]. The Privacy 
Amplification Theorem shows that R6nyi entropy of order 2 is a lower bound for 
smooth entropy. That is, for any random variable X by assuming only a lower 
bound t on H2 ( X ) ,  approximately t almost uniform random bits can be extracted 
from X and the deviation from a uniform distribution decreases exponentially 
when fewer bits are extracted. 

In some applications, only the stronger bound H,(X) 2 t in terms of min- 
entropy is assumed, equivalent to bounding the maximum probability of any 
value of X .  Indeed, Theorem 1 holds if an assumption about H a ( X )  for any 
Q 2 2 is made because Hz(X) >_ H a ( X )  for LY >_ 2 by (4). 

On the other hand, it is known from Example 1 that a lower bound on 
H I ( X )  = H ( X )  is not sufficient to guarantee a non-trivial amount of smooth 
entropy. Rather, the smooth entropy could be arbitrarily small if no further 
assumptions are made. In this section we examine the remaining range for 1 < 
Q < 2. We show that, with high probability, the smooth entropy of X is lower 
bounded by H,(X) ,  up to the logarithm of the alphabet size and some security 
parameters depending on Q and on the error probability. 



201 

Our approach uses a spoiling knowledge argument. We will use side informa- 
tion U such that for any distribution of X ,  with high probability, U takes on 
a value u for which Hz(XIU = u) is riot far below H , ( X ) .  A simple and very 
weak bound that always holds follows from the next, lemma. 

Lemma 6. For any random variable X and f o r  ung Q > 1, 

a 
-HcO(X) 2 H , ( X )  2 HcO(X).  a - 1  

Proof. Because a > 1, 

log max Px (x) a -HH,(X) = ~ 

ff 1 
a - 1  1-ff = E X  

= H , ( X ) .  

The lower bound follows from (4). 0 

We conclude that 

a - 1  
Hz(X) 2 H c o ( X )  2 ---HH,(X) 

ff 

for any a > 1. However, this bound is multiplicative in a - 1 which limits 
its usefulness for a -+ 1. The tighter bound derived below is only additive in 
(a  - 1 ) - l .  It is based on the following theorem that provides the connection 
between the R6nyi entropy of order n > 1 conditioned on side information and 
the R h y i  entropy of the joint distribution. 

Theorem 7. Let  a > 1 and let r ,  t > 0.  For urbitrury random variables X and  
Y ,  the probability that Y takes on a value y f o r  which 

r 
f f a ( X I Y  = Y) 2 H a ( X Y )  - 1% IYl - - t  

is at  least 1 - 2-' - 2-t  

Proof. It is straightforward to expand the R h y i  entropy of A'Y as 
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We introduce the function p(y) = H,(XIY = y)  to interpret H,(XIY = y)  as a 
function of y and consider thc random variables P y ( Y )  and p(Y) .  The equation 
above is equivalent to 

E~ [ 2(1--a)B(k ' )+(a-- I )  log Pv(Y) - 2 ( 1 - " ) H u ( X Y )  1 -  
or 

E~ [ 2" - a ) 4 ( y ) + ( o - l ) l o g Y u o . ' ) - ( l - o l ) H , ( X Y ) - r  ~ 2-7. 1 
Inserting this into the right-hand side of incqualitv ( 2 )  yields 

Py [ (1 - Q)P(Y) + (a  - l ) logPy(Y)  - (1 - ct)H,(XY) 2 .] 5 2-' 

form which we 5 w  after dividing by 1 - cy that with probability at least 1 - 2 - r ,  
Y takes on a value y for which 

( 7 )  

The only thing missing is a bound for the tcrm log Py (y) . However, large values 
of llogPy(Y)I occur only with small probability. For any t > 0, 

P[P, , (Y)  < 2-"/ly1] = c P Y ( Y )  < 2-1 
? I : c t ( Y ) < 2 - t / l Y l  

because therc are only /yl terms in the summation. Therefore, with probability 
at least 1 - 2-', 1' t,akes on a value y for which 

1% PY (Y) 2 -t - log lYI (8) 

and the theorem follows from (7) arid (8) by the union bound. 0 

Applying t,his bound for log-partition side information gives the main result 
of this paper arid shows how smooth entropy is lower bounded by R6nyi entropy 
of order a for any cy > 1. 

