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Abst rac t .  A multiresoltion model is presented capable of handling dif- 
ferent piecewise-linear approximations of a boundary representation of a 
solid object where faces are described by parametric surfaces. The level 
of detail of an approximation may be variable over different portions of 
the boundary, and the continuity of the surface across different patches 
is guaranteed. 

1 I n t r o d u c t i o n  

The approximation of curved surfaces through piecewise-linear (PL) surfaces 
made of triangular patches is a common practice when modeling solid objects. 
Triangle meshes are suitable representations for visualization purposes, since 
graphics hardware works on triangles. The Level of Detail (LOD) of a PL ap- 
proximation is related to the error made in approximating each portion of the 
original surface with a corresponding linear patch. LOD generically depends on 
the resolution of the corresponding mesh, i.e., on the size and number of its tri- 
angles. In the applications, it is important  to handle approximations whose LOD 
is variable over the surface: for instance, in real time visualization of objects with 
many faces (terrains, ships, aircrafts, cars, etc.), LOD will be higher near the 
viewpoint, and progressively lower at increasing distance from it. In general, a 
threshold function specifies the accuracy required at each point in space. 

Building a PL surface whose LOD satisfies a given threshold, while its size is 
maintained as low as possible, is not an easy problem. Many existing methods 
(e.g., [Coh96, Hop96, Kle95, Kle96b, Sch92]) are based on iterative techniques 
that  either simplify an initial mesh at a high resolution, or refine an initial 
mesh at a coarse resolution, according to some error-driven criterion. Although 
such methods are usually able to generate satisfactory results, they are com- 
putationally intensive. Therefore, they cannot be applied to recompute a new 
representation each time a new LOD is required in real-time applications. 

A technique for mesh simplification can be used as a basis for the construc- 
tion of a multiresolution model. The main idea is to have data  organized into a 
structure that  is built off-line, and contains information necessary to extract rep- 
resentations at different LODs in real time. Any given LOD is obtained through 
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a simple traversal of the model, involving a minimal amount of numerical com- 
putations. 

In a multiresolution model, it is important  to achieve a good tradeoff between 
the amount  of information stored, and the time spent in information retrieval. 
Proposed models vary from explicit collections of representations at different 
LODs [VRML96], to compact models that  implicitly provide information to it- 
eratively modify an initial coarse mesh in order to achieve the desired LOD 
[Hop96, Kle96b]. 

In this paper, we present a multiresolution model that  extends our recent 
proposal for scalar fields [Pup96, DeF96] to the case of boundary representations 
with curved surfaces. Our model can support variable LOD with high efficiency 
in terms of both query time and quality of the result. It is also fairly compact,  not 
requiring much more storage space than a simple representation at the maximum 
available LOD. The main idea is that a large number of different PL surfaces 
can be obtained from a relatively small set of atomic components, which can be 
combined in different ways. The model encodes basic components arranged into 
a partially ordered set, which gives sufficient information to find all possible PL 
surfaces tha t  can be built from triangles of the model. A compact data  structure 
to encode our model, and an algorithm that  can extract a representation of 
minimal size for a given LOD, on-line in t ime linear in the output  size, are 
described in [Pup96, DeF97]. In this paper, we show how such model can be 
constructed from parametric boundary representations of solid objects. 

2 P r e l i m i n a r i e s  

A solid object 0 is a compact subset of the physical space IR3, whose boundary 
5(0) is a 2-inanifold. A boundary representation (BRep) describes O through 
its boundary 5(0). In a BRep, the boundary surface of O is partit ioned into a 
finite set of patches, called faces. Faces are defined in such a way that  any two 
faces do not intersect, except at their common boundaries, and the intersection 
of (the boundaries) of two faces is a finite set of lines and isolated points. The 
union of all faces covers the whole object boundary. The isolated points and the 
endpoints of the lines where the boundaries of two faces meet are called vertices, 
and the portions of intersection lines lying between two vertices are called edges. 
Faces, edges and vertices define a two-dimensional cell complex on the boundary 
of O; a BRep encodes such a cell complex. 

