
Extending the Sugiyama Algorithm for Drawing
UML Class Diagrams: Towards Automatic

Layout of Object-Oriented Software Diagrams

Jochen Seemann

Institut fiir Informatik, Am Hubland, 97074 Wiirzburg,
seemann@informat £k. uni-wuerzburg, de

Abstract. The automatic layout of software diagrams is a very attrac-
tive graph drawing application for use in software tools. Object-oriented
software may be modelled using a visual language called the Unified
Modeling Language (UML). In this paper we present an algorithm for
the automatic layout of UML class diagrams using an extension of the
Sugiyama algorithm together with orthogonal drawing. These diagrams
visualize the static structure of object-oriented software systems and are
characterised by the use of two main types of edges corresponding to
different relationships between the classes. The graph drawing algorithm
accounts for these concepts by treating the different edge types in differ-
ent ways.

1 Introduct ion

Object-oriented modeling techniques such as Booch [1] or OMT (Object Mod-
eling Technique) [10] and their graphical representations of object-oriented soft-
ware design have become very popular in recent years. The Unified Modeling
Language (UML) [14] is an up-coming standard for specifying and visualizing
various aspects of object-oriented software systems. UML is a graphical language
derived from several existing notations commonly used to specify the design of
object-oriented software. Some important diagrams are those representing the
architecture of the software. In UML these are known as static structure dia-
grams. Class diagrams form a subset of these which is used to represent the
static structure of classes and the relationships between them.

In this paper we present a technique for the automatic layout of UML class
diagrams. Our algorithm is based on a combination of an extension of the well-
known Sugiyama algorithm and orthogonal drawing techniques. We have imple-
mented the algorithm as a part of a tool called UML workbench, which is used
to demonstrate new techniques for software engineering tools.

The paper is organised as follows. Section 2 gives an overview of the diagrams
and the related graphs that should be drawn. Section 3 describes the phases of
our layout algorithm. In section 4 we show an example of the output from our
drawing algorithm. Finally, we discuss the application of the algorithm and give
some ideas for further work in this field.

416

2 U M L C l a s s D i a g r a m s

Figure 1 shows an example of a UML class diagram. The classes are depicted
by rectangles containing a list of the attributes and operations (methods) of the
class. There are two main categories of relationships between classes:

- inheritance relationships (Fig. 1: Expression / TypeExpression or ModetEle-
m e n t / Instance): these represent generalization-specialization relationships
allowing a hierarchical classification of classes. These relationships are known
from object-oriented programming languages.

- associations (Fig. 1: Type / TypeExpression): these represent a more general
relationship between classes as for example in ER-diagrams. An aggregation
(Fig. 1: Instance / Value) is a special association representing a containment
of classes and is drawn with a special symbol.

I

i w t +value: Uninterpreted

o~.I
I BehaviourInstance [

ModelElemen¢]

/ \
Instance

)0..*
. t 0..* l 0..* +multiplicity: Muhiphclty i.,*

O..* t TypeExpression

+referencedTypes0: List of Type

Fig. 1. Example class diagram in UML notation (as printed in [14])

A diagram can be seen as a graph whose nodes represent classes and whose
edges represent relationships. Because of the semantic richness of UML both
the nodes and the edges may have attributes (Fig. 1). These attributes are
represented textually or in some cases graphically.

We have identified some important conditions for the drawing of UML class
diagrams that lead to the idea of our algorithm:

417

- Nodes do not have a fixed size.
- The main difference to usual graph drawing problems is that we have two

types of edges between the nodes, that must be treated by the layout algo-
rithm in two different ways.

- The most important condition for the placement of classes is the inheritance
structure of the graph. The subclasses (specializations) should always be
placed below their superclasses (generalizations). This leads to a hierarchical
structure with the classes placed on several levels.

- The subgraph of a diagram, which contains only the classes and the inheri-
tance relationships, is a directed acyclic graph.

- The placement of classes connected to other classes by association edges is
free, but should lead to short edges and few crossings.

- The subgraph of a diagram, which contains the classes and the association
relationships, is a general graph that may be cyclic.

