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Abstract. We present twoefficient protocols which implement robust threshold RSA 
signature schemes, where the power to sign is shared by N players such that any 
subset of T or more signers can collaborate to produce a valid RSA signature on any 
given message, but no subset of fewer than T corrupted players can forge a signature. 
Our protocols are robust in the sense that the correct signature is computed even if up 
to T - 1 players behave in arbitrarily malicious way during the signature protocol. 
This in particular includes the cases of players that refuse to participate or that 
generate incorrect partial signatures. Our robust protocols achieve optimal resiliency 
as they can tolerate up to ( N  - 1)/2 faults, and their efficiency is comparable to the 
efficiency of the underlying threshold RSA signature scheme. 
Robust threshold signature schemes have very important applications, since they 
provide increased security and availability for a signing server (e.g. a certification 
authority or an electronic cash provider). Solutions for the case of the RSA signature 
scheme are especially important because of its widespread use. In addition, these 
techniques apply to shared RSA decryption as well, thus leading to efficient key 
escrow schemes for RSA. 
Our schemes are based on some interesting extensions that we devised for the infor- 
mation checkingprotocolof T. Rabin and Ben-Or [Rab94, RB891, and the undeniable 
signature work initiated by Chaum and van Antwerpen ICA901. These extensions 
have some attractive properties, and hence are of independent interest. 

1 Introduction 
The idea of distributed signature schemes is to depart from the single-signer approach in 
which one person is the sole holder of a secret key, and to allow a group of people to "hold" 
the key in such a manner that they can, as a group, produce signatures, yet no person on his 
own can generate a signature. The signature which is generated by the group is the same as 
if it were generated by a single signer. 

We say that a distributed signature scheme is a (T,  N)-fhresholdsi~nalure scheme, if 
given a message rn, and a group of N players, where each one holds a part of a secret 
key, any subset of T or more players can generate the signature for m. We say that the 
scheme is secure or unforgeable if no coalition of fewer than T players can produce a 
valid signature on a new message, even after the system has produced many signatures for 
different messages. Furthermore, a (T, N)-threshold signature scheme is robust or .fuulr- 
tolerant if it can correctly compute signatures, even in the presence of up to T - 1 arbitrarily 
malicious players. 

Note that a simple reconstruction of the key in the hands of a single player at signing 
time would not satisfy our requirement, as it  allows future signatures to be generated by 
this single player (i.e., such reconstruction would create a single point of failure). 

A complete version of the paper is available from http~//w.research.ibrn.com/security/. 
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Robust threshold signature schemes have very important applications, and we shall 
exemplify this briefly. The secret key of a global certification authority will be an attractive 
target for attacks. If the key is held in one site then once this site is broken into, the key is 
exposed. Yet, if the key is distributed among N sites, using a (T, N)-threshold signature 
scheme, then one needs to break into T sites in order to learn the key and forge signatures. 
In addition, once a site is broken into, it might exhibit arbitrary performance, yet the system 
should still be able to generate signatures. Hence, we increase the security and availability 
of a system by distributing the secret key. Furthermore, if the key is held on a single site, 
then signatures cannot be generated if this site crashes. Note that the trivial solution of key 
replication solves the availability problem, yet generates more sites that hold the full key. A 
robust threshold signature protocol can in particular tolerate up to T - 1 such crashes (and 
even arbitrary malicious actions), thus increasing the availability of the signature operation, 
without decreasing its security. 

Threshold signatures are part of the general approach known as fhreshold cryptography 
introduced through the works of Boyd [Boy86], Desmedt [Des94], and Desrnedt and Frankel 
[DF90]. Solutions for the case of the RSA signature scheme are especially important because 
of its widespread use (a de-facto standard). In addition, since in the RSA cryptosystem 
the signing algorithm coincides with the decryption algorithm, solutions to shared RSA 
signatures usually lead to shared RSA decryption procedures which have applications 
to key escrow (cf. [Mic92]). Desmedt and Frankel initiated the study of threshold-RSA 
[DF92], which was followed by De Santis, Desmedt, Frankel, and Yung [DDFY94]. These 
papers provide solutions for the problem of threshold RSA signatures, however, they lack 
the robustness property. 

In this paper, we present an efficient solution for robust (T, N)-threshold RSA signa- 
tures, for any threshold value T 5 [N/21. We use the solution of [DDFY94] as the basic 
threshold RSA scheme. We achieve the additional property of fault-tolerance by employing 
extensions which we developed of the Information Checking Protocol of T. Rabin and 
Ben-Or [Rab94, RB891, and the undeniuble signature work initiated by Chaum and van 
Antwerpen [CA90]. These extensions have desirable properties, and hence can be used in 
other applications as well. 

In a recent and independent work, Frankel, Gemmel, and Yung [FGY96], have extended 
the notion of result-checking introduced by Blum [BK89], to the setting of witness-bused 
cryptographic checking. Among the main motivations for that work is the generation of a 
robust threshold RSA signature scheme. While [FGY96] provides a more general theoretical 
framework, our techniques, specifically designed for RSA, result in much more efficient 
and practical solutions. In particular, our basic protocols involve just a small constant 
number of modular exponentiations while in [FGY96] a very large number of such costly 
exponentiations is required. 

