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Abstract Elliptic curves over the ring Z / n Z  where R is the product of 
two large primes have first been proposed for public key cryptosystems 
in [4]. The security of this system is based on the integer factorization 
problem, but it is unknown whether breaking the system is equivalent 
to  factoring. In this paper, we present a variant of this cryptosystem 
for which breaking the system is equivalent to factoring the modulus n. 
Moreover, we extend the ideas to get a signature scheme based on elliptic 
curves over ZInZ.  

1 Introduction 

In recent years, elliptic curves over finite fields have gained a lot of attention. T h e  
use of elliptic curves over finite fields in public key cryptography was suggested 
by Koblitz [3] and Miller [7]. The  security of these cryptosystems is based on 
the difficulty of the discrete logarithm problem in the group of points on a n  
elliptic curve. Later Vanstone et. al. proposed to use elliptic curves over the  ring 
Z/riZ,  where n is the  product of two large prime numbers [4]. The  security of 
their public key cryptosystem is based on the factorization problem for n,  but i t  
is not known whether decryption is equivalent t o  factoring n. They use elliptic 
curves of special form such tha t  the factorization of n directly givcs the order 
of the group E ( Z / n Z ) .  The  knowledge of the group order is important in the 
decryption proccdurc. A detailed description of all these systems can be found 
in [ 6 ] .  

* Author was s u p p o r t e d  by the Deiitsche Forschungsgemeinschaft 
U. Maurer (Ed.): Advances in Cryptology - EUROCRYPT '96, LNCS 1070, pp. 49-59, 1996. 
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On the other hand, there exist several RSA-variants equivalent to  factoring, 
see for example [lo]. We use similar ideas to develop a new public key cryptosys- 
tem based on elliptic curves over the ring Z/nZ. For the new cryptosystem, 
decryption is equivalent to factoring n. Moreover, we discuss a generalization of 
our ideas to  get a public key signature scheme using elliptic curves over Z / n Z .  

The remainder of the paper is organized as follows. Section 2 gives a short 
introduction to elliptic curves over Z/nZ. In Sections 3 and 4, we describe the 
cryptosystem and the signature scheme. Section 5 describes some algorithms 
needed in the decryption part and proves the security of the system. Finally, 
Section 6 makes some concluding remarks. 

2 Elliptic Curves over Z/nZ 

In this section we will introduce basic facts about elliptic curves over the ring 
Z / n Z ,  where n is a square free rational integer not divisible by 2 and 3. A 
detailed description of the theory of elliptic curves can be found in [9]. 

Definitionl. Let n E IN be not divisible by 2 and 3. The projective plane 
P 2 ( Z / n Z )  is the set of all triples (z, y, z )  E (Z/nZ)3 - { ( O , O ,  0)) modulo the 
equivalence relation 

(2, y, z )  N (d, y', 2') 3X E (h/nH)" with 2 = X x', y = X y', z = X z' . 

Let a ,  b E Z / n Z  with 4a3 + 27b2 E (Z/nZ)*. Then the set of points on the 
elliptic curve E = (u ,  b) over Z / n Z  is defined as 

E ( Z / n h )  = (x : y : 2) E P2(+/nZ) 1 y2z 5 x3 + azz2 + bz3 mod n }  . { 
The point (0 : 1 : 0) is called point at infinity. 

Let the prime factorization of n be given as 

k 

i = l  

where pi are distinct prime numbers greater than 3. Using the Chinese Remain- 
der Theorem it is easy to show that there is a bijection 

E(Z/nZ) "= E ( + / p l n )  x . . .  x E ( Z / p g )  . (1) 

This bijection maps a point (z : y : z )  E E(Z/nZ) to a tuple of points 

((z m o d p l  : y r n a d p l  : z modpl) ,  ... ,(z modpk : y inodpk : z modpk)) . 

Note that (x mod pi : y mod pi : z mod p i )  indeed is a point on E(Z/piZ) for 
all 1 5 i 5 k. It is well known that the set E ( H / p Z )  (where p is a prime greater 
3) has the structure of a n  abelian (usually additively written) group, where 
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(0 : 1 : 0)  is the zero element (see [g]). Using the bijection (l), we can define an 
addition on E(+/nZ) ,  such that E(+/n+) also forms an abelian group. 