- The software engineer expects a layout of the diagram that satisfies these
constraints even if there are alternative layouts for the graph with, for exam-
ple, fewer crossings. This means the diagrams drawn by our algorithm may
be far from an edge-crossing minimal solution.

We conclude the following drawing strategy from these characteristics:

- First place the classes involved in inheritance relationships in a hierarchical
structure.

- Then place the remaining classes preserving the basic structure.

3 A l g o r i t h m

The Sugiyama algorithm is a widely used technique for drawing directed graphs
[13], which has been well-anaiyzed [4, 5] and improved in many ways during
recent years [6, 9].

Our approach is to use the Sugiyama algorithm with some modifications for
the placement of all classes involved in inheritance relations. We then place the
remaining classes using our extension to the basic algorithm. Then the other
classes are placed using an incremental placement algorithm. This placement
may influence the first Sugiyama placement again.

We represent a UML class diagram as a graph G, whose nodes are classes
and whose edges are relationships among these classes.

Our algorithm consists of several phases:

P h a s e 1 - P r e p a r a t i o n

1. First we remove direct cycles in G. These edges are removed and stored as
attributes of the nodes involved in the cycle.

2. Then we compute the subgraph I of G that contains only the classes related
through inheritance together with their inheritance connections. If I does
not form a single graph, we add a new (hidden) node as root of all the
different partial graphs. I is a directed acyclic graph.

418

P h a s e 2 - S u g i y a m a L a y o u t

1. For the graph I we compute a first layering as described in [13]. The nodes
are assigned to different layers according to the structure of the inheritance
graph.

2. Reduction of crossings: this phase reorders the nodes in each layer to reduce
the number of crossings. As in [13], we use barycentric ordering [15] as a
heuristic method for this purpose.
We also take into account that there may be other edges between nodes of
graph I due to association relationships between the classes. If there are
such edges, the nodes should be placed next to each other where possible.
We compute the set O of these additional edges between nodes of I. From
O we compute priorities for the placement of the nodes on each layer. If O
contains an edge between two nodes on the same layer, these nodes should
be placed as neighbours on the layer.
In some cases, the drawing of an association edge between nodes placed in
different layers can be improved. For example, if a node X placed in the
layer Li has an association edge to a node Y placed in layer Lj (i < j), and
there are no inheritance edges from X to nodes in layers between Li and
Lj, this node X can be placed in layer Lj. If X has several such edges, it is
placed in the layer with the lowest index.

3. After the previous step is completed, mark all nodes that are neighbours in
a layer and an edge of 0 exists between them. Remove this edge from O.

P h a s e 3 - I n c r e m e n t a l E x t e n s i o n

In this phase, we extend the layout incrementally, until all nodes have been
placed in the diagram.

1. Compute the set S, which contains the nodes of Graph I.
2. Select nodes from G that are not in S and which are connected to nodes of

graph S due to association relationships. We construct sets Si for each node
5~ of S in two steps as follows:

- First, for each node X in G, not in S, select X for Si if it has one or
more connections to exactly one node Ni.

- Next, for each node X in G, not in S and not in any Si, choose X if it
has more than one connection to nodes in S. The node X is added to
the set Si that relates to a node Ni connected to X and that has the
minimum number of elements.

Now we are able to extend the existing layout in the neighbourhood of node
Ni with each of these sets Si. If there are one or two nodes in Si we simply
place those nodes in the layer to the right and to the left of Ni. If there
are more than two nodes in Si we insert another sublayer into the diagram.
The nodes of Si are placed in that layer with directed edges to Ni. If there
is already a new sublayer above or below the layer of node Ni, we use this
existing sublayer. If Ni is marked in the last step of Phase 2, we have to use

419

a sublayer even if there are less than three nodes in Si, because we cannot
add a new node to the right or/and to the left of Ni on the layer.

3. Add all nodes of all sets Si to S.
4. Repeat steps 2. azad 3. until all nodes of the original graph G are placed.

After Phase 2:

After first iteration:

After second iteration:

Fig. 2. Incremental extension

. Optimize the node positions in each layer. In this step we try to reduce the
number of crossings and bends of the association edges between classes on
a layer. This step also improves the aspect ratio of the drawing. The nodes
involved in inheritance relationships are not moved anymore. Fig. 3 shows
an example of such a transformation.