2 Our results 

The basic construction underlying the existing threshold RSA schemes can be roughly 
describedasfollows: givenn = pq,wherepandqare bigprimesandd(n) = ( p - l ) ( q - l ) ,  
the public RSA key is a pair (n ,  e), where gcd (e, b(n) )  = 1, the secret key is a number 
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d, s.t. ed 3 1 mod Q(n), and the signature on a message m is S = ma mod n ’. A 
distributed (TI N)-threshold signature scheme has two phases. In the first one, called the 
Dealing Phase, a dealer shares the secret key d. among the N players, such that each player 
Pz has a “share”d, of d. These shares are created in such a manner, that in the second phase, 
which is called the Signature Phase, when a message m is given, any subset of 2‘ partial 
signatures S, = mdL mod n suffices to generate the signature for n. In reality, the actual 
techniques used in the known solutions to the threshold RSA problem are more involved. 
We further elaborate on the techniques of [DDFY94] in Section 3.1. 

All of the existing schemes require, in order for the generated signature to be correct, 
that all partial signatures s, be correct as well. Consequently, these schemes cannot tolerate 
faults. If we are to confront failures, we must be able to detect which of the partial signatures 
provided by the players are improper. Once the incorrect partial signatures are sieved Out, 
the computation can be carried out the same way as in the case where there are no faults. 

In this paper we concentrate on providing solutions for the problem of detecting an 
improper partial signature. To achieve this goal, additional verijication data, denoted 
vll, vl2, ..., VNN is generated in the Dealing Phase, where V& is a piece of informa- 
tion used by player P, during the signature phase to check the partial signature s, provided 
by another player P, . Following we present a schema that represents in a generic way the 
phases and components of a robust, threshold RSA signature scheme: 

Dealing Phase 

Dealer generates n = p q  
Public key : (e, n) 

Private key : d 
Share key d,  generating 
partial keys dl , . . . , d N  

Black-Box 1 
Dealing of verification data: 

Signature Phase 
(Protocol for player P,) 

__- 
Broadcasts, = (mdt  mod n) 
For each partial signature s, , do: 

Black-Box 2 
Partial Signature Verification 

Generate signature on m from any subs( 
of T good partial signatures S,, , . , s 
_- 

The protocols presented in this paper correspond to the “black-boxes” shown in the schema. 
Using these protocols we can prove the following theorem: 

Theorem 1. There exisi efficient, robust (TI N)-threshold RSA signature schemes for any 
value T _< [N/21 .  

We observe that the performance of these verification protocols adds complexity to the 
threshold cryptosystem. This added complexity can be saved under proper operation of the 
system: each player can try to generate a signature from any subset of T broadcasted partial 

’ For simplicity we assume m to be the hash or other proper encoding of the original message to be 
signed. 
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signatures, and then check the obtained signature using the known public exponent e. If the 
result is a proper signature, there is no need for the verification of the partial signatures. 
Only if the combined signature fails should the verification protocols that we provide be 
triggered. 

In the known threshold RSA solutions (in particular, [DDFY94]), the shares d l ,  ..., d w  
of the secret key d can be viewed themselves as RSA secret keys. Yet, for each of these keys 
the corresponding public exponent, e i ,  is unknown even to the signer, Pi. Furthermore, the 
public exponent ei must not be known, as it would expose +(n) (and hence would allow pi 
to produce full signatures by itself without collaboration of a threshold of players). Hence, 
we are faced with the problem of checking LI purtial signature for which we do not have a 
public exponent. Under the circumstances where the public exponent is not known, there 
must be some other information that allows the verification of such partial signatures. This 
information is the data Vll, Vl2, ..., V” which is generated in the Dealing Phase. 

The trade-offs between different properties of a fault-tolerant threshold RSA depend on 
the particular application of these techniques. For example, some applications may require 
minimal communication between the players during the Signature Phase. Other might need 
that partial signatures will be “publicly verifiable”, namely, that any person, even outside 
the group of N players, can verify every partial signature. The degree to which we trust the 
dealer is another variable requirement. 

We have devised two different protocols for verification of partial signatures to address 
these different requirements. The choice of which protocol to use depends on the needs of a 
specific application. The first protocol has a nnn-interactive Signature Phase, and requires 
each player to hold local secret verification data. The second protocol requires interaction 
in order to verify partial signatures, yet all the verification data is public (in particular, even 
parties not present at the dealing phase can later act as verifiers of partial signatures). In the 
Dealing Phase of the latter protocol apublicly known sample message and its corresponding 
partial signatures are generated. In the Signature Phase of this protocol anyone can verify 
any player’s partial signature by interacting with the signer, and using the sample signature 
as the basis for the proof. Both solutions are efficient computation-wise (a verification 
involves only a few RSA exponentiations). Surprisingly, our non-interactive verification 
is somewhat more efficient in computation than the interactive one. Communication-wise 
the non-interactive solution is clearly optimal, while the interactive solution requires the 
exchange of four messages between every two players. Both protocols leak no information 
that can be used by the players (even malicious ones) to forge signatures. The latter is a 
fundamental property of  our protocols which we prove rigorously using zero-knowledge 
techniques [GMR89]. 