Usually, one has a slightly different notation for points on elliptic curves. 
Assume that the z-coordinate of the point (z : y : z )  E E ( Z / n Z )  is coprime 
to n. Then there exists a triple (5, d ,  1) in the set (x : y : 2). Such a point can 
be represented as a pair (2 ,y) .  On the other hand, points which can not be 
represented in this way directly lead to a factorization of n. It seems to  be very 
unlikely to find such points, because the factorization problem is expected to  be 
hard. Therefore we will represent points as a pair of a z- and y-coordinate. 

With this representation, we can use exactly t,he same formulas for addition 
in E ( Z / n Z )  as given in [9] for fields. But note that there is a tiny probability 
that these formulas fail (which is equivalent to  finding a factor of n).  We will 
only describe the formulas for doubling points. 

Let, E = ( a ,  b )  E (+/nZ)2  be an elliptic curve and P = (z, y) E E ( Z / n Z )  
be a point with order greater two. Then we can double P ,  i.e. we can compute 
the point 2 .  P = ( X ,  Y), using the formulas 

X = ( 3 ~ ~ + ~ 1 ) * ( 2 y ) - ~  , 
x = - 2 2 + x 2 ,  

Y = - y + X ( z - X ) .  

3 The Public Key Cryptosystem 

In this section we will describe the new public key cryptosystem based on el- 
liptic curves over Z / n Z .  The security of this system is based on the integer 
factorizatioii problem, a5 will be S~IOWII  later. 

11 mod 
12. As remarked in [lo], each square in (Z/nZ)* has exactly four square roots of 
whom exactly one is itself a square (especially, n is a Blum integer). Moreover, 
for every element in ( Z / n Z ) *  there exists exactly one cube root. We can classify 
the square roots of a square K even further: exactly two square roots of K.  have 
Jacobi symbol +1 (so called type I roots), the two others have Jacobi symbol -1 
(type I1 roots). If a is a type I root of a square K (resp. type I1 root), then -a is 
the other type I root (resp. type I1 root). Moreover we can distinguish between 
a and -a: consider elements in (+/nZ)* as numbers in the set (1,. . . , n - 1). 
Then exactly one of the two elements a and --a is an even number (note that n 
is an odd number). For a E (Z/n+)*, we define lsb(a) to be the least significant 
bit of the “numbern a. Thus, given a square K E (Z/nZ)*, we can identify each 
square root of K with the help of two bits, the type and the least significant bit. 

The keys of the cryptosystem are then given in the following way: The public 
key of Bob is the modulus n. The two prime factors p and q of n form the private 
key of Bob and are kept secret. 

Assume that Alice wants to send a “message” rn to Bob, where 0 < m < n 
(in the following we always assume that text messages are transformed into 

Assume that n is the product of two large primes p ,  q ,  where p ,  q 
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numbers in some publicly known way). She encrypts this message m with the 
help of Bob’s public key in the following way: 

Encryption procedure: 

(1) 
(2) 
(3)  
(4) 
( 5 )  

(7 )  

choose X E Z / n Z  - (0) at random. 
set P = (m2 ,  A m3).  
set a = X3 and compute b = ( A 2  - 1) m6 - a m 2 .  
if (gcd(4a3 + 27b2, n )  > 1) then 

return (protocol error: 4a3+27b2 E 0 mod 11 or factor of n found) 

(6) fi 
send E = ( a ,  b ) ,  ~ ( 2 .  P), type(y(2. P ) )  and lsb(y(2 P ) )  to Bob. 

Note t,hat the computation of the gcd in step (4) can be omitted, if one accepts 
that the probability of “guessing” a factor of a large integer n is extremely small. 
Then the encryption procedure can be done with only a few multiplications and 
one inversion modulo R (in the doubling part of P ) .  

Assume that Bob receives an encrypted message El ZQ, t ,  I ,  where E = (u ,  b)  
is an elliptic curve ovcr Z/nZ, ZQ E Z/nZ and t ,  1 are two bits. He can decrypt 
this message using the following decryption procedure: 

Decryption procedure: 

compute the square root YQ of Z; + o TQ + b with type t and lsb 1.  
set Q (ZQ, YQ). 
compute all points P, E E ( Z / n Z ) ,  1 5 i 5 s, such that 2 .  P, = Q. 
compute set I = {I  5 i 5 s ;  u2 = y(PZ)Ge(P,)-9}. 
if (#I > 1) then 

return (protocol error: more than one solution) 
else 

return (rn = Z / ( P ~ ) ~  .(PI)-* o- l )  

Note that in step (8) the index set I must have only one element, such that 
the notation PI denotes the point P with the index given in I. The correctness 
of the decryption algorithm follows directly since the “correct plain text point” 
P satisfies both tests in step (3) and (4). 

