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Abstract. In this paper, wc address the question of providing security 
proofs for signature schemes in the so-called random oracle model [l]. 
In particular, we establish the generality of this technique against adap- 
t,ively chosen message attacks. Our main application achieves such a se- 
curity proof for a slight variant of the El Garrial signature schemc [4] 
where comniitted values are hashed together with the message. This is 
a rather surprising result since the original El Gamal is, as RSA [ll], 
subject to cxistcnt,ial forgery. 

1 Introduction 

Since the appearance of the public key cryptography, in the famous Diffie- 
Hellman paper [a ] ,  a significant line of research lias tried t,o provide “provable” 
security for cryptographic protocols. In the area of computational security, proof‘s 
have been given in  the asymptotic framework of complexity t,heory. Still, these 
are not absolute proofs since cryptography ultimately relies on the existence of 
one-way functions and the P vs. n/P question. Rather, they are computational 
reductions to and from well established problems from number theory such as 
factoring, the discrete logarithm problem or t,he root exhraction problem, on 
which RSA relies [ 111. 

In the present paper we will exclusively focus on signatures. As shown in 
the Diffie-Hellman paper [2], the lrapdoor function paradigm allows to create 
signatures in the public key set,ting. Nevertheless, both the RSA scheme and the 
El Gamal scheme are not provably secure since they are subjecl to existential 
forgery. In other words, it is easy to create a new valid message-signature pair. 
In many cases, this is not really dangerous because the message is not intelligible 
or does not have the proper redundancy. Still an RSA signature does not prow 
by itself the identity of the sender. 

The first signature scheme proven secure against a very general attack, the 
so-called adaptively choseri-message attack which will be defined later in this 
paper, has been proposed by Goldwasser-Micsli-Rivest [6] in 1984. It uses Ihe 
notion of claw-free permutations. We refer to [(i] for details. 

In 1986, a new pamdigm for signature schemes was introduced. It is derived 
froin zero-knowledge identification protocols involving a prover and a verifier [5] , 
U. Maurer (Ed.): Advances in Cryptology - EUROCRYPT ’96, LNCS 1070, pp. 387-398, 1996. 
0 Springer-Verlag Berlin Heidelberg 1996 
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Key generation 

and uses hash functions in order to create a kind of virtual verifier. In [3 ] ,  Fiat 
and Shamir proposed a zero-kriowledge identificat,ion protocol based on the hsrd- 
ness of extracting square roots. They also described the corresponding signature 
scheme and outlined its security. Similar results for other signature schemes like 
Schnorr’s [12] are considered as folklore results but  have never appeared in the 
literature. 

In this paper, we review the basic met,hod for proving security of signature 
schemes in the random oracle model [l] and surprisingly, we prove the security 
of a very close variant of the El Gamal signature scheme. 

Signature and verification 
1 C S  w 

2 Framework 

2.1 Generic Signature Schenies 

In a signature scheme, each user publishes a public key while keeping for himself 
a secret key. A user’s signature on a message m is a value which depends on 
m arid on the user’s public and secret keys in such a way that anyone can 
check validity just by using the public key. However, it is hard to  forge a user’s 
signature without knowing his secret key. In this section, we will give a more 
precise definition of a signature scheme and of the possible attacks against such 
schemes. These definitions are based on [6]. 

k is the securily parameter 

W 

I Sizes I 

V 
OK ? 
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1 OutDuts of f arr of size k. and k is such that k(n’,  >, loa n 

Fig. 1. Signature schemes 

Defiriitionl. A signature scheme is defined by the following (see figure 1): 

the key generation algorithm 6 which, on input l k ,  where k is the security 
parameter, produces a pair (lip, I<,) of matching public and secret keys. I t  
is clear that must be a probabilistic algorithm. 
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attack I 

~ the signing algorzthm C which, given a message m and a pair of matching 
public and secret keys ( K P ,  Ks), produces a signature. The signing algorit,hm 
might be probabilistic, and in some schemes it rnight receive other inputs a~ 
well. 

- the verification algorithm V which, given a signature u, a message m and a 
public key K p ,  tests whether u is a valid signature of m. with respect to K P .  
In general, the verification algorithm need not be probabilistic. 