Theorem 8.  Fax r , t  > 0, let m, be a n  integer such that  m - log(m + 1) > 
log 1x1 + t ,  and let s be the security parameter  f o r  smooth entropy. For a n y  
a > 1, the smooth entropy of n random variable X within 2-"/1n2 in t e r m s  of 
relative entropy with probability 1 - 2-' - 2- t  is lower bounded by Re'nyi entropy 
of order Q in the sense that  

! P ( X )  2 H , ( X )  - log(m + 1) - - t - 2 .  
a - 1  

Proof. We again use log-partition spoiling-knowledge U = f ( X )  with alphabet 
(0, .  . . , m} as defined above. Because f is a deterministic function of X ,  we have 
H , ( X U )  = H,(X)  and Theorem 7 shows that U takes on a value u for which 

I' 
H,(XIU = u) 2 H , ( X )  - log IUI - - - t 

a - 1  
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with probability at  least 1 - 2-' - 2- ' .  Because m > log 1x1, Lemma 5 can be 
applied with c 5 2 and by (4) it follows for all 'u # m that 

HZ(XIU = u) > H ( X I U  = u )  - 2 2 H,(XIU = u) - 2. 

Combining these results shows that the probability that U takes or1 a value 
u # ni for which 

(9) 

is a t  least 1 - 2-' - 2-'. 

lcss than 2-'-Iog I L 1 1  have been excluded. Therefore. if' m is chosen such that 
Remember that in (8) in the proof of Theorem 7, values of U with probability 

z : r, (z) < 22"' 

then U = m does not occur in (9). Choosing rri such that m - log(m + 1) > 

Corollary 9. Let  X be a fami ly  of random variables and let r , t ,m,  and s be 
defined as in the theorem above. For any  CY > 1, the  smooth entropy of  X with,in 
2-"/ In2 in t e r m s  of relative entropy with probability 1 - 2-' - 2- - t  satisfies 

log 1x1 + t achieves this and applying Theorem 3 completes thc proof. 

T 
@(X) 2 min H , ( X )  - log(m. + 1) - - - t - 2. 

X € X  a - 1  

The corollary follows from the fact that the oracle knows the distribution of 
the random variable X E X to be smoothed and can prepare the side information 
accordingly. Especially for large alphabets, these results can yield much better 
bounds on smooth cntropy than R h y i  entropy of order 2 .  The logarithmic term 
vanishes asymptotically with the alphabet size: For any a > 1, the ratio between 
smooth entropy and the logarithm of the alphabet size is asymptotically lower 
bounded by the ratio between RCnyi entropy of order a and the logarit,hm of the 
alphabet size. 

Example 2. Consider the random variables X p  with alphabet (0, l}" and distri- 
bution 

for /3 << n. (With ,O = 2 this is the example from [2].) The lower bound on P(X) 
by R h y i  entropy of order 2 is weak because H 2 ( X )  < n/P. However, H ( X p )  is 
very close to n bits. Figure 1 displays the Rknyi mtropy H,(Xp)  for 1 5 CY 5 2. 
For Q: close to 1, it is almost equal to H ( X p )  M 71. 

Using Rknyi entropy of order 2, Corollary 2 shows that !P(X8) within 2-"/ ln2 
with probability 1 is at  least H 2 ( X 8 )  FZ n/8.  Allowing failure of the bound with 
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Fig. 1. RCnyi entropy H,(Xp)  as function of a! between 1 and 2. The random variables 
Xp for p = 1 6 , 8 , 4 , 2  (from below) are defined as in Example 2 with TZ = 10000. The 
graph shows that, together with Theorem 8, RCnyi entropy of order a close to 1 can 
yield much better bounds on smooth entropy than RCnyi entropy of order 2. 

probability Z-19, the lowcr bound by Theorem 8 on 9 ( X 8 )  with probability 
1-2-19 is about n-logn-222 (using R6nyi entropy of order a = 1.1, T = t = 20, 
and simplifying the choice of m such that m = loglXl = n) .  With n = 10000 
(as in Figure l), P(X8) 2 9764 with pIobability 1 - 2-19, compared to R h y i  

0 
For CY -+ 1, the bound of Theorem 8 is reduced to the Shannon entropy. But 

as shown in Example 1, H ( X )  yields a weak lower bound for 9 ( X ) .  The next 
example shows this transition for LY -+ 1. 

Ercnmple 3. Let X be a random variable with alphabet (0, l}'nonn. We now ex- 
amine the lower bounds on @ ( X )  when H,(X)  > 9000 is assumed for various a 
(see Figure 2). For a 2 2, P(X) >_ H 2 ( X )  >_ 9000 is guaranteed by Corollary 2. 
Theorem 8 shows that 9 ( X )  with probability 1 - 2-l' is close to 9000 for 
between 2 and about 1.05. The bound decreases sharply with (11 + 1. For a = 1, 
if only H ( X )  2 9000 is assumed, the random variable constructed in Example 1 

0 

entropy of order 2 from which we can conclude only P(X8) 2 1250. 

has H z ( X )  = 6.64 and has alrriost no smooth entropy. 

