
On the Security of a Practical Identification 
Scheme 

Victor Shoup 

Bellcore, 445 South St., Morristown, N J  07960 
shoupQbellcore.com 

Abstract.  Wc analyze the security of an interactive identification 
scheme. The scheme is the obvious extension of the original square root 
scheme of  Goldwasser, Micali and Rackoff to  2mth roots. This scheme is 
quitc practical, especially in terms of storage and communication com- 
plexity. Although this scheme is certainly not new, its security was ap- 
parently not fully understood. We prove that  this scheme is secure if 
factoring integers is hard, even against active attacks where the adver- 
sary is first allowed to  pose as a verifier before attempting impersonation. 

1 Introduction 

An identif ication scheme is an  interactive protocol in which one party, P (the 
prover), tries to convince another party, V (the verifier), of i ts  identity. The  
prover P has a secret key tha t  allows i t ,  and  no one else, to convince the  verifier 
of its identity. 

There are several types of attacks that, an  adversary, trying to impersonate 
P ,  may a t tempt ,  which we categorize as follows. In  a passive attack,  before the 
adversary tries t>o impersonate P,  he  tries t o  learn something about P’s secret 
key by interacting with P ;  however, the adversary is not allowed to deviate from 
V’s protocol (this attack includes eavesdropping). Clearly, security against only 
passive attacks is not very satisfactory, as P must trust V to follow the protocol. 

In an  active altack,  the adversary interacts with P ,  perhaps several times, 
posing as V ,  but not necessarily following V’s protocol. Security against active 
attacks is obviously preferable to security against only passive attacks. 

There are stronger types of attacks tha t  one may consider, such as those 
discussed in the paper of Rellare and Rogaway [l]. However, security against 
active attacks is sufficient in most practical situations where identification is 
the  only goal, such as when a smart  card proves its identity to an  untrusted 
verification device in order to gain acces to some resource. 

In this paper, we analyzc the security of an  identification scheme. The  scheme 
is the obvious extension of the original square root scheme of Goldwasser, Micali 
and Rackoff [4] to 2mth roots. This scheme is quile practical, especially in terms 
of storage and communication complexity. Although this scheme is certainly not 
new, i ts  security was apparently not fully understood. We prove that-like the 
square root, scheme-this scheme is secure against active attacks if factoring 
integers is hard. 

U. Maurer (Ed.): Advances in Cryptology - EUROCRYPT ’96, LNCS 1070, pp. 344-353, 1996. 
Q Springer-Verlag Berlin Heidelberg 1996 
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The square root and P t h  root schemes 

Let US first recall the square root scherne. For a given security parameter k ,  a 
secret/public key pair is generated as follows. A rriodulus n is constructed by 
multiplying two distinct, randomly selected primes, both of binary length k ;  also, 
an element a E Z: is chosen at random, and we set b = a 2 .  The public key is 
( b ,  n), and the secret key is a. 

Let m be a parameter such that 2" grows faster than any polynomial in k .  
The protocol then repeats the following m times: 

1. P chooses T E 2: at  random, computes z = r 2 ,  and sends 2 to V .  
2. V chooses e E ( 0 , l )  a t  random, and sends e to  P .  
3 .  P computes y = T .  ae and sends y tjo V ;  V accepts if y2 = 2 .  b e ,  and rejects 

otherwise. 

Upon termination, V accepts if it  accepted a t  every iteration, and otherwise 
rejects. 

The results of Goldwasser, Micah, and Rackoff imply that the square root 
scheme is secure against active attacks if factoring is hard. 

We consider the following variant, which might, be called the 2"th root 
scheme. For security parameter k ,  a secret/public key pair is generated as fol- 
lows. A modulus 71 is constructed by multiplying two distinct, randomly selected 
primes, both of binary length k, and both congruent, to  3 mod 4;  also, an ele- 
ment a E ZY, is chosen at random, and we set b = aq, where q = 2m,  and WL is a 
parameter such that 2" grows faster than any polynomial in k .  The public key 
is ( b ,  n ) ,  and the secret key is a. 

The protocol then executes the following-.just, once: 

1 .  P chooses T E Z:, at  random, computes 2 = T V ,  and sends z to V.  
2. V chooses c E ( 0 , .  . . ~ q - 1) at random, and sends e to P .  
3 .  P computes y = r .  ae and sends y to V ;  I./ accepls if yq = x I b e ,  and rejects 

ot,herwise. 