A final comment on the level of trust needed from the dealer, i.e. the entity that shares 
the secret key and the verification data Vl 1 ,  V lZ ,  . “., I/“ among the players. Unfortunately 
it is not known how to efficiently generate in a distributed manner a shared RSA key without 
the help of a trusted party2 (in principle, one could use generic results for secure multiparty 
computation [GMW87], but those are outside the realm of practicality). Hence, at this 
stage of knowledge, we need to assume that a single dealer generates the public/private 
RSA keys, and then this dealer needs to be trusted for the secrecy of these keys. For the 
non-interactive solution we always assume that the dealer (which is active in the dealing 

* Such results are known for discrete log based signature schemes IFe187, Ped91, GJKR961. 
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phase only) is honest. On the other hand, the interactive solution allows for verjfication of 
the actions of the dealer during the dealing phase, including the proper generation of the key 
shares and the sample signatures. Threshold-based key-escrow system is a good example 
of an application where the ability to verify the dealer's actions is important, because in 
key-escrow the trustees need to verify whether a player gives them valid shares of the 
decryption key she or he uses for secret communication. 

3 Preliminaries 

MODEL. We assume that our computation model is composed of a set of N players 
{ P I , .  . . , PN}. They are connected by a complete network of private (i.e. untappable) 
point-to-point channels. In addition, they have access to a dedicated broadcast channel; 
by dedicated we mean that if Pi broadcasts a message, it will be recognized by the other 
players as coming from Pi. 

These assumptions (privacy of the communication channels and dedication of the 
broadcast channel) allow us to focus on a high-level description of the protocols. However, 
it is worth noticing that these abstractions can be substituted with standard cryptographic 
techniques for privacy and authentication. 

THE ADVERSARY. We assume that an adversary, A, can corrupt up to T - 1 of the N players 
in the network. We consider the worse possible kind ofadversary, i.e. a malicious adversary 
that learns all the information held by the cormpted players and hears the broadcasted 
messages. Me may cause corrupted players to behave in any (possibly malicious) way. 
We assume a computationally bounded adversary which is unable to forge (regular) RSA 
signatures. We omit from these proceedings any formal definitions. See tGJKR961 for the 
definition of secure threshold signature schemes (based on [GMR88]). 

3.1 

In [DDFY94] the authors show how to perform threshold sharing of RSA functions. The 
main problem is that it is not possible to use Sharnir's (T, N)-threshold secret sharing 
[Sha79] in a straightforward way, as the secret key d belongs to the ring Z+(,) where 
polynomial interpolation is not always possible. 

De Santis et al. [DDFY94] solve this problem by extending the ring of integers modulo 
$(n) to a structure (a module) where interpolation is always possible. A sketch of their 
work is presented here, but readers are referred to [DDFY94] for complete details. Let G 
be Z+(,) and H be ZA, where n is an RSA modulus. Let K > N be a small prime and 
let u be a root of the cyclotomic polynomial p ( z )  = ~~~~ xj. Consider the ring G[u] s 
G [ z ] / ( p ( z ) )  5 G"-l. Elements in ring G"-l are (a- 1)-dimensional vectorsof elements 
in G. Addition andmultiplication are definedusing the isomorphismto G[z]/(p(z)), where 
toevery element (q, . . . , ~ ~ - 1 )  E G"-l therecorrespondsapolynomial C;:: u j d - ' )  

in G [ z ] / ( p ( z ) ) ,  or element C,",: u3u( j - ' )  in G[u].  If one defines zi %f ~ ~ ~ ' , d .  it 
turns out that all zi's and (zi - z~j)'s have (multiplicative) inverses in G[u]. 

The extended Shamir scheme is then as follows: the dealer chooses a random polynomial 
RovertheringG"-l ofdegreeT-lsuchthat R ( 0 )  = [d,  0 , .  . ., O],andgivesdj = R(z i )  

Threshold Sharing of RSA functions 
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to player Pi. Because of the properties of the ad’s it is then possible to perform polynomial 
interpolation from any T shares to reconstruct [d, 0, . . . , 01 = cj X j  dj where X j  are the 
appropriate Lagrange coefficients. 

However, in our case we need to recover md mod n (the signature on m) rather than d. 

. Given T of the shares S,, one can compute S = nj S;’ , where multiplication and H“-1 

exponentiation in H “ -  are defined as the natural extensions of addition and multiplication 
in G“-l, respectively. The signature md mod n will be the first component of the vector s. 

From the above btief description it is apparent that the correctness of the (interpolated) 
signature computed in this way heavily relies on the correctness of each partial signamre. 

Remark 1: The partial signature of player Pi in this scheme is just a vector of a - 1 “regular” 
RSA signatures. Hence, it will suffice to check each of these component signatures on its 
own. This will allow us in the following to perform operations simply modulo n and 
not in the algebraic structure described above. Thus resulting in a simpler, yet complete, 
exposition of our protocols. 
Remark 2: Throughout this paper we need the following technical assumption. P,!s partial 
signature Si will be accepted as valid if Si -= md* mod n or if Si = -mds mod n. This 
might result in the final interpolated signature being “correct up to its sign”, but this can be 
easily checked (and corrected) using the public exponent e. 

