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Abstract .  The traversal of a self crossing closed plane curve, with points of mul- 
tiplicity at most two, defines a double occurrence sequence. 
C.F. Gauss conjectured [2] that such sequences could be characterized by their 
interlacement properties. This conjecture was proved by P. Rosenstiehl in 1976 
[15]. We shall give here a simple self-contained proof of his characterization. This 
new proof relies on the D-switch operation. 

1 I n t r o d u c t i o n  

We first recall and introduce some definitions and notations concerning geometric prop- 
erties of closed plane curves. For related topics, we refer the reader to the bibliography. 
P. Rosenstiehl exposed recently a new proof of this theorem, based on patches, that will 
soon be published. 

A parameterized curve C is a continuous mapping C : [0,1] ~ IR 2, such that C(0) = 
C(1) and such that the underlying curve C([0, 1]) of C has a finite number of multiple 
points, which all have multiplicity two. Let P(C) denote the set of the points of multiplicity 

/ and tp, such two. To any point p E P(C),  we associate the two parameter values tp 
' " and C(t~) = C(tp) = p. A point p e P(C) is a crossing point if any that tp < tp 

! local deformation of C in a neighborhood of tp preserves the existence of a double point. 
Otherwise, p is a touching point. A touch curve (resp. a cross curve) is a parameterized 
curve with touching points (resp. crossing points) only. 

There are two different types of touching points, depending on the local behavior of 
the parameterized curve : 

Type 1 Type 2 

)( 
Remark. All the touch points of a touch curve are of type 1. 

The sequence of the points of P(C) encountered while the parameter t goes from 0 to 1 
(excluded) is the traversal sequence of C and is denoted by S(C). 

In the following, sequences are understood to have two occurrences of each symbol and 
to be defined up to reversal and cyclic permutation. Given a sequence S, two symbols p, q 
are interlaced in S if exactly one occurrence of q appears in S between the two occurrences 
of p. We shall denote by A(S) the interlacement graph of S defined by the interlacement 
relation in S. 

A sequence S is realized by a parameterized curve C if S is the traversal sequence of 
C. A sequence is touch realizable (resp. cross realizable) if it can be realized by a touch 
curve (resp. a cross curve). 

* This work was partially supported by the Esprit  LTR Project  no 20244-ALCOM IT. 
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2 Switches and D-switches 

Let us introduce the switch operation [4, 8] : Given a point p of P(C), the curve C ~ = Cop 
is defined by : 

C(t), if t ~ [tp, tp] 
C'(t) = C(t~ + t ~ - t ) ,  i f t e  [t'p,t~] (1) 

This curves as the same touching and crossing points as C, with the possible exception 
of p. The traversal sequence of C ~ is obtained from the one of C by inverting the order 
of the points encountered between the two occurrences of p. We sha~ say that the points 
that are interlaced with p have been inverted. The switch operation on S will be denoted 
by S o p, so that : S(C o p) = S(C) o p. Let us remark that these switch operations are 
involutions : C o p o p = C and S o p o p = S. 

Remark. A switch at a point p of a parameterized curve transforms p in the following 
w a y  : 

- touching point of type 1 ~ crossing point, 
- touching point of type 2 +~ touching point of type 2. 

{ ) 

Remark. If q is a touching point of C different from p, then q is a touching point with 
a type different in C and C o p if and only p and q are interlaced (that is if q has been 
inverted by the switch at p). 

The switch of a point p in a sequence S induces a local complementation of p in the 
interlacement graph A(S) : two symbols a, b are adjacent in A(S o p) if and only if 

- a or b is not adjacent to p in A(S) and (a, b) is an edge of A(S), or 
- a and b are both adjacent to p in A(S) and (a, b) is not an edge of A(S). 

For sake of simplicity, the local complementation of p in A(S) will be denoted by A(S) op, 
so that A(S o p) = A(S) o p. 

Let S be a sequence, a D-switch at p consists in a switching at p and in the adding of 
two occurrences of a new symbol p' (called twin of p), one just after the first occurrence 
of p and one just before the second occurrence of p. 

s = (apZpT)  ~+ s ® p = ( ~ p p , Z - l p , p T )  

A D-switch of p in S corresponds in A(S) to a local complementation of p and the 
addition of a new vertex having the same neighbors as p. This graph operation will be 
similarly denoted by '~ ' ,  so that A(S) ~ p = A(S ~ p). 

Remark. The sequence obtained from S @ p @ p by deleting the two twins of p is equal to 
S. 
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3 On realizable sequences  

We first state two propositions proved by Dehn, which follow from the remarks of the 
preceding sections. 

P r o p o s i t i o n  1. Consider a cross curve C and any given order (p l , . . . , pn )  of the points of 
C. Then, the parameterized curve Cop1 o. . .  opn obtained from C by switching successively 
the Pi is a touch curve. [] 

The converse of this proposition is not true (e.g. the sequence (abab) is not cross realizable). 