Signature schemes often use a hash function f. In this paper, we will only 
consider signature schemes which, on the input message m, produce triplets 
(61, h ,  uz) independent of previous ~ignat~ure.  In those t,riplets (01, h ,  u2), h is 
the hash value of (m,  u l )  and C T ~  just depends on ul, the message m, and h. This 
covers the case of Fiat-Shamir [3], Schnorr [12] and many others. In some cases, 
u1 or h can bc omitted, but we will keep them for more generality. 

attack I1 

2.2 Attacks 

We will only consider two different, scenarios involving probabilistic polynomial 
time Turing machines, the no-message attack and the adaptively chosen message 
attack (see figure 2) .  

Fig. 2. ALtacks 

In the former, the attacker only knows the signer’s public key. In the latler, he 
can dynamically ask the legitimate user to sign any message, using him as a kind 
of oracle. For the resistance against adaptively chosen message attacks, which is a 
stronger requirement, we will use the possible simulation of the legitimate signer, 
which relics on thc honcst verifier zero-knowledge property of the identification 
scheme. 
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2.3 The Random Oracle Model 

As we already pointed out, signature schemes often use a hash function f 
( e .g .  MD5 [lo] or SHS [S]). This use of hash funct,ions may have been rnoti- 
vatcd by the wish bo sign long messages with a single sigriature. Accordingly, the 
requirement of the function was collision freeness. I t  was later realized that hash 
funct,ions were an essential ingredient for the security of the signature schemes. 
St i l l ,  in order to actually provide such a security proof, stronger assumptions 
seem to be needed and several authors (e.g. [3] and [1]) have suggested to use 
tso hypothesis that f is actually a random function. We follow this suggestion 
by using the corresponding rnodel, called the “random oracle model”. In this 
model, the hash function can be seen as an oracle which produces a random 
value for each new query. Of course, if the same query is asked twice, identical 
answers are obtained. Proofs in this model ensure security of the overall design 
of a signature scheme provided t,he hash furiction has no weakness. 

3 The Oracle Replay Attack 

In this section, we will prove a key lemma, which we call the forking lemma and 
which will be repeatedly used in the sccpel. This leriinia uses the “oracle replay 
attack”: by a polynomial replay of the at,t,ack with the same random tape and 
a different oracle, we obtain two signatures of a specific form which open a way 
to solve the underlying hard problem. 

Lemma 2 (the forking lemma). Let A be a Probabilistic Polynomial ’l’ime 
Turing machine, given only the public data as input. If A can find, with non- 
negligible probability, a valid sagnature (m,  o1 , h ,  v2), then, with non-riegligible 
probability, a replay of this machine, with the surnt‘ random tape a i d  a different 
oracle, outputs two valid signatures (m ,  v1, h ,  o2) and (m,  61, h’, ub) such. th,at 
h # h’ . 

Remark. Probabilities are taken over random tapes, random oracles, and in some 
cases, over messages and keys. 

Before we prove this result, we state a well-known probiibilistic lemma: 

Lemma3. Let A c X x Y ,  such that Pr[il(z,y)] 2 t, then lhere eaists f2 C X 
such that 

z) Pr[z E Q] 2 ~ / 2  
iz) whenrvcr. n E 0, Pr[A(n, y)J >_ c / 2  

With this lemma, we can split X in two  subset,^, a subset f.2 consisting of 
“good” x’s which provide a. non-negligible probability of success over y,  and its 
complement. We now return to the forking lemma. 

Proof. We assume that we have a no-message attacker A, which is a probabilistic 
polynomial time Turing machine with a random tape w .  During the attack, this 
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machine asks a polynomial number of questions to the random oracle f .  We 
may assume that these questions are distinct, for instance, A can store questions 
and answers in a table. Let, Q l ,  . . . , QQ be the Q distinct questions, where Q 
is a polynomial, and let p l , .  . . , p~ be the Q answers o f f .  It is clear that a 
random choice of f exactly corresponds to a random choice of p1 . . I , PQ. For a 
random choice of w ,  p l ,  . . . , p ~ ,  with non-negligible probability, ,4 outputs a valid 
signature (m, ul, h ,  02). It is easy to see that the probability for the precise query 
(m,, (TI) not to  be asked is negligible, because of the randomness of f (m.  ~ 1 ) .  So, 
the probability that the query (m, al) is one of the Q’s, e.g. Q p ,  is non-negligible. 
Since p is between 1 and & ( I % ) ,  there exist a /? and a polynomial P such that 
t8he probability of success, over w ,  pi , . . . , pQ, with Q p  = (m,  u1) is greater than 
1/P(n) (see figure 3) .  