Clearly, the 2"th root is scheme fairly efficient, and is vastly superior to  the 
square root scheme in terms of communicat,ion complexity. 

Our proof of security does not show thal this protocol is zero-knowledge 
(in the sense of [4]). Moreover, this scheme is not, a proof of knowledge (in 
the sense of [ a ] ) .  Indeed, observe that  a prover P' that  somehow knows u2 can 
make V accept with probability l / 2 ,  since P' can respond correctly to all even 
challenges e; however, given u2 and aZm,  we cannot efficiently compute c such 
that c~~ = a2" (unless factoring is easy). As we shall see, this apparent lack of 
'(soundness" is not really a problem a t  all, and is in fact crucial to our proof of 
security, which utilizes what might be called a partial zero-knowledge simulation 
technique. 

Other identification schenies 

There are many identification schemes in the literature; we mention just a few. 
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There are several other variants of the square root scheme, but the only other 
one in the literature that is secure against active attacks if factoring is hard is 
the Fiat/Shamir (FS) scheme [3]. While the time complexities of the FS and the 
2”th root schemes are similar, the 2“th root scheme has much smaller space 
and communication complexities. 

The Guillou/Quisquarter (GQ) scheme [6, 71 is the same as the 2”th root 
scheme, except that 2” is replaced by an nc-bit, prime number. It is only known 
to be secure against passive attacks, provided that RSA-inversion is hard (a 
possibly stronger assumption than the hardness of factoring). It is mentioned in 
[6] that using a power of two would be possible, but no indication of the security 
of such a scheme is given. 

Ong and Schnorr [lo] propose a scherne that generalizes the FS and 2”th 
root schemes, but only analyze its security against, passive attacks. Ohtja and 
Okamoto [8] discuss other generalizations of the FS scheme. 

Other identification schemes are based on the hardness of the discrete loga- 
rithm problem. The scheme of Schnorr [ I  I ]  is only known to be secure against 
passive attacks, provided the discrete logarithm problem in (a subgroup of) Z:, 
where p is prime, is hard. The communication, space, and time complexities 
for the 2”th root scheme and the Schnorr schemes are similar; however, the 
“on-line” time complexity for the prover in the Schnorr scheme is significantly 
smaller. 

Okamoto [9] gives modifications of the G Q  and Schnorr schemes which are 
proved secure, even against active attacks, under the sarne intractability as- 
sumptions of the corresponding original schemes.’ These schemes are slightly 
less efficient than the corresponding original schemes. 

Overview 

The rest of the paper is organized as follows: in $2,  we formally state our defini- 
tion of security; in $3, we give a proof of security for the 2”th root scheme; in 
‘$4, we prove that the generalization proposed by Ong and Schnorr is also secure 
against active attacks; we make some concluding remarks in $5. 

2 Definition of Security 

For conciseness and clarity, we adopt the notfation of [5] for expressing the prob- 
ability of various events. Jf S is a probability space, then [Sl denotes the set 
of elements in this space that occur with nonzero probability, For probability 
spaces 5’1, Sz, . . ., the notation 

denotes the probability that the relation p(z1, ~ 2 , .  . .) holds when each 2; is 
chosen, in the given order, from the corresponding probability space Si. 

- 

That paper alsn suggests a scheme (Scheme 3) whose security is supposedly Imbed 
on factoring, but thc claims of security made in that  paper are evidently false. 



347 

A probabilistic algorithm A on a specific input x produces an outpul string 
according to some probability distribution. We denote by A ( z )  the probability 
space of output strings. 

Generally, an identif ication scherrie (G, P,  V )  consists of a probabilistic, 
polynomial-time algorithm G, and two probabilistic, polynomial-time, interac- 
tive algorithms P and V with the following properties. 

1. ‘lhe algorithm (7 is a key-generation algorithm. It takes as input a string of 
the form l k  (ix. ,  L written in unary), and outputs a pair of strings ( S , I ) .  
k is called the security parame ter ,  S is called a secrel key ,  and I is called a 
publ ic  key.  

2. P receives as input the pair ( S , I )  and V receives as input I .  After an in- 
teractive execution of P and V, V outputs a 1 (indicating “accept”) or a 0 
(indicating “reject”). For a given S and I ,  the output of V at the end of this 
interaction is of course a probability space and is denoted by ( P ( S ,  l ) ,  V ( I ) ) .  

3.  A legitimate prover should always be able to succeed in making the verifier 
accept. Formally, for all k and for all (S ,  I )  E [ G ( l k ) ] ,  ( P ( S ,  I ) ,  V ( I ) )  = 1 
with probability 1. 