6 A Tighter Bound Using the Profile of the Distribution 

The last section shows how smooth entropy can be lower bounded by Renyi 
entropy of order (Y for any a > 1. This hound, however, is not tight for small 
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Fig. 2. The dependence of the lower bound for P(X) on the order a of RCnyi entropy. 
The graph shows the lower bound of Theorem 8 on the smooth entropy P(X) within 
2-'/ In 2 with probability 1-2" that can be deduced from Ha (X) 2 9000 as a function 
of a.  Note the sharp decrease with a -+ 1. (See also Example 3.) 

alphabet sizes. We derive a tighter bound in this section that depends on an 
assumption about the profile of the probability distribution (defined below). The 
bound is tighter than the one of Theorem 8, especially for smaller alphabets. 

We use again log-partition spoiling knowledge U E U = (0, . . . , m} as defined 
above. For a fixed value rn, define the profile 7 r ~  of the random variable X as 
the function 7 r ~  : U + N such that for u < in 

and 

The expected difference (over U )  between the logarithm of the profile 7r,x (u) 
and the conditional entropy of X given U, H ( X I U  = u), can be used to obtain 
a lower bound on smooth entropy. Examining the structure of' the probability 
distributions P x l ~ = ~  for all u such that T X ( U )  2 2, we see that the logarithm of 
the profile, 7rx(u), is close to  the conditional entropy, H(XJU = u ) ,  in the sense 
that 
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(h denotes the binary ent,ropy function.) Note that H(XJU = u) = 0 for the 
remaining 11 with 7r.x (u )  < 2. Therefore, 

Eo[logrx(u)] L H ( X I U )  >_ E u [ l o g ( r x ( U )  - I ) ] .  (11) 

We are now ready to state the niain result, of this section. 

Theorem 10. Let S he a random variable? let c > 0, let  m he an. integer such 
that rri 2 log 1x1 + log k, let t > 0 ,  and let k be a positive inteyer. Let U be the 
log-partition side information for X antroduced above and let 

p(u) = max { log r , ~  (u) - EU [ Iog(ns(U - I ) ] ,  

EU [log X X  ( U ) ]  - ~ ( T X  (u) - 1) } . 
for aliu such that r.y(u) 2 2 and p(u)  = Eu[logrx(U)]  f o r  u such the trx(u)  < 
2 .  If 

E u [ p ( U ) k ]  5 E .  t k ,  

the followin,g lower bound o n  the smooth entropy of X within 2-"/1n2 i n  t e r n s  
of relntitie entropy holds with prahahility at least 1 - 26:  

9 ( X )  >_ H(X'IU) - t - 2 2 H ( X )  - log(m + 1) ~- t - 2. 

Proof. Let y(u) = H ( X I U  = u )  be a function of u E U that denotes the entropy 
of X given U = u and consider the random variable C = y(U). The expectation 
E[C] is equal to  H ( X I U )  2 H(X) - log(m + 1). Applying the k-th moment 
inequality ( l) ,  we see that 

P[IC - 

If this probability is small, 
bility. IJsing (10) and (ll),  

E[IC - EIC]lk] 

then H ( S I U  = u) 2 H ( X I U )  - t with high proba- 
we can hound the probability in (12): 

u ' 7rX ( u )  <2 

:I If (.Y I ( I =  u) < H (  x U )  
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U E U  

where the last step follows form the definition of p ( u ) .  We conclude from (12) 
and from the assumption of the theoreni that H(X1U = u) 2 H ( X I U )  - t  occurs 
with probability at least 1 - 6. It follows from Lerrirria 5 that for u # m 

HZ(xrIU = t L )  2 H(XJU) - t - 2 .  (13) 

But the event U = in has small probability becaiise the choice of in guarantees 
that 

P[lI = r 4  = C I ’ ~ ~ ( ~ )  5 1x1 . 2-.”& 5 F. 

2 :  r,r (z)<z-’- 

By the union bound, the total probability that, (13) fails is 2~ and the proof is 
0 

Example 4 .  Consider again the raridorn variable 5 8  from Example 2. For R = 
100 and desired total failure probability 2-19, the hound of Theorem 8 cannot be 
applied and we have to  resort to R h y i  entropy of order 2 that, shows !P(X8) 2 
12.5 (within 2-“/ In 2 in terms of relative ent,ropy). 

Applying Theorem 10 with c = 2-’”, t = 12, and k = 6,  however, shows 
that !P(X8) 2 84.6. Therefore, a 60-bit, st,ring Y can be extracted from XR by a 
randomly chosen universal hash function such that H(YIT)  2 60 - 2-” /1n2 .0  

As the example shows, the bouiid on smooth entropy by Theorem 10 can 
be much tighter than RCnyi entropy of order 2 and also t,ight,er than thc bound 
of Theorem 8. However, this c:omes at the cost of the stronger assumption that 
must be made in t,erms of the profile of the distribution to be smoothed. 

completed by applying Theorem 3. 
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