If di = [ d , , ~ ,  . I . d i , ( % - ~ ) ]  E G“-l then Pi broadcasts Si = [mdtf l , .  . . md*.(,-l)] E 

3.2 Notation 

For a positive integer k we denote [k] = { I I  . . . , k}. The public modulus is denoted by 
n. We assume n z pq,  and p = 2p‘ + 1, q = 29’ + 1. where p < q and p ,  q ,p’ ,  q‘ 
are all prime numbers. 2; denotes the multiplicative group of integers modulo n, and 
$(n) = (p - 1)(q - 1) the order of this group. For an element w E Zi we denote by 
o ~ d ( w )  the order of w in ZA and by ind(v) the index of 20 in this group ( it holds that 
ind(w) = 4(n) /ord(w)) .  The subgroup generated by an element w E Z; is denoted by 
<w>. The number d E [d(n)] denotes the (private) signature exponent. For any message 
m E 2; we denote by S, the corresponding sigrlature on m, namely, S, = md mod n. 

def 

4 Non-Interactive Robust Threshold RSA 

Here we present our non-interactive solution to the robustness problem of threshold RSA 
signatures. Section 54.2 contains the protocol for dealing verification information during 
the Dealing Phase, while in section $4.3 we describe the protocol for verification of partial 
signatures during the Signature Phase. (See the schema in Section 2 for a schematic rep- 
resentation of the role of these components in the full threshold signature protocol.) Our 
solution is based on the Information Checking Protocol (ICP) from [Rab94, RB891. The 
original ICP technique is intended for onetime verification of information provided by 
an untrusted party. In our case we extend this technique to verification of multiple partial 
signatures; in particular, we extend ICP to work over the integers rather than over a prime 
field as originally designed. 

To understand the role of the information checking protocol in our non-interactive 
verification, we first give a very rough sketch of the non-interactive solution. Consider two 



163 

players P and V (in our case P is the signer and V is a party that verifies P 's partial 
signature). The prover P holds values d p  (the secret key) and y. The verifier V holds b 
and c,  such that y = bdp  + c .  The values d p ,  y, b and c are dealt to the corresponding 
parties during the dealing phase (and kept secret by the parties). Given a message m, 
the prover generates the partial signature mdp mod n, and the additional information 
my mod n. P gives these values to V ,  who verifies the partial signature by checking 
whether (mdp)bmC = mY(modn). An important technical aspect of this solution is that 
the equality y = bdp + c needs to hold over the integers. The more natural approach of 
generating this equation modulo b(  n), would enable P and V to combine their information 
and compute a multiple of $(n) which, in turn, would allow for the efficient factorization 
of n. In the next subsection we present an extension over the integers of the original ICP 
protocol. 

4.1 Extensions of Information Checking 

The following protocol is carried out by three players: a dealer D. who is non-faulty, and 
two additional players: prover P and verifier V , who can be either faulty or not. In Figure 1 
we present the ICP-Generation protocol over the integers, carried out by the dealer. 

ICP-Gen-Integers 

Input; RSA composite n, secret value d p  E [$(.)I known to D ,  
security parameters 0 5 62 5 1. 

1. Choose b E [n'l] and c E [n1+61+62] with uniform distribution. 
2. Compute y = c + b d p  over the integers. 
3. Secretly transmit d p  and y to the prover P . 
4. Secretly transmit b and c to the verifier V . 

Fig. 1. The ICP Generation Protocol 

In a generic (one-time) application of ICP the variables y, d p  and b, c are used by 
players P and V in the following way: When the prover P wants to prove to the verifier 
V that he holds the value d p  which he received from D, he sends d p  and y to V . Upon 
receiving values d p ,  $ from P , the verifier concludes that d p  = d p  only if ij = b d p  + c .  
For the following we denote Y dAf [n61+', . . . , n1f61f62]. 

Lemma2. Given values d p  E [b(n)] und y E )',for every possible vulue of b there is 
exactly one possible value for c E [n1+a1t6a] suc-h that y = b d p  + c. 

Proof. Since the computation is over the integers, there is exactly one value of c for 
each 6,  d p  and y. Furthermore, if b E [n61] and y E [nblf1,  . . . , n1+61+6a] then value 
c = y - bdp  is contained in [n1+61+61] because 

6 - n l t 6 1 + 6 z  1 1 5 n1+61 - n ' b ( n )  = Yman pbmandp,aa i c I ymax -bmzndmzn - 

which proves the lemma. 0 
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Lenima3. Pr( y @ J! ) 5 A. 
Proof. The nurnber of options to choose different pairs of b and c is n1i61i62n61. 

The range Y is of size n1+61i62 - nlf6I. From Lemma 2 it follows that each value y in 
this range can be generated by n61 pairs (6, c). Consequently, the probability of y falling 

0 outside of this range is 1 - 
n 1 t 6 1 + ~ 2 L n 1 + 6 L ) n 6 1  - - 

n 6 a  ’ n l + 6 1 + 6 2 n 6 1  

Lemma 4. ICP over the Integers. 

Completeness. V P  and V follow the protocol then V always accepts d p .  
Soundness. The probability that P generates d p ,  < such that c + bd> = $ when in fact 

Zero-knowledge. Given b, c the verifier learns no additional inforniation on the value d p .  

Proof. 

& # d p  is at most + A. We denote this occurrence as OC1. 