An adversary (P’ ,  V’) is a pair of probabilistic, polynomial-time, inter- 
active algorithms. For a given secret/public key pair ( S , I ) ,  we denote by 
( P ( S , I ) , V ’ ( I ) )  the string h output by V’ (on input I )  after interacting with 
P (on input ( S ,  I ) )  some number of times. Note thal lhese interactions are per- 
formed sequentially. Again, for a given S and I ,  ( P ( S ,  I ) ,  V ’ ( I ) )  is a probability 
space. The string h (a “help string”) is used as input to P’, which attempts to 
make V (on input I )  accept. 

Definition 1. An identif ication scheirrc ( G ,  P, V )  i s  secure against active at- 
tacks if for all adversaries (P’ ,  V‘),  for all constants  c > 0 ,  and f o r  all suf f ic ient ly  
large k, 

Pr[s = 1 I ( S ,  I )  + G(1’); h + ( P ( S ,  I ) ,  V’(1));  s + (P’(h) ,  V ( I ) ) ]  < k - “ .  

3 Security of the P t h  root scheme 

Our proof of security is based on the assumption that factoring is hard. We make 
this assumption precise. 

For k 2 5, let H k  be the probability space consisting the uniform distribution 
over all integers n of the form n = p1 p z ,  where y1 arid pa are distinct primes 
of binary length k, and p l  z p2 EE 3 (mod 4) .  

The Factoring Intractability Assumption (FIA) is the following asser- 
tion: 

f o r  all probabilistzc, polynomzal-tzme algori thms A,  for all c > 0, and for 
all  su f i caen t l y  large k ,  

Pr[x is a nontrivial factor of n I 71 c H k ;  x t A(n)] < k-‘. 
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We shall prove:

Theorem 1. Under the FIA, the 2mth root scheme is secure against active at-
tacks.

To prove this theorem, we show that any adversary that succeeds in an
impersonation attempt with non-negligible probability can be converted into
a probabilistic, polynomial-time factoring algorithm that succeeds with non-
negligible probability. This is Lemma 1 below.

Let (P', V) be such an adversary. Then there are polynomials Ti(k), Ni(k),
Toi(k), and Tp(k) as follows.

•- Ti(k) is a bound on the time required for V to run the protocol once with P,
and includes the computation time of P. This computation is done "on-line,"
and thus will typically have to be fast.
Ni(k) is a bound on the number of times V runs the protocol with P. This
will typically be small.

- T0\(k) is a bound on the "off-line" time for V; i.e., all time spent by V
other than running the protocol with P.

- Tp(k) is a bound on the running-time of/3' and V. This computation is also
"on-line," and thus will also typically have to be fast.

For a given public key (b, n) and "help string" h, let

e(h, b, n) = Pr[(P'(h), V(b, n)) = 1].

Then there exist polynomials Qi(k) and Q2{k) and an infinite set K C Z>o such
that for all k £ K, the probability

Pr[e(h, b, n) > Q2(k)~l \ (a, (b, n)) «- G(lh); h <- (P(a, (b, n)), V'(b, «))]

is at least Qi(^)""1.

Lemma 1. Assume an adversary as above. Then there is a probabilistic factor-
ing algorithm A that runs in time

Tp(k))Q2(k) + T0,(k))

such that for all sufficiently large k £ K,

Pr[:c is a nontrivial factor of n \ n <— Hk\ x *— A(n)] > Q\{k)~l/&.

The special form of integers n £ [Hk] implies that the operation of squaring
on 7i*n acts as a permutation on the subgroup (Z* )2 of squares. Also, every square
2 in Z* has precisely 4 square roots, exactly one of which is also a square. For
convenience, and quite arbitrarily, for w £ Z* we define C(w) £ {1 , . . . ,4} to
be the relative position of w among the 4 square roots of w2 when viewed as
integers between 0 and n — 1.



349 

We now describe and at the same time analyze our factoring algorithm. In all 
statements concerning probabilities, the underlying probability space consists of 
the random choice of the input n and the coin tosses of the algorithm. 

On input n E [ I l k ] ,  the algorithm begins by computing I as the smallest 
nonnegative integer with 2' 2 Q z ( k ) .  We require that 0 5 1 5 m - 1, which will 
hold for all sufficiently large k ,  since we are assuming that, 2" grows faster than 
any polynomial in k .  

The algorithm runs in t,hree stages, as follows. 