/ 
2k answers 

Fig. 3. ‘I’he forking lemma 

With such a p, using lemma 3 ,  wc get the existence of a non-negligible sub- 
set f2p of  “good” w’s.  For such a “goocl” w ,  the probability of success, over 
p1 , .  . . , p ~ ,  with Q p  = ( m ,  ul) ,  is greater t,han 1 /2P(n) .  With such /3 and 
w ,  using lemma 3 again, we obtain the existence of a. non-negligible subset 
Rp,&, of “good” ( P I , .  . . , ~ ~ - 1 ) ’ s .  For such a “good” ( p l ,  . . . , p p - l ) ,  the proba- 
bility of success of the attacker, over p p ,  . . . , P Q ,  with Q p  = (m, al), is greater 
than 1/4P(n). Theri, with such p, w and ( P I , .  . . , p p - l ) ,  if we randomly chose 
pp,  . . . , PQ and p i , .  . . , pIQ, with a non-negligible probability, we obtain two valid 
signatures (1 .1 ,  crl, h,  a2) and (nz, al, h’, (T;) such that h # h’; this uses the fact, 
that k ( n )  >> log n. 

Finally, with a random choicc of p, w , p l ,  . . . , ~ p - ~ ,  pp, . . . , PQ and p; , . . . , p b ,  
we obtain, with a non-negligible probability, two valid signatures (m,  g1, h,  u2) 

and (m, a1, h?, cri) such that h # h’. 

4 The Fiat-Shamir Signature Scheme 

We will now apply the lemma to the Fiat-Shamir signature scheme in order l o  
prove its security against no-message attacks. This result is outlined in [3] and 
we include it for thc reader’s convenience. 
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4.1 Description 

Firstly, we describe the single key Fiat,-Shamir signature scheme [3]: 

~ the key generation algorithm: for a seciirit,y parameter k ,  it chooses two 
large primes p and q which are kept secret and computes their product N 
and defines a random hash function f with a k-bit output. Then, it, chooses 
a random s E Z / N Z  and publishes its square v = s2 mod N .  N and f are 
public and s is the secret key. 

~ the signature algorithm: in order to sign a message m, one generates k ran- 
dom numbers, ri € Z / N Z  for i = 1, . , . , k ,  compiites thcir respective squares 
2; = rz mod N as well as the challenge h = ( e l . .  . e k )  = f ( m ,  2 1 , .  . . ,zk). 
From these data, one sets y; = rise’ mod N and out,puts o1 = ( 2 1  ~. . . , zk) 
and u2 = ( y 1 ~  . . . , yk). Thc signature is (n1 , / I  , .a). 

- the verification algorithm is as follows: for a given message m and a given 
signature nl = ( ~ 1 , .  . .,xk), h = ( e l . .  . ek)  and (r2 = ( y l , .  . . , y k ) >  it checks 
whet,her h = f(m,o1) and yi = r i se ,  mod N for all i. 

4.2 Proof of Security 

From the forking lemma we easily get a. proof in the random oracle model. 

Theo~ein4.  Coiiszder a no-message attack in  the random oracle model. I f  an 
existential forgery of the Fiat-Shamir signature scheme is possible with non- 
negligible probability, then factorizatzon of RSA moduli can be performed in  poly- 
nomial time. 

Proof. Let N E IN be t,he integer to factor. Let us choose s E R  H / N Z ,  and lel 
ti = s2 mod N. If an attacker dl can break the Fiat,-Shamir signature scheme, 
then by using the forking lemma, he can obt,ain two valid signatures (m ,  r1, h ,  0 2 )  

and (m, o1, h’, o;), such that h # h’. From this, we get i such lhal h i  # hi ,  say 
hi = 0 and hi = 1. We get y: = 2; mod N and yi2 = Z ~ W  mod N .  If we let 
z = y : y i l  mod N ,  then z 2  = v = s2 mod N .  

Since the algorithm cannot distingiiish s from other roots, we conclude that,, 
with a probability 1/2,  gcd(z - s, N )  provides a fa.ctor of N .  