(
7 . '

Fig. 3. Optimization using sublayers

420

Phase 4 - Or thogona l Drawing of A s s o c i a t i o n C o n n e c t i o n Edges

In UML diagrams, association relationships are usually drawn as orthogonal line
segments and inheritance relationships as straight lines of any angle. As shown
in Fig. 1 inheritance relationships may also be drawn as orthogonal segments.
Straight line drawing is preferred however, because it is easier to distinguish the
different edge types.

1. Compute the node sizes (Fig. 4). We have to take into account that our
nodes consist of the class with their attributes and parts of the attributes of
the relationships. The node size depends also on the position of other nodes
that are connected to the node. For this reason the node size is calculated
as in Fig. 4.

1o..1 i

! [+m~y:Mult ipl ici ty] i
! 'o ; I r -" !
' '" l 1 0 . . 1 [

/ [\

Fig. 4. Calculation of the nodesize

2. Add hidden nodes to construct the drawing of the edges remaining in set
O and the edges handled in the second part of Phase 3, Step 2. We add a
hidden node next to (right or left) each of the two nodes we have to connect.
If the edges cross at least one layer, we add hidden nodes on all layers that
are between these two nodes.

3. Now we are able to do the fine tuning of the node positions on the layers as
in other Sugiyama implementations [6, 7].

4. Compute line positions of association relationships between adjacent nodes
on the same layer. These will be drawn as horizontal lines. The hidden nodes
may be expanded to improve the drawing of the connecting lines (For exam-
ple in Fig. 5. the hidden node on the right side of node 'Shape').

5. Compute line positions of the straight lines representing the inheritance re-
lations.

6. Compute line segment positions of association relationships between classes
on the same layer or on adjacent layers. We also connect the hidden nodes
added in Step 2 of this phase. We insert horizontal gridlines between the
existing layers to construct the drawing of the edges. This technique is similar
to the known construction of orthogonal grid drawings as in [3]. The gridlines
can be shared between several edges. If it is necessary, additional gridlines
are inserted. We use a sweep line algorithm as in [11] for this task.

421

4 Implementa t ion

We have developed a tool called UML workbench. Using this tool we have in-
vestigated the drawing algorithms for UML class diagrams described by an un-
derlying scripting language [12]. The following example (Fig. 5), with a graph
taken from [10], shows the layout produced by our algorithm. Further examples
are shown in Fig. 6 and Fig. 7.

View Close

Item 10..,
item, I move() {abstract} IO..*

I pick() {abstract} 1 I ungroupO selections

, ~ cut() x: Length 0..*
" ~ move() y: Length
I pick() cut()
I ungroupO move()

pick() {abstract}
ungroupO
write() {abstract}

Box Circle Polyline
widl:h: Length radiu~.. Length pick()
height: Length I pick() draw()
pick() [draw()
draw()

Window
xmin: Length
ymin: Length
xmax: Length
ymax: Length

clear_selectionO
group}electionO
move3electionO
ungroup..selection 0
redraw auo

I0..I 02
vertices I x: Pos'tion

i drawO

Fig. 5. Example from [10] drawn by the algorithm

5 C o n c l u s i o n

We have presented a technique for the automatic generation of UML class dia-
grams. It is fundamentally the adaptation and combination of various algorithms

422

developed during recent years among the graph drawing community. The grow-
ing use of visual languages in the field of object-oriented software engineering
will lead to interesting graph drawing applications such as graphical browsers
and CASE-Tools.

This work is a first step towards the automatic layout of object-oriented
software diagrams. We have implemented the most important subset of the UML
static class diagram notation.

We have good results for object-oriented architectures with considerable use
of inheritance relationships but poor results where the architecture is based
heavily on associations. In order to overcome this problem we plan to investigate
an extension to planar hierarchical drawing algorithms [3]. It is expected that the
graph characteristics can be used to select the most appropriate layout algorithm
for a particular diagram.