Completeness. Immediate 
Soundness. Notice that Pr( OC1) 5 Pr( OC1 1 y e J’ ) +Pr( y $ Y ). From Lemma 2 

it follows that if y E J’ then P will be able to generate values &, 6 (where & f d p )  
which satisfy the equation 6 : b$p + c with probability at most -&. Lemma 3 gives us 
the probability that y falls out of this range. Combining these probabilities we prove our 
lemma. 

Zero-knowledge. Values b and c are uniformly distributed and randomly chosen without 
0 any correlation to d p ,  and hence reveal no information on its value. 

4.2 Generation of Verification Data (Dealing Phase) 

In order to generate the data for verification of partial signatures within the context of the 
Dealing Phase, the dealer simply runs the 1CP-Gen-Integers (Figure I >  for every pair of 
players Pi and Pj.  All these invocations have as input the same RSA composite n and 
security parameters 61,62. For the invocation where Pi is the prover P , and Pj is the 
verifier V , the secret key input is d i ,  namely Pi’s secret partial key.3 

It will be seen later that a single pair of values b, c suffices for V to verify multiple 
different signatures. This results in an efficient protocol for the dealer, as the number of 
invocations to the ICP-Gen-Integers protocol during the dealing phase depends only on the 
number of players but not on the number of signatures that the system will need to generate. 
As a result of the complete Dealing Phase, player Pi holds the following values: 

1. His share da. 
2. Auxiliary authentication values ya,l, . . . , y ; , ~  where yi,] E Z is used to prove his 

partial signature to P3.  
3. Verification data V I , ~ ,  . . ., V N , ~ ,  where F,z = (bJ , i l  cJ ,” ,  b,,i E [nJ1] and cj,i E 

[n1+b1+62]. For each j ,  the pair Vj,% is used to verify the correctness of Pj’s partial 
signature. 

As pointed out i n  Section 3.1 we can regard d ,  as a single element in [ ~ ( T z ) ] ,  and carry out the 
computations accordingly. 
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4.3 Partial Signatures Veritication (Signature Phase) 

We show the protocol for verification of a partial signature where there are two players, 
P and V , each holding the data which they received in ICP-Gen-Integers. The protocol 
appears in Figure 2. In the context of the Signature Phase this protocol will be carried 
out by every pair of players. After executing all these invocations of the Non-interactive 
Verification Protocol, player Pi will take a subset of T shares which he has accepted, and 
will generate the signature for m. 

Non-interactive Verification 

Input: Player V : 
Player P : 
Both players: message m E ZA, RSA composite n 

b E [n*l’], c E [n1t61+6,] 

d p  E [9(n)],y = b d p  + c 

I .  P broadcasts the partial signature s = mdp mod n and the auxiliary value 

2. V checks if SbmC = Y .  If yes, he concludes that S = f m d r  mod n and accepts it. 
Y = m Y m o d n  

Fig. 2. The Non-interactive Verification Protocol 

Theorem 5. Non-interactive Verification Assume that a cheating prover P* cannot break 
RSA (inparticular, he does not know and cannot compute the fuctorization of n). Let n = pq ,  
wherep < q ,  p = 2p‘ + 1, q 

Completeness. If P and V follow theprotocol then V ulways accepts the parlial signature. 
Soundness. A cheating prover P’ can convince V to accept S # *mdp mod n, with 

Zero-knowledge. Any (possibly cheating) verifier V* inteructins with prover P does nnt 

2q’ + 1, and p ,  q ,  p‘, q’ are all prime numbers. 

probability at most 5 + 5-, + A. 
learn any inforniation beyond the signature S = mdp mod n. 

Proof. 
Completeness. Immediate. 

Soundness. First we shall examine the case where y E y = [n6It1,. . . , n1+61f62 1- 
Notice that the verifier uses a deterministic procedure to accept or reject the published pair 
s, Y .  Therefore the probability stated in the theorem is taken over these coin-tosses of the 
dealer in ICP-Gen-lntegers which are consistent with the view of the prover (i.e. the value y). 
In order for P to convince V to accept S, Y ,  it must hold that Y = Sb me mod n. We know 
from the ICP-Gen-Integers protocol that y : b d p  +c, and hence m y  (mdp )bmc mod n. 
By dividing these two equations we get that: 

(1) Ym-y : ( S m - d p ) b  mod n 
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This means that Ym-Y must be in the subgroup <Sm-dp >. Let k be the minimal value 
such that Ym--Y = ( S r K d p ) I G  mod n. Consequently, Equation ( I )  is satisfied only if: 
b = k mod ord(Sm-dp) .  Since b is chosen at random with uniform distribution from 
[nsl], the probability that a pair (S, Y) satisfies Equation 1 is 

Because of the special form of n, there are only four elements of Z: whose order is smaller 
than p', namely the four roots of unity. If SmPdp = f 1 mod n then S = f m d p  mod n. 
If the prover could find s such that Sm-dp is a non-trivial root of unity, then he could factor 
n which we assume to be infeasible. For all other choices of S, order o r d ( S m - d p )  2 p'. 
This completes the proof for the case where y E Y .  However, from Lemma 3 we know 
that the probability that y @ y is at most &, by combining these two probabilities we get 
the desired probability. 