Remark. Because of the easy simulation of the communication with an honest 
verifier, even in the cont,ext of the parallel version of Fiat-Shamir, the proof of 
security against adaptively chosen message attacks is straightforward. 

5 The Modified El Gamal Signature Scheme 

The original El Garnal signature scheme [4] was proposed in 1985 but its security 
was never proved equivalent to the discrete logarithm problem nor to the Diffie- 
IIellman problem. Using the forking lemma, we will prove the security of a slight 
variant of this scheme. 
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5.1 

Let us begin with a description of the original scheme [4]: 

Description of the Original Scheme 

- t,he key generation algorithm: it chooses n random la.rge prime p of size '71 

and a generator y of (Z/pZ)*, both public. Then, for a random secret key 
x E H / ( p  - 1 ) H ,  it computes the public key y = g2 mod p .  

- the signature algorithm: in order to sign a sigiiature of a message m, one 
generates a pair ( T ,  s) such that g"' = y r r s  mod p .  To achieve this aim, one 
has to choose a random K E ( Z / ( p  - 1)+)*) compute the exponentiat,ion 
T = y K  mod p arid solve the linear equation vrt = ZT + /is mod ( p  - I ) .  'I'he 
algorithm finally outputs ( T ,  s).  

- the verification algorithm checks the equation gm = yrr s  mod p .  

5.2 Security 

A s  already seen in the original paper, one cannot show that the scheme is fully 
secure because it is subject to existential forgery. 

Theoi.eiiz 6. The oriyrnul El Guiiiol sigiiiiturc scheme is csrstentaally forgeable. 

Proof. This is a well-known result, but we describe two level of forgeries: 

1. the one pararrieler forgery: let, e EH Z / ( p  - l )Z ,  if we lel T = y e y  mod p 
and s = -r mod p - 1, it is easy to see that ( T ,  s) is a valid signature for t h e  
message 111 = es  mod p - 1. 

2. tlie two parametcr forgery: let e E R  ~ / ( p  - 1 )Z and u En ( ~ / ( p  - l)Z)*, 
if we let T = g"y" mod p and s = -TW-' mod p - 1 , t>hen ( T ,  s) is a valid 
signature for the message m = es mod p - 1. 

We now modify this scheme by using a hash function. 

5.3 

I K ~  this variant, we replace m by Ihe hash value of the ent,ire part of the compu- 
tation bound not to change, namely f ( m ,  T ) .  

Description of the modificd El Garnal scheme 

- the key generation algorithm: unchanged. 
- the signature algorithm: in order to sign a message m, one generates a 

pair ( r ,  s) such that g J ( n i r )  = y r r s  mod p .  In order to achieve this aim, one 
generates K and 7. the same way as before and solves the h e a r  equation 
f ( m ,  r )  = ZT + K s  mod ( p  - 1). The algorithm out,piits ( T ,  f(m, T ) , s ) .  

- the verification algorithm checks the signature equation with the obvious 
cliariges tlrie to the hash function. 
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5.4 Proofs of security 

In this section, we will see that the modification allows to prove the security of 
the scheme even against an adaptively chosen messagc attack, at least for a large 
variety of moduli. We let, Ipl denote the leriglli ol  an integer p .  

DefimitionG. L’et N be a fixed real. A n  cr-hard prime number p is such that the 
factorization of p - 1 yields p ~ 1 = QR with Q prime and R. 5 Ipla. 

Remark. ‘l’hose prime moduli are precisely those used for cryptographic appli- 
cations of t*he cliscrele logarithm problem. 

Security against a no-message attack. Firstly, we study the resistance of 
the modified El Gamal Signature scheme against no-message attacks. 

Theorem 7. Conszder a no-message uttuck in the  randoin o.racle model against 
schemes tising Q-hard pr2rne modulz. Prohahzlzties arc taken over random tapes, 
random oracles and public keys. I f  an exzstential forgery of this scheme has non- 
negligible probabilzty of success, then the discrete logarithm, problem with a-hard 
prime moduli can bc solved in polynomial time. 