Here, we consider BReps where each face is a parametric surface. A paramet- 
ric surface is the image of a continuous function ¢ : (2 ---+ IR a, where £2 C IR2 is 
a compact domain. For simplicity, we also assume that ~b is injective. The model 
can be easily extended to the case of ¢ injective in the interior of f2, the inverse 
image of any point p contains only a finite number of points, and only a finite 
set of points have more than two points in their inverse image. This latter class 
of functions captures most parametric surfaces in practical applications. We de- 
note a parametric surface by ~b(£2), a compact notation that  specifies both the 
function and its domain. The space IRa, in which a parametric surface ~b(£2) is 
embedded, is called the physical space, while the space IR2 containing the domain 
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/2 of ¢ is called the parameter space. In a parametric BRep, topological relations 
between vertices, edges and faces are defined both in physical and in parameter 
space. 

We consider a triangle mesh T as a collection of triangles in 3D space, whose 
union is a 2-manifold surface (with or without boundary).  Given a generic BRep 
BT~, a piecewise-linear approximation of BT~ is a triangle mesh, where each tri- 
angle is labelled with the name of a face of BT~, such that: 

- the union of all triangles labelled with the name of a face ¢i(/2i) of BT~ is a 
mesh 7~ homeomorphic to ¢i(/2i); 

- for any pair of faces ¢/(/2/) and ¢j(/2/) adjacent along an edge e in BT~, the 
corresponding meshes 7i and 7j intersect at a chain of segments homeomor- 
phic to edge e; 

- for any set of faces {¢i(/2i)) incident at a vertex v in BT~, the corresponding 
meshes (7i} share a corresponding vertex. 
The accuracy of ~ in approximating ¢i(/21) is referred to as the distance 

between the two surfaces. Several methods can be used to measure such distance. 
For instance, if the triangle mesh is parametrized in the same space as the original 
face, an Lea norm can be used [Kle95]; another possibility is using the Hausdorff 
distance between ¢i(~2i) and 7~ [Kle96a, Coh96]. Our multiresolution boundary 
representation is parametric on the kind of distance used. 

3 M u l t i r e s o l u t i o n  B o u n d a r y  R e p r e s e n t a t i o n  

b g 

° ~ ~ T~ d T ~ T ~  

Fig. 1. Compatible meshes and their combination. 

Let T and 7i be two triangle meshes, where 7i is a 2-manifold with boundary, 
and T may be either with or without boundary. ~ is said to be compatible over 
T if and only if: 

1. the boundary of 7i can be decomposed into chains of edges such that  for 
each chain g: 
- either g coincides with a chain g of edges in T,  or 
- T contains a chain g of boundary edges having the same endpoint vertices 
as g; 
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2. the collection T// of triangles of T enclosed by chains C is a triangle mesh 
homeomorphic to T~ (see Fig. 1). 

Provided that  7~ is compatible over T, the combination of 7i over 7- is a new 
triangle mesh, denoted by 7- @ 7~, and defined as (7- \ T//) U 7~ (see Fig. 1). 
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front mesh of the MBRep 

h 

front mesh of subgraph { N 1,N4 } 

Fig. 2. An MBRep for two adjacent parametric surfaces. 

A multiresolution BRep (MBRep) %r a given generic BRep BT¢ consists of 
a collection of triangle meshes, each characterized by a certain approximation 
error. Such meshes are organized into a partial order based on their compatibility, 
and can be combined in several ways to obtain ~pproximations of the original 
BRep BT~ at different LODs. The partial order is represented as a rooted DAG 
AdB = (A/', A), where each node in Af is a triangle mesh. The class of DAGs 
which are MBReps is defined inductively as follows: 