Zero-knowledge. Values b and c are picked independently from d p ,  hence they give 
out no information on d p .  Furthermore, knowing b, c and S = mdp mod n, the verifier 

0 can compute Y = m y  = Sbmc mod n. 

5 Interactive Robust Threshold RSA 

The two components of the interactive protocol are the protocol for dealing verification 
information during the Dealing Phase (f5.l), and the protocol for verification of partial 
signatures during the Signature Phase ($5.2). (See the schema in Section 2.) 

The basic idea underlying the interactive solution is that it suffices to know a single 
sample message w and its correct partial signature wdP mod n in order to verify the partial 
signature of any other message m. under the same key dp.  Our solution is based onaprotocol 
due to Chaum and van Antwerpen [CA90], and further developed in [Cha90, BCDP911, 
designed to prove in zero-knowledge the equality of the discrete logarithms of two elements 
over a prime field Z, relative to two different bases. The protocol and the proof presented 
in the above papers do not work over Z, for composite n as required here, in particular, 
since they strongly rely on the existence of a generator for the multiplicative group Z;. 
However an adaptation of the protocol, and a more involved proof, can be shown to help 
solving our problem over Z,. 

5.1 

One of the advantages of our interactive solution relative to the non-interactive protocol 
presented in Section 4 is that it allows to verify the actions of the dealer during the dealing 
phase (still the dealer is trusted not to reveal the factorization of n or the private key d). We 
present the details of verification of the dealer's actions in the Appendix. For simplicity, 
our following presentation assumes a trusted and honest dealer. 

The verification information dealt during the initialization protocol consists of a random 
public sample message w and and its corresponding sample partial signatures wda , for each 
one of the partial keys d, held by the players. The sample signatures are broadcast to all 
players (no secrecy required). See Figure 3. 

Generation of Verification Data (Dealing Phase) 
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Sample-Signature-Generation 

Input: Public: RSA modulus n 
Dealer D: key-shares d ;  E [d(n)], for i = I, 2, . . . , N 

1. D chooses a random value w in 2; and broadcasts values w, = wdS mod n for 
i = 1 , 2  , . . . ,  N .  

Fig. 3. The Sample Signature Generation Protocol 

In terms of our generic schema in Section 2, the verification data is Vj,j = w j  = W*J mod 
n, for all i, j .  Notice that unlike in the non-interactive protocol, here the x , j ’ s  are public. 

5.2 Verification of Partial Signatures (Signature Phase) 

Each player P, checks the partial signatures produced by each other player Pj . For clarity 
of presentation, we concentrate on two players only, the prover (or signer) P and the 
verifier V . The player P has his secret signature key d p  E [Q(n)] and both players have 
access to a publicly known sample message w and its partial signature (under P ’s key) 
wdp mod n. For any a E ZA we denote by S, the corresponding signature of P on a, 
namely, S, = ad, mod n. By ,% we denote the “alleged” signature on a. i.e. a string 
claimed (but not yet verified) to be the signature of z. 

Input: Prover: secret d p  E [95(n)] 
Common: RSA composite n, sample message w t Z:, 

signature s,, message m E 22, claimed 9, 

dcf 
1. V chooses a ,  j E R  [n] and computes R = m‘w3 mod n 

2. P computes SR %f RdP mod n 

3. V verifies that SR = mod n. 

V + P : R  

P + V : s R  

If equality holds then V accepts S ,  as the signature on m, otherwise it rejects. 

Fig. 4. The Interactive Verification Protocol 

Figure 4 presents the basic interactive verification protocol. This description corre- 
sponds to an interactive proof between P and V . The completeness and soundness of the 
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protocol are proved in Theorem 6 below. The protocol as presented is not zero-knowledge. 
(For example, a cheating verifier V’ can choose R in a different way than specified and 
then learn SR, which V’ could not compute by himself.) However, there are well-known 
techniques [GMW86, BCC88, Go1951 to add the zero-knowledge property to the above 
protocol using the notion of a commitmentfindon: Instead of P sending SR in Step 2, 
he sends a commitment cornrni t (S~) ,  after which V reveals to P the values of i and j .  
After checking that R = miwJ mod n. P sends S, to V . The verifier checks that SR 
corresponds to the value committed by P and then performs the test of Step 3 above. 

The zero-knowledge condition is achieved through the properties of the commitment 
function, namely, (I) comrnit(a) reveals no information on a,  and (11) P cannot find z’ 
such that comrnit(z) = cornrnit(z’). Commitment functions can be implemented in 
many ways. For example, in the above protocol cornrnit(S~) can be implemented as a 
probabilistic RSA encryption of SR (the encryption is required to be semantically secure, 
see [GM84, BR94]), using a public key for which the private key is not known to V (and 
possibly, not even known to P ). To open the commitment, P reveals both SR and the string 
T used for the probabilistic encryption. This implementation of a commitment function is 
very efficient as it involves no long exponentiations. 

In the following theorem we state the security properties of the complete Interactive 
Verification protocol. 

Theorem 6. Interactive Verification. Assunze that a cheating prover P’ cannot break 
RSA (in purticulur, does not know and cannot compute lhe juctorization of n), and that w 
was chosen at random. Let n = pq ,  where p < q ,  p 1 2p’ + 1, q = 2q’ + 1, and p ,  q ,  p’ ,  q’ 
are all prime numbers. 

