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Abs t rac t .  In this paper a method for 3-D object recognition based on 
Support Vector Machines (SVM) is proposed. Given a set of points which 
belong to either of two classes, a SVM finds the hyperplane that leaves 
the largest possible fraction of points of the same class on the same side, 
while maximizing the distance of the closest point. Recognition with 
SVMs does not require feature extraction and can be performed directly 
on images regarded as points of an N-dimensionM object space. The 
potentiM of the proposed method is illustrated on a database of 7200 
images of 100 different objects. The excellent recognition rates achieved 
in all the performed experiments indicate that the method is well-suited 
for aspect-based recognition. 

1 I n t r o d u c t i o n  

Recently, aspect-based recognition strategies have received increasing attention 
from both the psychophysical [9, 4] and computer vision [8, 2, 6] communities. 
This is mainly due to the fact that  these strategies appear to be well-suited for 
the solution of recognition problems in which geometric models of the viewed 
objects can be difficult, if not impossible, to obtain. 

In this paper an aspect-based method for the recognition of 3-D objects is 
proposed. The method is based on Support Vector Machines. Given a set of 
points which belong to either of two classes, a SVM looks for the hyperplane 
that leaves the ]argest possible fraction of points of the same class on the same 
side, while maximizing the distance from the closest point. According to [10], 
given fixed but unknown probability distributions, a SVM minimizes the risk 
of misc]assifying not only the examples in the training set but also the yet to 
be seen examples of the test set. As opposed to other aspect-based methods, 
recognition with SVMs does not require feature extraction and can be performed 
directly on images regarded as points of an N-dimensional object space. The high 
dimensionality of the object space makes SVMs very effective decision surfaces, 
while the recognition stage is essentially reduced to deciding on which side of a 
hyperplane lies a given point in object space. 

The aim of this paper is to illustrate the potential of recognition techniques 
that operate directly on grey level images. The proposed method has been tested 
on the COIL database 1 consisting of 7200 images of 100 objects. Half of the im- 
ages were used as training examples, the remaining half as test images. We 

1 The images of the COIL database (Columbia Object Image Library) can be down- 
loaded through anonymous ftp from www.cs.columbia.edu. 
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discarded color information and tested the method on registered images (as ob- 
tained directly from COIL) and on the same images corrupted by synthetically 
generated random noise. The remarkable recognition rates achieved in all the 
performed experiments indicate that the method is well-suited for aspect-based 
recognition. Preliminary comparisons with other recognition methods, like per- 
ceptrons, show that the proposed method is far more robust in the presence of 
noise. 

The paper is organized as follows. In Section 2 we review the main concepts 
of the theory of SVMs in the linear case. Then, in Section 3, we report the experi- 
ments of 3-D object recognitin with a linear SVM. Finally, Section 4 summarizes 
the conclusions that  can be drawn from the presented research. 

2 T h e o r e t i c a l  o v e r v i e w  

In this Section we recall the basic definitions of the theory of linear SVMs [10, 3]. 

2.1 O p t i m a l  s e p a r a t i n g  h y p e r p l a n e  

In what follows we assume we are given a set S of points xi G lR '~ with i =- 
1 , 2 , . . . ,  N. Each point xi belongs to either of two classes and thus is given a label 
Yi E {-1 ,  1}. The goal is to establish the equation of a hyperplane that divides 
S leaving all the points of the same class on the same side while maximizing 
the distance between the two classes. To this purpose we need some preliminary 
definitions. 

D e f i n i t i o n l .  The set S is linearly separable if there exist w E IR ~ and b C IR 
such that  

y i (w  "xi + b) >_ 1, (1) 

for i =  1,2 . . . .  ,N .  

The pair (w, b) defines a hyperplane of equation 

w . x + b = 0  

named separating hyperplane (see Figure l(a)) .  If we denote with w the norm of 
w, the signed distance d i of a point xi from the separating hyperplane (w, b) is 
given by 

di - w • x i  + b (2) 
W 

Combining inequality (1) and equation (2), for all xi  E S; we have 

1 
yidi > --.  (3) 

W 

Therefore, 1 / w  is the lower bound on the distance between the points xi and 
the separating hyperplane (w, b). 
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Fig. 1. Separating hyperplane (a) and OSH (b). The dashed lines in (b) identify the 
margin. 

Def in i t ion2.  Given a separating hyperplane (w, b) for the linearly separable 
set S, the canonical representation of the separating hyperplane is obtained by 
rescaling the pair (w, b) into the pair (w', b') in such a way that the distance of 
the closest point, say xj, equals 1/wq 

Through this definition we have that 

minx~es {yi(w' • xi + b')} = 1. 