1. The DAG containing only one node (the root node TO) is an MBRep, and 
the associated front mesh is To itself. 

2. Let 3,//3 = (A/', A) be an MBRep, and T be its associated front mesh. Let 
7~ be a mesh compatible over T. Then, the NAG MB'  = (AfU {7~},.A U~4') 
is an MBRep~ where A' contains an arc (7j, 7~) for each 7j C 3/" such that  
7~ N T// contains at least one triangle; the front mesh associated with 3dB'  is 
T®%. 
It can be shown that  any subgraph 3,tB ~ = (AP, .,4 ~) of 3dB induced by a cut 

of the DAG (i.e., such that  To EAf ~, and for every mesh 7~ E A f/, AP contains the 
sources of all arcs ending in 7~), is also an MBRep. The front meshes associated 
with the cuts of an MBRep provide representations of the original BRep at 
different resolutions (see Fig. 2). 
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Within a generic application, a LOD function r : ]R 3 --+ ]R is given, which 
defines the maximum error tolerance for the surface representation pointwise. An 
MBRep M B  supports a simple and efficient algorithm which, given an arbitrary 
LOD function v, generates the simplest PL approximation, made of triangles 
of . M B  which satisfy the given error requirements. Such approximation is the 
front mesh of the minimal subgraph A J B  ~ of A4B induced by a cut where all 
the triangles have an acceptable resolution. The algorithm described in [DeF97] 
performs a breadth-first traversal of the DAG, starting at the root mesh, to 
determine the subgraph 2vtB ~ giving the solution. Its running time is linear in 
the size of the visited subgraph. 

4 Bui ld ing  a Mult ireso lut ion B R e p  

The construction of an MBRep relies on incremental  methods for building piece- 
wise-linear approximations of a BRep. Such algorithms are based on the update 
of a current linear approximation: they either start from a coarse approximation 
and progressively refine it, or start with a fine approximation and progressively 
simplify it. Refinement and simplification are usually performed by inserting 
and discarding vertices into/from the model, respectively. An MBRep is built by 
creating an new node of the MBrep at each step of the incremental construction 
and by connecting it to the DAG constructed so far. Here, we follow an approach 
based on refinement. An equivalent approach based on simplification can be also 
adopted with small modifications. 

PL approximations of a parametric surface ¢(/2) are commonly obtained 
by lifting a triangulation of a polygonal approximation of the domain /2 into 
physical space: lifting is performed by mapping each vertex (u, v) to point ¢(u, v). 
When several parametric surfaces compose a Brep, a main issue is ensuring 
matching between the linear approximations at the common edge of any pair of 
adjacent faces. In an MBRep, this property must be guaranteed at any LOD. 

Our approach to the construction of an MBRep operates in two successive 
steps: 

1. first, a multiresolution linear representation for the edges of the BRep is 
defined (see Fig. 3); this step involves all faces of the BRep simultaneously, 
thus ensuring boundary matching; 

2. then, a multiresolution representation is built separately for the interior of 
each face, which conforms to the muttiresolution representation of its edges 
(see Fig. 4). 

Finally, the local MBReps of adjacent faces are glued together at boundary edges, 
thus obtaining an MBRep for the whole object. 

Steps 1 and 2 are performed by iteratively insering points lying on an edge 
or in a face, respectively; in both cases, points to be inserted are selected accord- 
ing to a heuristic technique aimed at progressively reducing the approximation 
error: the algorithm iteratively selects the point causing the greatest approxi- 
mation error. For step 1, we observe that there is no correlation between the 
warping - measured in parameter space - between a boundary and its polygonal 
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approximation,  and the error - measured in physicM space - between the para- 
metric surface and the triangle mesh approximat ing it: a small warping (possibly, 
zero) in paramate r  space may correspond to a large error in physical space, or 
viceversa. We always measure the error in physical space: the error of the cur- 
rent boundary approximation is evaluated based on the distance between the 
piecewise image of the approximation and the image of the original boundary  in 
physical space. 