Stage 1. This stage takes as input n ,  runs in t i m e  o(Ni(k)Ti (k)Qa(k)+Tol(rE)) ,  
and outputs (v, b ,  h )  where v, b E Z:, ,with vZm-' = b and h is a "help string. " 
Moreover, we have: 

(i) i f  Ic E li, then Pr[c(h, 6, n)  >_ Q z ( k ) - ' ]  2 Q l ( k ) - ' / 2 ;  
(ii) the distribution of C(v) is uniform and independent of that of ( h ,  b,  n ) .  

This stage ruiis as follows. We choose v E 2; at random and compute b = 
v Z m - ' .  Note that the distribut,ion of ( b ,  n )  is independent of G(v), and is the same 
as that of an ordinary public key-this is because squaring permutes ( Z i ) 2 ,  arid 
so b should be, and is, just  a random square. We then simulate the interaction 
(P( . ,  b,  n ) ,  V'(b, n ) ) .  This is complicated by the fact that we do not have at hand 
a value a such that a2m = 6 ,  but rather v with vZm- '  

We employ a variation of a zero-knowledge simulation technique introduced 
by Goldwasser, Micali, arid Rackoff [4], which might be called partial zero- 
knowledge simulation, We replace the identification protocol with the following: 

1'. P chooses eb E ( 0 , .  . . , 2' - 1) at  random, chooses r E 2; at random, com- 

2'. V' compiites a challenge e E ( 0 , .  . . , 2'" - 1) and sends e to P .  
3'. P writes e = e12' + eo. If eo # eb, we go back to st,ep 1' ("undoing" t,he 

b .  

rn 
putes x = r2 b - e b ,  and sends x to V'. 

computation of V'). Otherwise, P computes y = T .  vel arid sends y to V'. 

An easy calculation shows that if eo = eb, then y"'" = z . b e ;  moreover, it, is 
easily seen that the distribution of (x, y) is precisely the same as it would be in 
the original protocol, and is independent of C ( v ) .  

The expected number of loop iterations until eo = eb is 2' .  Over the course of 
the entire interaction het.ween P and V ' ,  the expeded t#nt,al number of challenges 
is at  most 2 'Ni (k ) .  If the total number of challenges ever exceeds twice this 
amount, we quit and output an arbitrary h;  otherwise, we output the h that V' 
outputs. We also out,put v and b .  

That completes the description of Stage 1. All of the claims made above 
about this stage are easily verified. 

Stage 2. This stage takes as input h ,  b ,  and ri from above, and runs in t a m e  
O(T,(k)Qz(k)).  It reports failure or success, and upon success outpuis z E 2; 
and f E ( 0 , .  . . ,2" - 1) such that z Z m  = b f  a n d  f f 0 (mod 2'+'). The 
probability of success, given that c(h,  b ,  n )  3 Q 2 ( k ) - l j  is a t  least 1/2. 
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Let E = ~ ( h ,  b, n) ,  and assume 6 2 Q z ( k ) - ' .  
We use a slight variation of an argument in Feige, Fiat, and Shamir [2]. 

Consider the Boolean matrix M whose rows are indexed by the coin toss string 
w of P' and whose columns are indexed by the Challenges e of V .  M ( w ,  e )  = 1 if 
and only if this choice of w and e causes V to accept. 

Call a row w in M heavy if the fraction of 1's in  the row is at least 3 ~ / 4 .  
Observe that the fraction of 1's in the matrix that lie in heavy rows is at  least 
1/4. Now consider a heavy row w ,  arid a challenge e such that M ( w , e )  = 1. 
Consider the fraction of challenges e' with the property that M ( w ,  e ' )  = 1 and 
e' $ e (mod 2'+l). This fraction is at  least 

> Q a ( k ) - l / 8 .  3(/4 - 2 4 - 1  > 2 - 1 - 2  
- 

Stage 2 runs as follows. Run (P ' (h) ,  V ( b , n ) )  up to  O ( Q z ( k ) )  times, or until 
V accepts. If V accepts, we have a relation yZm = z b e .  Fixing the coin tosses 
of P', run the interaction again up to 0(&2(1;)) times, or until V accepts again 
with a challenge e' $ e (mod 2'+'). If V accepts with such a challenge, thcn we 
have another relation (y')'" = zbe'. 

The above can be repeated some constant number of  t,imes to raise the prob- 
ability of finding two such relations to at  least I /2 .  Upon finding two such 
relations, and ordering t,heni so that e > e ' ,  we output z = y/y' and f = e - e ' .  