The coefficient a of the elliptic curve E determines X exactly. However, the 
determination of X given only the ciphertext is supposed to be difficult if the 
factorization of n is unknown. If an intruder would know A, then the cryptosys- 
tem would be equivalent to the cryptosystem of Williams [lo], as was pointed 
out to us by M. Joye and J.-J. Quisquater [l]. 

In the following theorem, wc will consider thc case that the index set has 
more than one element. 
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Theorem2. The probability that the index set I in step ( 4 )  of the decryption 
procedure has more than one element and we cannot factor the modulus n i s  at 
most 11s2/(n - I) .  

Proof. We have shown that the input to the decryption procedure uniquely de- 
termines the point Q on the elliptic curve E.  By construction, there is a point P 
on E (“the embedded message”) which satisfies the conditions in step (3) and (4) 
of the decryption procedure. Then we can express the coefficients of E and x(Q) 
as rational functions in x(P)  and X (in the following we will consider the coef- 
ficients of all polynomials as rational functions in X and x(P)).  In Lemma 3 we 
will show that there exists a degree 4-polynomial f ( X )  E (+/nH)(X, z(P))[X] 
such that 2-coordinates of points passing test (3) are zeros o f f .  Passing step (4) 
means that z-coordinates of such points have to be zeros of a degree 9-polynomial 

Assume that there exists a point P2 different from P which passes both 
tests. Then x(P2) has to  be a zero of the remainder k ( X )  of g(X)/(X - z(P)) 
and f ( S ) / ( X  - x ( P ) ) ,  which is a degree 2-polynomial (or we find a non trivial 
factor of n).  On the other hand, we know that P 2  is the sum of P and a two- 
torsion point ( r ,  0 )  € E(Z/nZ) .  We express the 2-coordinate of P 2  as a rational 
function in x ( P )  and T and substitute this expression into k ( X ) .  Using the fact 
that rC3 + a  r + b 0 mod n, we obtain an equation in x(P)  and X which must be 
zero. This equation has “degree” 118 in A. Therefore, for given and fixed x ( P ) ,  
there exist a t  most 1182 different values for X such that this equation vanishes 
modulo n. Since we choose X at random in step (1) of the encryption procedure, 

0 

g ( X ) .  

the probability of choosing a “bad” X is at  most 11g2/(n - 1). 

Since the modulus n has to be a number difficult to factor (i.e. it should be 
sufficiently large), Theorem 2 shows that the error probability for the decryption 
procedure is very small. 

We have not yet mentioned how to solve the so called square root problem i 7 ~  

E ( Z / n Z )  in step (3) .  We will explain an algorithm for doing this in Section 5 .  
In addit>ion, we will give an upper bound for the running time of the encryption 
and decryption procedure in Theorem 5 .  In the following section we will explain 
how the idea of using square roots of points on elliptic curves over +/nZ can 
be used to  construct a public key signature scheme. 

4 A Signature Scheme 

In this section we extend the ideas given in the last section to  describc a public 
key signatlire scheme. Assume that the public key and private key of Bob are 
chosen as in the last section, i.e. Bob’s public key is an integer n which is the 
product of two primes p ,  q G 11 mod 12 and his secret key is the knowledge of the 
two priine factors p ,  q of n. We assume that some publicly known cryptographic 
hash function is used to compute fingerprints for messages. 
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Signing a message m: 

(1) 

(2) 

(3) 

compute a fingerprint 0 5 rn’ < n for the message m using a cryp- 
tographic hash function. 
find A, C E (Z/nZ*) such that for the elliptic curve E = (A3, . )  we 
get ~ ( 2 .  (C2,  X C3)) = rn‘ and y(2 . (C2,  AC3))  has type I. 
return (Signature for m‘ is (C, A)) 