R e m a r k s .  Let us note by S-£+S I the existence of an order (Ply.-. ,Pn) of the symbols of 
S, such that  S t -- S o pl o . . .  o pn. 

- A cross realizable sequence does not determine the cross curve itself up to an home- 
omorphism : actuary, a cross realizable sequence S can be proved to be realized by 
2 c(A(S))-I , where c(A(S)) is the number of connected components of the interlacement 
graph of S. 

- One may find a cross realizable sequence $1, a non cross realizable sequence $2 and a 
touch realizable sequence ST, such that SI - -~ST  and S~-L~ST. Actually, $1 and $2 
may be proved to have different interlacement graph (using the main theorem). 

- Two different cross realizable sequences $1 and $2 may have the same interlacement 
graph (e.g. the sequences (abcae/dcbefd) and (acbaefdbcefd)). However, no sequence 
ST satisfies S1-2-~ ST and S 2 - ~  ST. 

P r o p o s i t i o n  2. A sequence S is touch realizable if and only if its interlacement graph 
A(S) is bipartite. 

Proof. The figure bellow shows how a touch curve may be transformed into a bipartite 
chord diagram with the same interlacement (and conversely). [] 

a a 

c c 

C 

b 

b 

T h e o r e m 3 .  Let S be a sequence, and let (Pl,... ,P~) be any order on its symbols. Then, 
S is cross realizable i /and only if the sequence Sn = S~pl  ~ . . .  ®Pn obtained by successively 
D-switching the Pi has a bipartite interlacement graph. 

Proof. - Assume S is realized by a cross curve C. As a D-switch of a crossing point 
of a parameterized curve gives rise to two touching points (that will never become 
crossing points again), the curve C is iteratively transformed into a touch curve C~. 
The traversal sequence Sn of Cn has hence a bipartite interlacement graph. 
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- Conversely, assume that  Sn has a bipartite interlacement graph. 
Let Si = S ~ pl ~ . . .  ~ pi denote the sequence obtained after the first i D-switches, 
we shall inductively construct (for i going from n to 0) a parameterized curve Ci, 
that  realizes Si, and such that  the crossings of (7/ are the pj, with j > i. Then, the 
parameterized curve Co will be a cross curve realizing S. 
As A(Sr~) is bipartite, there exists a touching curve Cn whose traversal sequence is Sn. 
I fp i  is of type 1, the suppression ofp~ and the switch ofpi  transforms pi into a crossing 
point and gives rise to a parameterized curve Ci-1, having Pi , . . . ,Pn  as crossing points 
and Si-1 as traversal sequence. The recursion is then complete if only this case may 
OCCUr. 

So, we shall prove that  Pi is always of type 1 in Ci, that  is that  Pi has been inverted an 
even number of times during the D-switch at Pi, . . .  ,Pn : The symbol pi and its twin p~ 
are not interlaced in Si, they are alternatively interlaced and not interlaced after each 
further inversion a~d, if Pi has been last inverted by a switch at pj, Pi (resp. p~) and 
pj are interlaced in Sn. As A(Sn) is bipartite, p~ and p~ are not interlaced in S~ (else 
pi, p~, pj would define a triangle of A(Sn)). Hence, the symbol pi has been inverted an 
even number of times. 

[] 

Remark. A cross curve realizing the sequence S could be geometrically derived from a 
touch curve realizing the sequence S r obtained from Sn by suppressing all twined letters 
by transforming each touching point into a crossing point. 

4 P r o o f  o f  R o s e n s t i e h l ' s  T h e o r e m  

D e f i n i t i o n  4. Let G be a graph and let (A, B) be a bipartition of its vertex set. 
The property P ( G ; A , B )  is satisfied by a pair {u ,v)  of vertices of G whenever the 

following equivalence holds : 

- the vertices u and v have an odd number of common neighbors, 
- the vertices u and v are adjacent and belong to the same class (A or B). 

L e m m a  5. Let G be a graph with a vertex bipartition A, B and let p be a vertex of G. Let 
G t = G ~ p  and let A ~, B'  be the vertex bipartition of G r defined by : A' = A ÷ N(p), B ~ = 
B ÷ N(p) and assigning p' to the class ofp.  

I f  G is euterian and any pair (u, v} of vertices of G satisfies P(G; A, B), then G ~ is 
eulerian and any pair u, v of vertices of G I satisfies P( GI; A ~, Bt). 

Proof. We have the following relationship between the neighborhood NG, in G ~ and the 
neighborhood NG in G : 

- NG,(u) = Nv(u) ,  if u is not adjacent to p (in G or equivalently in G'), 
- NG,(p')  = N~,(p)  = NG(p),  
- NG,(u) = N¢(u)  + u + No(p) +p' ,  if u is adjacent to p. 

In order to prove that  G ~ is eulerian, we only have to check that  the neighbors of p 
have an even degree : the parity of NG,(u) = Nc(u)  + u + NG(p) + p' is the sum of the 
parities of Na(u) ,  {u}, No(p)  and {p} and-hence is even. 