That completes the description and analysis of Stage 2.  

Stage 3 of our factoring algorithm is executed only if Stage 2 succeeds. 

Stage 3. Thas s tage  t a k e s  a s  anput n ,  t h e  va lue  u from S t a g e  1, a n d  t h e  va lues  
z a n d  f from S tage  2. I t  runs an tame  O ( k 3 ) .  7 h e  probahilaty t h a t  at o u t p u t s  a 
nontrzvzal facior  of n,  gzuen t h a t  S tag?  2 succeeded, zs l / 2 .  

This stage runs as follows. We write f = ~ 2 ~ ,  where u is odd and 0 5 t 5 d .  
Set w = .z2'-'. Wc claim that with probability 1/2, gcd(v" - w, n)  is a nontrivial 
factor of n. 

ing permutes (Z;)". We have ( u " ) ~ " - '  = b" and hence ( v ~ ) ~  = w 2  (again, 
squaring permutes (2;)')). But since u is odd, and by the independence of C(V) 
and w, C(v") has a uniform distribution independent from C(w), and so with 
probability l / 2 ,  zi" # d m .  In this case, gcd(v" - w, n)  is a nontrivial factor of n. 

m-z+t 
To see this, first note that w2 - - bTi2',  arid hence dm-' = b" (as squar- 

That completes the description and analysis of Stage 3. 

It follows that for sufficiently large k E K ,  the overall success probability of 
our factoring algorithm is at least 

Q l ( k ) - ' / 2  x 1 / 2  x 1/2 = Q i ( k ) - ' / S .  

That completes the descript,ion and analysis of our factoring algorithm, and the 
proof of Lemma 1. 
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4 The Ong and Schnorr Generalization 

In this section, we consider a generalization of the F t h  root scheme that was 
proposed by Ong and Schnorr [lo], and prove that it is secure against active 
attacks if factoring is hard. 

In this scheme, the modulus n is chosen precisely as before. There are two 
parameters s and m, chosen so that 2'" grows faster than any polynomial in 
Ic .  Set q = 2m. A private key consists of a list a l ,  . . . , a, of randomly chosen 
elements of Z:; the corresponding public key consists of b l ,  . . . , b, E Z t ,  where 
bi = uf for 1 5 i 5 s. 

The protocol then runs as follows: 

1. P chooses r E 2: at random, computes 2 = r4, and sends 2 to  V .  
2. V chooses e l , .  , .  , e, E (0 , .  . . , q - l} at random, and sends e l , .  . . , e, to P .  
3. P computes y = ru;' . . a:$ and sends y to  V ;  V accepts if yp = zby' . . . b z s ,  

and otherwise rejects. 

By setting s = 1, this scheme degenerates to the 2mth root scheme. This 
scheme allows one to somewhat reduce t,he time complexity at  the expense of 
increasing the key size. 

Theorem 2. Under  the FIA,  the generul Ong and Schnorr  scheme as secure 
against  active attacks.  

The proof is similar t,o that of Theorern 1; we sketch the differences. In the 
factoring algorithm, the value 1 is chosen to be t,he least nonnegative integer such 
that 2'('+') > 2&2(Ic>. As before, we require that 0 5 d 5 m - 1, but this will 
hold for all sufficiently large k .  

In Stage 1, for 1 5 i 5 s, we choose v; E Z:, at random, and compute 
bi = u:~" - '  . Then we perform the same simulation as in Stage 1, except this 
time, we have t,n guess tlhe low-order 1 bits of each of the s challenges. 

Stage 2 is easily modified so as to obtain t E 2: and integers f l ,  . . . , f3 such 
that zZm = ni b{' and not all fi are divisible by 2'+'. 

In Stage 3,  for 1 5 i 5 s ,  write fi = ~ i 2 ~ 1 ,  and let t = miri{ti} 5 1. Then it 
is easy to see that with probability l / 2 ,  

i = l  

is a nontrivial factor of n.  

5 Conclusion 

5.1 

Although our proof of security is valid, it is open to a couple of criticisms. First,, 
it is not entirely constructive, since to build our factoring algorithm, we need not 

Constructiveness and efficiency of the reduction 
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only descriptions of the adversary’s algorithms, but also the polynomials Q2(1(7) 

and Nd(k) .  By allowing our factoring algorithm t o  have just an expected running 
time bound, we could do without N , ( k ) .  However, it is not clear if we can do 
without &z(k) .  Second, in comparison, say, with the reduction from factoring to  
impersonating one obtains with the FS scheme, ours is less efficient, since our 
factoring algorithm has t o  repeat computations of V’ many times. Compensating 
for this is the fact that  the computations that  need t o  be repeated are all “on- 
line,” arid so presumably fast. 