Note that the formulas for doubling a point do not depend on the coefficient 
b of the given elliptic curve. As will be shown in the next section, the problem 
in step (2) can be solved by finding a root of a polynomial in the two variables 
X and C. Since the factorization of n is known to Bob, he solves this problem 
modulo p (resp. q )  and uses the Chinese Remainder Theorem to compute the 
values for A, C modulo n. The checking of a signature is then obvious: 

Checking a signature: 

(1) 
(2) 
(3) 
(4) 
(5) 
(6) return (accept thc signature.) 
(7) else 
(8) return (reject the signature.) 

set a = A3 and P = (C2,AC3). 
compute Q = 2 .  P on E = (u ,  (A2 - 1)C6 - aC2). 
check whether x ( Q )  = rn’ and y(Q) has type I .  
check whether m‘ is a correct fingerprint for m. 
if (all tests are successful} then 

It  should be mentioned that Bob should be very careful in signing arbitrary 
messages. As will be shown in Theorem 6, this signaturc scheme is very vul- 
nerable to a chosen plaintext attack where a hash value m’ is given to Bob for 
signing. 

In the next section, we will consider the square root problems for various situ- 
ations. The interesting cases are elliptic curves over prime fields and over Z/nZ, 
where the factorization of n is either known or unknown. We will show that the 
ability of signing arbitrary messages is equivalent to knowing the factorization 
of n. 

5 The Square Root Problem in E ( Z / n Z )  

In this section, we will consider the missing parts in the decryption algorithm. 
Obviously, decryption can be done if we can invert the operation of doubling 
a point. Therefore we study the so called square root p.roblem, which has the 
following form: 
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Given a point Q E E ( Z / n Z ) .  Compute all points P E E ( Z / n Z )  with 

2 - P = Q .  

Such points P will be called square roots of Q. Note that the notation “square 
root” is used to show the analogy to the corresponding problem for the ring 
(Z/nZ)*. In the following subsection, we describe a solution to  this problem if 
n is a prime number. 

5.1 

Let E be an elliptic curve defined over a prime field Z / p Z ,  where p is a prime 
number greater than 3 and let Q be any point on E for which we want to 
solve the square root problem. First note that the existence of a square root is 
not necessarily assured. In contrary, there exist points Q such that there is no 
square root of Q. An easy example for such a situation occurs, if E is a cyclic 
group of even order and Q is a generator of E ( Z / p Z ) .  Nevertheless there is an 
algorithm for solving this existence problem and the square root problem for Q. 
The algorithm is based on the following lemma: 

Lemma3. Let E = ( u , b )  E (Z/PZ)~ be an elliptic curve over Z / p Z  and Q = 
(ZQ, y ~ )  E E ( Z / p Z ) ,  Q # 0. If P E E ( Z / p Z )  is a square root of Q ,  then 
the x-coordinate of P is a root (in +/pH) of the polynomial f(X, a ,  b, X Q )  E 

Computing Square Roots in E ( Z / p Z )  

(+/PZ 1 [XI, where 

f(x, U ,  b, ZQ) = X4 - 4 ZQ x3 - 2 a x 2  - (4a ZQ + 8 b )  x + U 2  - 4 b x ~  . 

Proof. Using the doubling formula (2), we can compute the x-coordinate of 
2 . ( X ,  l‘) for an arbitrary point ( X ,  Y )  of order greater 2 as 

3 X 2 + a  
-2.x + ( 2 y  ) 2  . 

Equalizing this with the x-coordinate of Q and using simple transformations, we 
obtain the result of the lemma. 0 

This lemma is the basis for the following algorithm which solves the square 
root problem in Z/p+. First we check whether the polynomial given in the 
lemma has a root in Z/p+. If there is no root, then there cannot exist a square 
root of Q and we exit. Otherwise we compiite all rooh in Z / p Z  of the polynomial 
f(X, a ,  h,  ZQ), where a ,  b, ZQ are given as input. One should observe that not 
every root t p  E Z / p Z  of f(X, a ,  b, XQ) is actually a z-coordinate of a square 
root of Q. It might be that x$ + a x p  + b is not a square in Z / p Z  and that xp 
is a x-coordinate of a point in the quadratic extension of Z/pZ .  In our context, 
we are only interested in square roots defined over the prime field such that the 
second step of an algorithm has to check whether a root z p  actually is the x- 
coordinate of a point defined over Z l p Z .  In addition, the x-coordinate of a point 
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does not specify the point exactly, since P and -P have the same x-coordinate. 
Therefore we have to check whether 2 .  P = Q or whether 2 .  ( - P )  = Q. These 
observations lead to  the following Algorithm 4 which solves the square root 
problem for prime fields Z/pZ. 