Consequently, for a separating hyperplane in the canonical representation, the 
bound in inequality (3) is tight. In what follows we will assume that a separat- 
ing hyperplane is always given a canonical representation and thus write (w, b) 
instead of (w t, bl). We are now in a position to define the notion of OSH. 

Def inl t ion3.  Given a linearly separable set S, the optimal separating hyper- 
plane is the separating hyperplane which maximizes the distance of the closest 
point of S. 

Since the distance of the closest point equals 1/w, the OSH can be regarded 
as the solution of the problem of minimizing 1/w subject to the constraint (1), 
o r  

Problem P1 
Minimize ½w • w 
subject to yi(w.xi+b)>_l, i=l ,2, . . . ,N 

Note that the parameter b enters in the constraints but not in the function 
to be minimized. The quantity 2/w, the lower bound of the minimum distance 
between points of different classes, is named margin. Hence, the OSH can also be 
seen as the separating hyperplane which maximizes the margin (see Figure l(b)). 
We now study the properties of the solution of the Problem P1. 

2.2 S u p p o r t  vec tor s  

Problem P1 is usually solved by means of the classical method of Lagrange 
multipliers. For more details and a thorough review of the method see [1]. Here 
we simply summarize the main results. 
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If we denote with a = (al ,  c~2 . . . .  , OLN) the N nonnegative Lagrange multi- 
pliers associated with the constraints (1), we have 

N 

W ~ ~_~ OL i y i  X i ,  
i=1 

while b can be determined from a and the Kfihn-Tucker conditions 

a i ( y i ( w ' x i  + b ) -  1) = 0, i = 1 , 2 , . . . , N .  (4) 

Note that the only Oi that can be nonzero in equation (4) are those for which 
the constraints (1) are satisfied with the equality sign. This has an important 
consequence. Since most of the c)i are usually null, the vector ~r is a linear 
combination of a relatively small percentage of the points xi. These points are 
termed support vectors because they are the closest points from the OSH and 
the only points of S needed to determine the OSH (see Figure l(b)). 

Given a support vector xj ,  the parameter b can be obtained from the corre- 
sponding Kiihn-Tucker condition as 

= y j  - ( 5 )  

The problem of classifying a new data point x is now simply solved by looking 
at the sign of 

q c . x + b .  

Therefore, the support vectors condense all the information contained in the 
training set S which is needed to classify new data points. 

2.3 N o n s e p a r a b l e  case 

If the set S is not linearly separable or one simply ignores whether or not the 
set S is linearly separable, the problem of searching for an OSH is meaning- 
less (there may be no separating hyperplane to start with). Fortunately, the 
previous analysis can be generalized by introducing N nonnegative variables 

= ( ~ 1 , ~ 2 , - - .  ,~N)  such that  

y i ( w . x i + b ) > l - ~ ,  i= l ,2 , . . . ,N .  (6) 

The purpose of the variables ~i is to allow for a small number of misclassified 
points. If the point xi satisfies inequality (1), then (i is null and (6) reduces to 
(1). Instead, if the point xi does not satisfy inequality (1), the extraterm -~i 
is added to the right hand side of (1) to obtain inequality (6). The generalized 
OSH is then regarded as the solution to 

Problem P2  
Maximize ½w. w + C ~] ~i 
subject to Y i ( W ' x i + b ) > l - ~ i i = l , 2 , . . . , N  

,~>0. 
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The purpose of the extraterm ~ i ,  where the sum is for i = 1, 2 , . . . ,  N, is 
to keep under control the number of misclassified points. Note that  this term 
leads to a more robust solution, in the statistical sense, than the intuitively more 
appealing term ~ ~/2. In other words, the term ~ ~i makes the OSH less sensitive 
to the presence of outliers in the training set. 

In analogy with what was done for the separable case, Problem P2  can be 
solved by means of the method of Lagrange multipliers. If we denote with a = 
( a l , a 2 , . . . , a N )  the N nonnegative Lagrange multipliers associated with the 
constraints (6), we find 

N 

W = ~ o l i Y i X i ~  
i----1 

while b can again be determined from a and the new Kiihn-Tucker conditions 

( i(w + b )  - 1 = 0 (7)  

( c  - = 0 ( s )  

Similarly to the separable case, the points xi for which 5i > 0 are termed 
support vectors. The main difference is that  here we have to distinguish between 
the support vectors for which ~i < C and those for which ~i = C. In the first 
case, from condition (8) it follows that  ~ = 0, and hence, from condition (7), 
that  the support vectors lie at a distance 1 /~  from the OStt. In practice, these 
support vectors are the same of the separable case. The support vectors for which 
~i = C, instead, are either misclassified points (if ~i > 1), or points correctly 
classified but closer than 1 /~  from the OSH (if 0 < ~ _< 1). 