5.2 Multi-user environment 

We have stated the protocols and definition of securit,y from the point of view 
a single user. Consider a a system consisting of many (but polynomial in k )  
users. Before attempting an impersonation, we allow an adversa.ry to interact 
arbitrarily with all users in the system in an arbitrary fashion, interleaving com- 
muiiicativns arbitrarily. We also allow an adversary to corrupt any users it, wants, 
obtaining their private keys upon demand. After this interaction, the adversary 
tries to impersonate a non-corrupted user of its choice. Note that the adver- 
sary makes this choice dynamically; if t,he choice were static, the analysis of the 
multi-user case would trivially reduce to  the single-user case. 

To reduce factoring t o  impersonating in t,his case, we can use the obvioiis 
technique of first picking a user a t  random and giving them the number we want 
t o  factor, and generating ordinary key pairs for all other users. We then hope 
that the adversary picks the user with our number. 

As with the FS scheme, all users can sharc the same modulus n in the 2mth  
root’ scheme. However, to  reduce factoring t o  impersonating in this case, we still 
have to  pick a user a t  random, and give this uscr v , b  E 2; with v ~ ~ - ~  = h .  
Again, the other users get ordinary key pairs, and we have to  hope that Ihe 
adversary chooses to impersonate our user. This is unlike the FS scheme, where 
every user gets ordinary key pairs, and the irnpcrsonatiori of any user factors n 
with high probabi1it)y. 

5.3 Using general moduli 

Our proofs of Theorems 1 and 2 relied on the fact that  the prime factors of n 
were both congruent to 3 mod 4 .  However, this is not a serious restriction, and it 
is not hard to prove that these theorems hold for random primes. I t  is not clcar 
if this is of any theoretical or practical value, and from a security perspective, it 
seems advisable to stick with the special moduli. 

References 

I .  M .  Bellare, J .  Kilian, and P. Rogaway. Entity authentication arid key distribution. 
In Advances in  Gryptology -Crypt0 ’9.3, pages 232-233, 1993. 



353 

2. U. Feige, A. Fiat, and A.  Shamir. Zero-knowledge proofs of idmtity. J .  Cryptology, 
1:77 94, 1988. 

3. A. Fiat and A.  Shamir. How to prove yourself practical solutions to identification 
and signature problems. In Advanccs in Cryptology-Crypto ’86, pages 186 -194, 
1986. 

4. S. Goldwasser, S. Micali, arid C. Rackoff. The knowledge complexity of interactive 
proof systems. SIAM J .  Cornput., 18:186-208, 1989. 

5 .  S. Goldwasser, S. Micali, and R. Rivest. A digital signature scheme secure against 
adaptive chosen-message attacks. SIAAM .I. Cornput., 17:281-308, 1988. 

6. L. Guillou and J.  Quisquater. A “paradoxical” identity-based signature scheme 
resulting from zero-knowledge. In Advances in Cryptology-Crypto ’88, pages 216- 
231, 1988. 

7. L. Guillou and J. Quisquater. A practical zero-knowledge protocol fitted to secu- 
rity microprocesors minimizing both transmission and memory. In Advances i n  
Cryptology-Eurocrypt ’88, pages 123-128, 1988. 

8. K .  Ohta  and T. Okamoto. A modification of the Fiat-Shamir Scheme. In Advances 
in Cryptology-Crypto ’88, pages 232-243, 1988. 

9. T. Okamoto. Provably secure and practical identification schemes and correspond- 
ing signature schemes. In Advances in L‘ryptology-Crypt0 ’92, pages 31-53, 1992. 

10. H. Ong and C. Schnorr. Fast signature generation with a Fiat Shamir-like scheme. 
In Eurocrypt, pages 432-440, 1990. 

11. C. Schnorr. Efficient signature generat<ion by smart cards. J .  Cryptology, 4:16l-- 
174, 1991. 


	On the Security of a Practical IdentificationScheme
	1 Introduction
	2 Definition of Security
	3 Security of the P t h root scheme
	4 The Ong and Schnorr Generalization
	5 Conclusion
	5.1 Constructiveness and efficieney of the reduction
	5.2 Multi-user environment
	5.3 Using general moduli

	References