Completeness. I f P  and V follow the protocol then V always accepts. 
Soundness. No cheating prover P’ can convincv V to accept Sm # *map mod n, e.rcept 

Zero-knowledge. Any (possibly cheating) verifier V* interacting with prover P does not 
for a negligible probability 

learn any information beyond the signature S, = mdp mod n. 

The proof of completeness of the protocol is immediate and the zero-knowledge property 
is argued above. Here we prove the soundness property. The following is the core claim 
behind the proof of soundness. 

Lemma 7. The prover’s cheating probability in the Inteructive Verijication Protocol is at 
+ 2&1. 

n 

For space limitations we omit the proof of Lemma 7 from these proceedings. We stress that 
the above lemma holds also for a computationally unbounded cheating prover, and that the 
bound in the lemma is tight for such a prover (up to the term 2*). Next, we show 
how to apply the lemma to prove the soundness of the protocol in the case that n is chosen 
with the particular form stated in Theorem 6, and the (cheating) prover cannot break RSA. 
Proof of Theorem 6 (soundness). The bound in Lemma 7 is given in terms of the order of 
some elements in the group 2;. Thus, in order to establish the exact bound for the above 
special form of n we need to study the order of elements in this particular group. There is 
one element of order 1 in Z; (the unit element), 3 of order 2 (-1 and two other non-trivial 
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roots of 1 ), 4p’ + 4q‘ - 8 elements of’ order ranging between p’ and 29’, and the rest have 
all order which is at least p’y‘. (This can be argued based on the special form of p and 
q and the order of elements modulo these primes, and then using the Chinese Remainder 
Theorem). In particular. the order of w, which is chosen at random, is at least p’y’, with 

4 (notice that #(n)  = 4p‘y’j. 
As in the non-interactive protocol (see soundness part of theorem 5), a successful 

cheating of P’ happens when it convinces V to accept a value grn = bmdp mod n, for 
b # f l  mod n. Notice that the prover (who knows d p )  can compute b. This excludes 
the possibility that b would be one of the non-trivial square roots of I ,  since knowledge of 
such an element would allow the prover to factor n. Therefore, b = Sm /mdp must be of 
order at least p’. Finally, the expression Fe is at most l/p‘ in this case. The corollary 

in Lemma 7. 0 

probability 1 - 4 p’tq’  2 1 ~ ,”.. and then ind(w)  which equals 4(n) /ord(w)  is at most 

then follows by replacing these values in the bound expression oTd(d,\2dp rnd w ~ + 2EZ.gEl 

6 Conclusions and Further Applications 

We presented two protocols for verifying partial signatures. The first protocol is a non- 
interactive one, the second is interactive, yet provides the ability to have public verification 
of the partial signatures. Both protocols are low on computation and communication. Thus, 
achieving an efficient, robust, threshold-RSA signature scheme. 

Our techniques are closely related to the notion of undeniable signatures [CA90], 
arid can fomi the basis for RSA-bascd undeniable signatures (known undeniable signature 
schemes are based ondiscrete logarithm-based systems, not on RSA). Undeniable signatures 
are characterized by the fact that public information is not sufficient in order to verify the 
signature but interaction with the signer is required for such verification. The techniques we 
present can be further applied to separate between the signing and verification processes in 
the sense that a signer could delegate the ability to verify signatures to a third party while 
the latter cannot forge signatures. 

We mention again the applicability of our results to key-escrow systems in which a 
user shares its decryption capability with a set of escrow agents ([Mic92, DDFY941). The 
techniques for shared RSA signature generation apply to shared RSA decryption as well. 
Using these mechanisms, a user (acting as the dealer) shares its private decryption key with 
a set of agents, such that the cooperation of at least a threshold of these agents is required 
in order to decrypt messages intended for that user; no coalition of less than T agents 
can decrypt such messages or learn about the user’s decryption key. In this application 
the verifiability of the dealer’s actions is particularly important since the latter may have a 
strong interest to prevent the eventual decryption by the agents of messages intended for 
hidher. 
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A Verifying the dealing phase 

In this section we show how to verify that the dealer performs correctly the sharing of the 
keys and of the verification data in the interactive protocol of Section 5. This will allow us 
to reduce significantly the level of trust on the server that initializes the system. Still we 
need to trust the dealer not to communicate the factorization of n (or the secret exponent 
d) to any players. However, the ability to verify that the dealer deals correct and consistent 
information is a fundamental aspect to guarantee the successful operation of the system 
during the signature phase. In what follow we sketch the main aspects of the verification 
protocol. Full details, including the actions of the players in case of detection of dishonest 
behavior, will appear in the complete version of the paper. 

GENERATION OF w. In order to make sure that the sample message w is chosen at random, 
the players collectively generate it by using some protocol for collective coin toss, thus 
dispensing of the dealer for this choice. 