In step 1, vertices are iteratively inserted on each edge e of the BRep to 
build polygonal chains approximating e at increasing LODs. All intermediate 
straight-line segments created for an edge e are stored into a multiresolution 
representation organized as a tree. Let Pc, • •., Pk be the current polygonal ap- 
proximation of an edge e; the insertion of a point q on e lying between Pl and Pi+l 
causes a node representing segment pipi+l to become the parent of two nodes 
corresponding to segment piq and qpi+l, respectively. Each node (straight-line 
segment) of the tree stores its approximation error with respect to the port ion 
of e having the same endpoints. For a non-leaf node, such an error occurres ex- 
actly at the point whose insertion created its two children. Note that ,  through 
back-projection in paramate r  space, edge linearization defines an approximat ion 
of the domain of each face with a polygonal region. 

f 

i b 

original edge 

b 

a 

! 
a 

physical space 

parameter space 

Fig. 3. Iterative boundary refinement. 

Step 2 consists of iteratively refining a domain triangulation for each face 
separately, while using the multiresolution edge representations, built at step 1, 
as constraints to ensure matching with adjacent faces. The insertion of points 
lying in the interior of the current boundary discretization is interleaved with the 
refinement of the domain boundary itself, driven by the tree-like representation 
of each edge. At each step, we have a current polygonal approximat ion of the 
domain,  which corresponds to a cut on each tree representing an edge of the 
domain.  If the max imum error measured in the interior of the current polygonal 
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region is larger than the pre-computed error recorded in the nodes of the current 
cut, we insert the internal point with maximum error. Otherwise, we refine the 
boundary representation by replacing the tree node (segment) of maximum error 
with its two children: this corresponds to the insertion of a point lying on the 
boundary of the patch. Since the points to be inserted on edges are pre-computed, 
the method guarantees that both adjacent faces insert the same points, and in 
the same order, on their common edge. 

a a a a 

a a 

Fig. 4. Iterative face refinement. 

At the insertion of a new point p, a new node, denoted by Tp, is inserted in 
the MBRep of the current face: Tp is formed by the new triangles created in the 
update of the current triangulation. New DAG arcs, having Tp as their desti- 
nation node, are also defined: the sources of such arcs are the nodes containing 
the triangles that have been removed from the current triangulation after the 
insertion of p. When the new point p lies on the boundary (i.e., p is one of the 
points stored in the tree representation of some edge e), then a reference to the 
newly created patch is recorded in the tree, to be used at step 3. 

At step 3, adjacent nodes of the local MBReps built at step 2 are glued 
together to obtain the final MBRep of the whole object. Meshes to be glued 
are detected by using the tree representations of edges, which, in step 2, have 
been enriched by references to nodes of the local MBReps. In any tree node we 
find references to two adjacent meshes 7] and T2, possibly belonging to local 
MBReps of different faces; we glue T1 and 7~ into one node of the final MBRep, 
which inherits incoming and outgoing arcs from both T1 and T~. 

5 C o n c l u d i n g  R e m a r k s  

We have presented a multiresolution model that supports fast extraction of tri- 
angle meshes approximating BReps with parametric faces at arbitrary level of 
detail, possibly variable over the surface. Major applications of this model are in 
real-time visualization of objects with a large number of faces, and in the pro- 
duction of graded meshes for the finite elements. The main idea underlying our 
model is that many different representations can be built from a relatively small 
set of atomic entities (i.e., triangular patches), and that all possible combinations 
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of such elements to form approximate BReps follow from their clustering into 
fragments, and from dependencies among such fragments. Ba~sed on the results 
of [Pup96], we can assert that  the algorithm for extracting a LOD returns the 
smallest representation satisfying the LOD among all possible representations 
that  can be built from triangles of the model. Therefore, our model achieves a 
sort of optimality in its result. Our model is parametric on the kind of distance 
adopted to measure approximation accuracy, and on the kind of refinement strat- 
egy and triangulation algorithm adopted to build it. In fact, it can be built also 
through a simplification algorithm that  progressively discards vertices from an 
initial PL surface at high resolution. Our previous experience with multiresolu- 
tion models for scalar fields [DeF96] suggests that,  in addition to the extraction 
of a LOD, other interesting geometric queries, such as point location and surface 
intersection, can be implemented efficiently within the same framework. 
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