Proof. TJsing the forking lemma, we get two valid signatiires ( m , r ,  h , s )  and 
(m, r ,  h‘, s’) such that g h  = rSy” mod p and 9’’‘ = rs’yT mod p .  Hence, we get 
ghs’-h’s - Y  - T(S‘- .5)  mod p and gh‘-* = P-’’ mod p .  Since g is a generator of 
( Z / p Z ) * ,  there exist t and 2 such that gt = r mod p arid y” = y mod p .  There- 
fore, 

hs’ - h,’s = m ( s ’  - s) mod p - 1 
h‘ - h = t ( s  - s’) mod p - 1 

(1) 
(2) 

Sirice h and h’ come from “oracle replay”, we may further assume h - h’ is prirne 
to &, so that gcd(s - s’, Q) = 1 .  Nevertheless, we cannot make any further 
assumption for r ,  and accordingly, two cases appear: 

case 1: r is prime to 8. In this case, equation (1) provides the Q modular part 
of 2 ,  x = (hs’ - h’s)(r(.s - s’))-’ mod Q .  With an exhaustive search over 
the R modular part of x, we can find an 2 which satisfies y = g“ mod p .  

case 2 otherwise, T = b Q  with b small. In this case, equation (2) provides the Q 
modular part o f t ,  t = ( h  - h / ) ( s  - s‘)-l mod Q .  With an exhaustive search 
over the R modular part o f t ,  we can find a t which satisfies bQ = gt mod p .  
We note Lhal 1 is prime to 6). 

At this poirit, we have a probabilistic polynomial time Turing machine JU 
which, on input ( g ,  y), outputs, with nori-negligible probability, z E Z / ( p  - l )Z 
such that y = g’ mod p (case 1) or 6 E Z / R Z  and t E Z / ( p  - l)Z such that 
bQ = gt mod p (case 2) .  Probabilities are t,aken over 9 ,  y, aiid the random tapes 
of M .  Using lemma 3,  let hc a non-negligible set of g’s such that whenever 
g E G ,  the set of y’s which provides the above witnesses is non-negligible. TO 
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make things precise, we consider both probabilities to be greater than E ,  where 
E is the inverse of some polynomial. Let G g o o d  be the set of g E G which lead 
to the first case with probability greater than & / a .  Let G b a d  be the set of g E 6 
which lead to  the second case with probability greater than ~ / 2 .  We know that, 
6 is the Union G g o o d  u Gbad. 

If (;lgood has probability greater than &/a ,  then we have a probabilistic poly- 
nomial time Turing machine which can compute, for a. non-negligible part) of 
(y, y) ,  the discrete iogarit,hm of y relatively t o  g. 

Otherwise, bad g's are in proportion grealer than € / a .  Since the set of pos- 
sible h's is polynomial, we get a fixed b and a non-negligible subset G b o d ( b )  

of bad g's such that, wi th  non-negligible prolmbility, M(y, y) outputs inte- 
gers b and t such that b& = gt rnod p. Let g E Ghad(b )  and y bc any num- 
ber. Running M ( g ,  z ) ,  for random z ,  we get,, with non-negligible probability, 
some t such that, gt = b& mod p .  Running M(yg' ,  z ' ) ,  for random !! and z ' ,  
we get, with non-negligible probability, yge E Gbad(b) arid some t' such that 
( ~ g ~ ) ~ '  = bQ = gt mod p .  Hence, zt' = t - tt' mod ( p  - 1). Since t' is prime to 
Q ,  we get L riiod Q .  After polynomially many lrials over the R modular part of 
2, we find the logarithm of y. 'I'hen we ha.ve a.nother probabilistic polynomial 
lirrie Turing machine M' which can compute for a non-negligible part of (g, y), 
the discrete logarithm of 

Now, let, fix g and y. Running the machine on ( g " ,  yg") with random 'II a.nd 
w ,  we obtain, with non-negligible probability, an z such that ygu = g"" mod p ,  
hence we get y = g""-" mod p. This finally contradicts the intractability as- 
sumption. 

relatively t,o g. 

Security against an adaptively chosen message attack. We now prove a 
more surprising theorem about the security against adaptively chosen message 
attacks. In the adaptively chosen message scenario, the attacker uses the signer 
as a kind of oracle. If it is possible to simulate the signer C by a simulator S 
who does not know the secret key (see figure 4) ,  then we can ma.kc the attacker 
and the simulator collude in order to break the signature scheme, and, the same 
way as before, we can solve the discrete logarithm. 