Algorithm4. 

INPUT: Elliptic curve E = ( u , b )  E (Z/pZ)' ,  Q E E(Z/pZ). 
OUTPLJT: Set S of all square roots of Q in E(Z/pZ). 

( I )  s = 0. 
(2) 
(3) 
( 4 )  

compute all roots of the polynomial f(X, a ,  b,  x ( Q ) )  in Z/pZ. 
for (all  roots x p  computed in step (2)) do 

if (x$ + a z'p + b is a square in +/p+) then 
compute a square root y p  of x; + a xp + b mod p. 
check whether 2 . ( z p ,  y p )  = Q or 2 . ( x p ,  -yp)  = Q, add a f o m  
square root to S .  

(5) 
(6)  

(7) fi 
(8) od 
(9) return (S) 

All steps of Algorithm 4 can be done using a factorization routine for polyno- 
mials over Z/pZ. There exists a probabilistic algorithm which computes all roots 
of a fixed degree polynomial modulo a prime p in expected time O ( l ~ g ( p ) ~ )  (for 
a detailed treatment of polynomial factorization see e.g. [S]). Thus the expected 
running time of Algorithm 4 is O ( l ~ g ( p ) ~ ) .  

5.2 

Next we discuss the square root, problem for elliptic curves over a ring Z / n Z  
where n, is a composite number. We distinguish two situations: 

Computing Square Roots in E ( Z / n Z )  

Factorization of n Known Let us first consider the problem when the fac- 
torization of n is known, e.g. 

k 

i = l  

and pi E lF'p23. Using the isomorphism map (1) defined in Section 2, the square 
root problem in E(Z/n+)  can be reduced to the solution of k many square root 
problems in E(+/p;Z), 15 i 5 k. 

Assume that we want to compute all square roots of a point Q E E(+/nZ) .  
For all prime factors pi of n we proceed in the following way: first reduce the 2- 
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and y-coordinate of Q modulo pi and obtain Qpi  E E ( Z / p i Z ) .  Then we compute 
all square roots of the reduced point Qp, in E ( Z / p i Z )  with Algorithm 4. If there 
exists no square root of Qp, ,  we have proven that there cannot exist a square root 
of Q in E ( Z / n Z )  and we return. Otherwise we know sets Si of all square roots 
of Qp,  for all 1 5 i 5 k .  Since the map (1) is an isomorphism, we can compute 
all squa,rc roots of' Q in E ( Z / n Z )  by using the Chinese Remainder Theorem for 
all elements of S = S1 x . . . x S k .  Clearly, this shows that the number of square 
roots of' Q in E ( Z / n Z )  is exactly the product of the cardinalities of the sets 
Si, 1 5 i 5 k. Obviously, two square roots can only differ by a point of order 
2. It is well known (see [9]) that there are at  most 4 points of exponent 2 in 
E(Z/p;Z) such that #S ,  5 4. Therefore the square root problem with given 
factorization of the modulus n can be solved in probabilistic time 0 ( 4 k  
where k is the number of prime factors of the modulus n. 

It is well known that the extended euclidean algorithm for computing inverses 
in (Z/nZ)* needs time O(log(n)'). Using these observations in the special sit- 
uation of the cryptosystem presented in Section 3, wc can derive the following 
running time result. 

Theorem 5.  T h e  encryption procedure takes t i m e  0(10g(n)~) ,  dccryption can be 
done 'kii probabdiutic t i m e  O ( l ~ g ( n ) ~ ) .  

Factorization of n Unknown The security of the cryptosystem presented in 
Section 3 is based on the intractability of solving the square root problem in 
E ( Z / n Z )  when the factorization of n is not known. In this section we will show 
that the existence of an algorithm for decrypting encrypted messages without 
knowledge of the factorization of the modulus n would induce a probabilistic 
polynomial time algorithm for factoring n. 

Theorem 6. A s s u m e  there is a n  oracle which can decyypt encrypted messages. 
T h e n  there exists a probabilistic polynomial t i m e  algorithm for factoring n. 