Now, we shall prove that  any pair {u, v} of vertices of G ~ satisfies P(G'; A', B').  If u 
or v is p~, we shall replace it by p as p and p~ have the same neighbors, are not adjacent 
and belong to the same class (A ~, B').  
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If two vertices u, v are not adjacent or equal to p, then their adjacencies, their class and 
their number of common neighbors are the same in G and G ~. Thus, the pair u, v satisfies 
P(G';A ' ,B ' ) .  

If u is adjacent to p and v is not adjacent or equM to p, then 

<NG,(u),NG,(v)> = <NG(u) + u + NG(p) + p ' ,Nv(v)> 

= <NG(u), NG(v)> + 1 

As u and v belong to the same class (A j, B l) if and only if they do not belong to the same 
class (A, B) and as they are adjacent, the pair u, v satisfies P(G'; A e, B~). 

If u and v are both adjacent to p, then 

<NG, (u), NG, (v)> = <No(u)  + u + NG(p) + p', No(u) + v + NG(p) + p'> 

= <NG(u),  No(v )>  + <N(u),  N(p)>  + <N(v), N(p)>  + 1 

As u is adjacent to p, <N(u) ,N(p)> = t if and only if u and p belong to the same class 
(A, B).  So, < g ( u ) ,  N(p )>  + <N(v) ,  N(p)>  + 1 -- 1 if and only if u and v belong to the 
same class (A,B) .  As <Nc(u) ,Nv(v )>  = 1 if and only if u and v are adjacent in G and 
belong to the same class (A,B) ,  <NG,(u),Nc,(v)> = 1 if and only if u and v are not 
adjacent in G and belong to the same class (A, B), that  is, if and only if they are adjacent 
in G ~ and belong to the same class (A ~, Bt). Thus, the pair u, v satisfies P(G~; A ~, B'). [] 

L e m m a  6. Let G be a graph with a vertex bipartition A, B and let p be a vertex of G. Let 
G ~ = G ® p and let A', B' be the vertex bipartition of G ~ defined by : A ~ = A + N(p), B ~ = 
B + N(p) and assigning p' to the class ofp. If G' is eulerian and any pair {u, v} of vertices 
of G' satisfies P( G' ; A', B'),then G is eulerian and any pair {u, v} of vertices o/ G satisfies 
P(G; A, B). 

Proof. By Lemma 5, G ~ = G p ~ p has the requested property and this property is still 
satisfied when deleting the two twins of p. [] 

T h e o r e m  7 (R.OSENSTIEHL)[15]. A sequence S is cross realizable if and only if its inter- 
lacement graph A(S) satisfies : 

- the graph is eulerian, 
- for any non-edge (p,p') of the graph, N(p)N N(p') is even, 
- the set o/the of the edges (p,p~) of the graph such thatN(p)NN(p')  is even is a cocycle 

of the graph. 

Proof. The theorem may be restated as follows : A sequence S is cross realizable if and 
only if its interlacement graph A(S) is eulerian and if there exists a bipartition A, B of the 
vertex set of A(S) such that  any pair u, v of vertices of A(S) satisfies P(A(S); A, B). 

Consider any sequence Sn = S ~ Pt ~ . . . ~ Pn obtained by successively D-switching the 
symbols of S. According to Lemma 5, A(Sn) is eulerian and has a bipartit ion A r, B ~ such 
that  any pair of vertices of A(Sn) satisfies P(A(Sn); A', B'). As all the symbols have been 
twined and as p and its twin p' have the same neighbors, any two vertices of A(S~) have 
an even number of common vertices. According to property P(A(Sn);  A', B'),  the graph 
A(Sn) is bipartite. Then, from Theorem 3, S is cross realizable. 

Conversely, if S is cross realizable, any sequence of D-switches gives rise to a sequence 
S t having a bipart i te interlacement graph. This graph is eulerian (due to the doubling of 
each symbol) and a bipartition A, B induced by a bicoloration, is such that  each pair of 
vertices satisfies P(A(S');  A, B). The theorem then follows from Lemma 6. [] 
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5 Matroidal  Interpretation 

As we wanted to give a short self-contained proof, we did not introduce the usual concepts 
of binary matroids. In such a context, a proof could be done, relying on the following 
properties : The graphs which satisfy the conditions given for A(S) in Rosenstiehl's char- 
acterization are exactly the principal interlazement graph of some binary matroid M [14]. 
Any local complementation of the vertices of such a graph gives rise to a bipartite graph, 
which is the fundamental interlacement graph of M with respect to some base B of M [3]. 
The further condition that a principal interlacement graph is an interlacement graph (that 
is a circle graph) implies that the matroid M is planar and then, the principal interlace- 
merit graph corresponds to the interlacement of a left-right path of a planar realization of 
M [3]. 
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