For interactive applications such as CASE tools our algorithm has a useful
property; when the software developer changes the relationships between the
classes, we preserve the fundamental structure of the diagram. In this way we
preserve the class hierarchy as a "mental map" fbr the user.

The algorithm will be used in a reverse-engineering tool for C + + software
projects. Further work will focus on clustering and folding techniques in the
diagrams, because software diagrams may consist of a few hundred classes. For
large diagrams node clustering and diagram folding algorithms are as important
as the graph layout algorithm itself.

R e f e r e n c e s

1. G. Booch: Object-Oriented Design, Benjamin/Cummings Publishing, 1991
2. F.J. Brandenburg, editor: Proceedings of Graph Drawing '95, Vol. 1027 of Lecture

Notes in Computer Science, Springer Verlag, 1996
3. G. Di Battista, P. Eades, R. Tamassia, I.G. Tollis: Algorithms for drawing graphs :

an Annotated Bibliography, Comput. Geometry Theory AppI., 4:235-282, 1994
4. Peter Eades, Kozo Sugiyama: How to draw a directed graph, Journal of Information

Processing, 14(4):424-437, 1990
5. A. Frick: Upper bounds on the Number of Hidden Nodes in the Sugiyama Algorithm,

in [8], pp. 169-183
6. E.R. Ganser, E. Koutsofios, S. North, K.-P. Vo: A technique for drawing directed

graphs, IEEE Transactions on Software Engineering, 19(3): 214-230, March 1993
7. F. Newbery-Paulisch, W. F. Tichy: Edge: An extendible graph editor, Soft.ware -

Practice and Experience, 20(1): 63-88, June 1990
8. S. North, editor: Proceedings of Graph Drawing '96, Vol. 1190 of Lecture Notes in

Computer Science, Springer Verlag, 1997
9. P. Mutzel: An Alternative Method to Crossing Minimization on Hierarchical Graphs,

in [8], pp. 318-333
10. J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, W. Lorenson: Object-Oriented

Modeling and Design, Prentice-Hall, 1991
11. G. Sander: A Fast Heuristic for Hierarchical Manhattan Layout, in [2], pp. 447-458

423

12. J. Seemann, J. Wolff von Gudenberg: OMTscript - eine Programmiersprache fiir
objekt-orientierten Software-Entwurf, Technical Report, Department of Computer
Science, Wfirzburg University, 1997

13. Kozo Sugiyama, Shojiro Tagawa, and Mitsuhiko Toda: Methods for visual under-
standing of hierarchical system structures, IEEE Transactions on Systems, Man, and
Cybernetics SMC-11(2): 109-125, February 1981

14. Rational Software Corporation: The Unified Modeling Language 1.0, only available
via WWW: http://w~w, r a t i o n a l , corn, January 1997

15. J. Warfield: Crossing Theory and Hierarchy Mapping, IEEE Transactions on Sys-
tems, Man, and Cybernetics SMC-7(7): 505-523, July 1977

View Close

Foot
~5trirlg fairly
S~'~g name
inl style
b'~ size

getF~v
g~r~e
g~ze
9ei~yie
hashCode
i~Bold
isltalic
isl:Main
toStrlng

MenuComponent

~ F o ~
g~Parent
g~Peer
po~tEverlt

~ removeNotify
s~Font

, toString

Menultem
boolean enabled
s~,w~g ~bel

* ~ddNotdy
disable
er~ble
~L~0e~

p s r ~ t t t ~ g
¢.~Label

MenuContainer

getFont
Paren~ po~Event

remove

S
MenoBar

ewA
ex:ldNOlif y
countMonu~
g e ~ n u <>
getk',enu
r~n~oye
i rerr~o~ih/

Me. .
[e~off

b o o t h ~ r ~

odd

~¢tdSeparalor
cour~Jtems

isTeetOff
remove

Fig. 6. Example from the AWT class library for Java (© by Sun Microsystems Inc.)

424

Fig. 7. Example from the AWT class library for Java (@ by Sun Microsystems Inc.)