Lemrna8. For 0-hard prime numbers, thc signer can be simulated with an  an- 
dzstingziashabk distribution. 

Proof. A key ingredient of the proof is as follows: values returned by the random 
oracle can be freely computed and have no correlation with messages whose 
signature is request,ed. 

In this proof, we identify the out8put set H of randoin oracles with the set 
( 0 , .  . . , 2k - I} and we assume that 2k 2 Q. 

Using the two parameter forgery for the Q niodular parl, and an exhaustive 
search for the other part, we can obtain an indistinguishable simulation: we 
first randomly choose u E Z/&Z, t E (HIQZ)" arid t E (Z/RZ)*. 'I'hen, we 
let e = uR mod ( p  - l),  w = tfi mod ( p  - 1) and 1- = (gey" )g~ '  mod p .  We start 
the simulation again in the (unlikely) situation where r is not a generator of 
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attacker I1 + signer (E) attacker I1 + simulator ( S )  

Fig. 4. Adaptively chosen message sccriario 

( Z / p Z ) * .  This corresponds to separately dealing with the forgery in the two 
subgroups respectively generated by g R  and gQ . Mimicking the two pararrieter 
forgery in the subgroup generated by g R ,  we need to set s = -rv-l mod Q and 
h = -erv-' mod Q .  For the R modular part, we randomly choose h mod R until 
h E I I ,  and we exhaustively search for an s which sa.tisfies gh = y r r s  mod p :  
taking logarithms, this reads as h = TZ + QCs mod R, so that the number of 
trials is only polynomial. We can easily check that, thc triplet (T, h,  s) is a valid 
signature of a message m as soon as h = f (m,  r ) .  

Let (T,  h ,  s) E (Z /pE)*  x H x Z / ( p  - l )Z  such that g h  1 r s y r  mod p and r 
is a generator of ( Z / p H ) * .  Trying to  out,put this signature through our simulation 
yields the system of equations 

h.v + TF: = 0 mod Q { z v + e  =loggr  m o d &  

If h # xr mod Q ,  then there is exactly one solution and therefore one way 
for S to generate such a signature. If h = z r  mod Q,  then S can generate such 
a signature only if 7- = h = s = 0 mod &, and & - 1 different ways. 

Both types of exceptions contribute to the overall distance by some term 
bounded by (Q-'$v(R) which is less than 4ana+l x 2-n, a negligible value, where 

n =  IPl 

Theorem 9. Consider un udapliuely chosen message attack in  the .random or- 
acle model against schemes using a-lzurd prirnc moduli. Probabilities are taken 
over random tapes, random oracles and public keys. If an existential forgery of 
this scheme has non-negligible probability of' sticcess, then the discrete logarithm 
problem with cu-hard prime moduli can be solved in polynomial tame. 
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Proof. For each simulated signature of mi, ( r i ,  hi ,  s i ) ,  S is assumed to have 
asked f ( n ~ i ,  ~ i )  and obt,ained hi ,  a new random value. We observe that collisions 
of queries happen with negligible probability, therefore, the attacker cannot dis- 
tinguish t,he simulator from the legitirnak signer. And then, like in t,heorem 7, 
a collusion of the altacker and the simulator enables t,o compute discrete l o g -  
r i t h ms . 

6 Further Results 

In this sectioii, we mention several additional results: the first is the extension of 
theorem 4 to  the adaptively chosen message attack. Furthermore, because of the 
possible simulation of the Schnorr scheme, we can prove the following theorem 
in the random oracle model: 

Theorem 10. I f  an existential forgery of the Sc1inor.r signature scheme, under 
a n  adaptivcly chosen m,essage attack, has non-n.egligiblr probabilily of succcss, 
then the discrete logarithm zn subgroups can be solved in polynomial time. 

The same resulls are true for every signature scheme which conies from 
the transformation of a honest verifier zero-knowledge iderilification protocol 
(Giiillou-Quisquater 171, the Permuted Kernel Problem [13], the Syndrome De- 
coding problem [14] ~ the Constrained Linear Equalions [15], the Permuted Per- 
ceptrons Problem [9], etc.). For each of them, existential forgery under an adap- 
tively chosen-message at,t,ack in the random oracle model is equivalent to  the 
problem on which the idcritification scheme relies . 
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