Proof. We use the help of the oracle to compute two square roots of different 
type in (Z/n+)*.  This will give us a non trivial factor of n. We proceed as 
follows: 

1. rhoose element,s K ,  X E (Z/nZ)* at random. 
2. compute a = A3 and b = (Az  - 1) K' - a K'. 

3. compute X Q  = (9 - 8 X2)  rig + 6 tc4X3 + XG) (4 X2tcG) 
- 1  

and ( 
t = type (2 X ((36 X2 - 27 - 8 X4) K" + (12 X2 - 27) X3tcX - 9 n4XG - X9) ) . 

4. If type(K) = t ,  then call the oracle with input E = (a ,  b) ,  X Q ,  type I1 and 
arbitrary lsb; otherwise use the input E = ( a ,  b) ,  X Q ,  type I, arbitrary lsb. 
Tlic oracle outputs a message m. 

5. compute a non trivial divisor of n as gcd(K - m, n) .  
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We have to show the correctness of this procedure. Assume that m E (Z/nZ)* 
such that m2 = K’ and set P = (m’, X m3). Then P is a point on the elliptic 
curve E = (a,  b )  computed in step 2. We compute the 2-coordinate of 2 P as 

(9 - 8 A’) m8 + 6 m4X3 + X6 
4 X2m6 

x ( 2 . P )  = 

Since tc2 = m2,  the value ZQ computed in step 3 is equal to ~ ( 2 .  P ) .  If we 
compute the Jacobi symbol of y(2 - P )  over n,  we obtain 

2 X ( ( 3 6  X2 - 27 - 8 X4) ml’ + (12 X2 - 27) X3m8 - 9 m4X6 - A’) 
n 

Therefore the choice of the type in step 4 of the above procedure guarantees that 
the oracle indeed “computes” a message rn whose type is different from type(tc). 
Hence, we know two square roots of K’ of different types (namely K and m), 

0 

This theorem shows that the ability to decrypt an arbitrary message without 
knowing the factorization of the public key n is equivalent to factoring n. Since 
the factorization problem for integers is believed to be hard, it should not be 
possible to decrypt arbitrary messages without the secret key. Exactly the same 
arguments as given in the proof of Theorem 6 can be used to show that the 
ability of signing arbitrary messages is equivalent to factoring n. 

In the last section of this paper, we will discuss some practical aspects of the 
described cryptosystem. 

which surely factors n and we are done. 

6 Advantages and Disadvantages 

The cryptosystem presented in this paper is a generalization of the system pre- 
sented in [4]. Using small “encryption exponents” as 2 in our system has the 
advantage of speeding up the encryption process. On the other hand, our de- 
cryption process seems to be a bit more difficult than the decryption process of 
[4], but usage of known root formulas for polynomials of degree 4 might speed up 
our decryption procedure. Therefore, a comparison of the two systems can only 
be done by actually implementing and comparing the two systems in practice. 
An implementation of our system will probably be done in future. 

One disadvantage versus [4] is obviously the fact that for the system of this 
paper one has to develop different code for encryption and decryption, whereas 
in [4] en- and decryption can be done by a fast exponentiation. 

A disadvantage of all cryptosystems equivalent to  factoring is the fact, that 
such systems are vulnerable to chosen ciphertext attacks. This was already men- 
tioned in the paper of Williams [lo]. A chosen c.iphertext attack can simulate 
the proof of Theorem 6 and so factor the public key n. There is no way to come 
around this problem. 

Another attack on elliptic curve cryptosystems is the so called low exponent 
attack (see [ 5 ] ) .  This attac.k shows that one should not send the same message 
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to more than 11 people. If an eavesdropper knows the 11 encrypted messages, 
he can find the original message in polynomial time. This attack is very similar 
to the low exponent attack on RSA. One referee proposed to append a few bits 
(for example the user name) to a message before encrypting and sending it. At 
the moment, we do not know whether this proposal will make the low exponent 
attack useless. This question has to be examined by further research. 

Acknowledgment: We are very grateful to Marc Joye and Jean-Jacques 
Quisquater who pointed out to us the equivalence of an earlier version of the 
cryptosystem of this paper to the cryptosystem of Williams. (See [2, 101.) In this 
earlier version, the parameter X in step (2) of the encryption procedure was a 
fixed square root of 2 which was part of Bob's public key. 
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