VEIUFICATlON OF SHARES AND SAMPLE SIGNATURES. The following is a procedure by which 
each player can verify the correct dealing of d into the shares d l ,  . . . , d N ,  and the correct 
value of the sample signatures wi wd’ mod n. (In the sequel we omit the mod n 
notation.) Verifying the correctness of the shares means that the values d i  all lie in a unique 
polynomial of degree T - 1 whose free coefficient is d (the secret exponent of the collective 
signature). The values wi are correct if they correspond to the partial signatures wd* for 
the verified shares di .  Let 21, . . . , ZN be the values used for polynomial evaluation in the 
share generation procedure of [DDFr’94], and let zo = 0. Let aij, i = 1,2 ,  . . . , T, J’ = 
0,1,  . . . , N, be interpolation coeflcients such that for any polynomial f of degree T - 1, 
and for j = 0, 1. . . , N it  holds that f(q) = ziz1 ai j f (a i ) .  Since a set of values 
d ~ ,  . . . , d N  is a correct sharing of the value d if and only if there exists a polynomial f of 
degree T - 1 such that d = f ( O ) ,  and d j  = f ( a j ) ,  for j = I ,  2, . . . , N ,  then we get that 
a correct sharing is verified by the equations: 

(A.1) d = z T = l a i o d ,  and d j = C i = l a j J d i ,  f o r j = T + l ,  . . . ,  N .  
In our case the explicit values of all the shares di  are not available to each player, therefore 
the checking of correct dealing is done using the equivalent of the above equations “in the 
exponent”, namely, each player verifies that (remember that wi = wdi): 

( A 4  
In order to be able to claim that the verification of (A.2) implies the correctness of (A. I )  we 
need to solve two problems. The first is the fact that there may be a value wi which is not 
a power of w, i.e. there is no value t for which wi = wt .  The second problem is that even 
if the values wi are all exponents of w, the equality in (A.2) only implies that the equality 
in (A.l )  holds modulo ord(w),  which may be a problem if w is an element of low order. 

T 

T 

T T 
w = ~ I a , l ( w , ~ L o ) e  and w, = n,=, w;”, f o r j  = T + 1,. . ., N .  
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To verify that the values w; are indeed exponents of w we use the following sub- 
protocol. For each i E [ N ]  the dealer 2) chooses a value r EB [d(n)] and broadcasts 
w' = w'. The players collectively choose a random bit b. If b = 0, 'D broadcasts the 
value T .  otherwise it broadcasts the value da + r mod $(n). In the first case, each player 
can check whether w' = w', and in the second, whether w(TtdL) : w'wi. If wi #<w> 
then the probability that 'D passes this test is 1/2. By repeating this procedure k: times the 
probability that the dealer can cheat goes down to 2-" 

As for the problem that equalities (A.l) are verified only modulo ord(w), we point 
out that because of the assumed form of p and q (i.e., ( p  - 1) /2  and ( q  - 1)/2 being 
prime numbers), the order of a random element w is equal to t$(n)/2 or t$(n)/4 with 
overwhelming probability. In the former case, the order of w is a multiple of the order of 
all other elements in 2; and then (A.2) implies (A.1). In the case ord(w) = 4(n)/4, the 
element -w is of order #(n)/2.  Therefore, one solution to the above problem is to repeat 
the describedprocess for both w and -w. If the above verification procedure is completed 
successfully for both values, then only the value of w is carried to the signature generation 
phase. 

VERIFICATION OF THE PRIME FACTORS. We need to check that the dealer chooses the modulus 
n of the right form, i.e. n = pq with p = 2p' + 1 and q - 2q' + 1. Although this choice 
can be theoretically checked using the general results of [GMW87] on secure computation, 
the resultant solution would be hardly practical. To alleviate this problem one could have 
the dealer generate a large set of moduli nl ,  n2, - . . from which the players collectively 
choose a random element, say ni. Next, 'D shows the factorization into primes of all the 
other moduli in the set. If all are of the right form then ni is chosen as the modulus n, 
otherwise 'D is disqualified. Considering that the set of moduli that 2) can produce can be 
of only moderate size (given the high cost of producing such special primes) a cheating 
dealer will still have a small but non-negligible probability to cheat. (On the other hand, 
given that the dealing phase is done very rarely one may afford having the dealer produce 
a significantly large number of the above moduli, thus considerably reducing the cheating 
probability by the dealer.) 

We summarize the properties of the dealing phase in the following lemma. 

Lemma 8. Assume that the composite n is chosen as specijiedand let T 5 rN/21. Ifthere 
are at most T ~ 1 cheating players during rhe above dealing phase, and the deuler is not 
disqualified, then the good players end that phase with correct partial signatures on w for 
every non-disqualijed player, and the corresponding shares di interpolale to the correct 
exponent d, us chosen by V. Moreover, if the dealer i s  hones1 nothing is learned by any oj" 
the players that can help a coalition of less than T players to forge u signature. 

' Another option is to test only w. If o r d ( w )  = 4(n)/2 then no cheating for D is possible. If 
o r d ( w )  = d(n) /4  = p'q' then the only possible cheating by D is to deal instead of the right 
exponent d ,  the exponent d' = d + p'q' (or d' = d + 3p'q ' )  which satisfies all equations for w 
but not for values 20' of order 2p'q'. However, even in this case the equations are satisfied up to 
their sign (since in this case wtd' = -wrd) ,  and as stated in Section 3.1 getting a right signature 
except for the wrong sign is acceptable in our setting. 
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