From the computational viewpoint, the determination of the support vectors 
and associated OSH requires the solution of a problem of quadratic program- 
ming. In this research we have adopted an implementation of the complementary 
pivoting algorithm which is applied to the linearly complementary problem nat- 
urally associated with the dual of the quadratic programming problem P2.  For 
more details see [1]. 

Concluding, we point out that the entire construction can also be extended 
rather naturally to include nonlinear separating surfaces [10]. However, since for 
the research described in this paper this extension was not needed, we do not 
further discuss this issue here. 

3 E x p e r i m e n t s  

In this section we first discuss the recognition system and then illustrate its 
performance in different working conditions. 

The recognition system accepts as input one of the 7200 images of the COIL 
database. This database contains 72 images (24 bits for each of the RGB channels 
and 128 x 128 pixels) of 100 objects positioned in the center of a turntable and 
observed from a fixed viewpoint. For each object, the turntable is rotated of 5 ° 
per image. Figures 2 and 3 show a selection of the objects in the database and 
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one every three views (or images) of a specific object respectively. As explained 
in detail in [6], the object region is re-sampled so that  the larger of the two 
dimensions fits the image size. Consequently, the apparent size of an object may 
change considerably from image to image, especially for the objects which are 
not symmetric with respect to the turntable axis. 

Nmmmmmmmu 
NmN mmNmm 

W m 
Fig. 2. Images of 32 of the COIL objects. 

mm mmm m 

Fig. 3. Twentyfour of the 72 images of a COIL object. 

Each image was transformed in a black and white 8 bit image through the 
usual conversion formula between RGB and grey level and rescaling the range 
between the minimum and maximum value. Finally, the image resolution was 
reduced to 32 × 32 by simply averaging the grey values over 4 × 4 pixel win- 
dows. The aim of these transformations was to reduce the dimensionality of the 
representation given the relatively small number of images available. 

In the first series of experiments we considered groups of 32 objects and 
formed training and test set of equal size. Either set contained 36 images (one 
every 10 °) of each of the 32 objects. Each image was regarded as a vector of 
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32×32 = 1024 components, and for each pair of objects i and j, i, j = 1, 2 , . . . ,  32, 
the OSH was computed using only the 36 + 36 = 72 images of the training set 
corresponding to objects i and j. Typically, we have found a number of support 
vectors ranging between 30% and 60% of the 72 training images for each object 
pair. This large percentage of support vectors (far above the percentage predicted 
by the theory) is easily explained by the high dimensionality of the object space 
combined with the small number of examples• 

Recognition was performed following the rules of a tennis tournament. Given 
a previously unseen image and a database of N possible objects, each object is 
regarded as a player,  and in each match  the system temporarily classifies the 
previously unseen image according to the OSH relative to the pair of players 
involved in the match. The losing players are out and only in the final match 
the classification is unambiguously determined. This procedure requires N - 1 
classifications (if N is the number of players). Since the classification stage is 
simple and fast, this does not seem to be crucial. 

For many random choices of 32 of the 100 objects the system reached perfect 
score. Therefore, we decided to select by hand the 32 more  dif f iculf  objects. By 
doing so the system finally mistook a packet of chewing gum for another very 
similar packet of chewing gum (in very similar pose) in one case. 

In a second series of experiments we perturbed the original data by adding 
zero mean random noise to the grey value of each pixel and rescaling the grey 
levels between 0 and 255. The system performed equally well on noise corrupted 
images for maximum noise up to 4-75 grey levels and degrades gracefully for 
higher percentages of noise (see Table 1). It must be noted that most of the 
errors are usually due the three chewing gum packets of Figure 2 which become 
practically indistinguishable as the noise increases. Clearly, the very good statis- 
tics of Table 1 are partly due to the "filtering effects" of the averaging stage 
described in the previous section. 

Table 1. Average overall recognition rates (gl = grey levels). 

99 9% 998%992% 98 4%1938~ • I .  [ .  I .  • J 

In summary, the proposed method performs recognition with excellent per- 
centages of success even in the presence of very similar objects. From the ob- 
tained experimental results, it can easily be inferred that the method achieves 
very good recognition rates because the OSH maximizes the margin and hence 
is able to produce remarkable classification performances even in the presence of 
large amount of noise. Preliminary comparisons with other recognition methods, 
like perceptrons, confirm the robustness of the proposed method. The average 
perceptron finds rather easily a separating hyperplane between the points of the 
training set (as can be expected from the fact that the problem is to separate 
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a small number of points in a space of high dimension). However, the recogni- 
tion rates of the perceptron fall down very quickly in the presence of even small 
perturbat ion of the data in the test set. It is worthwhile noticing that  while 
the recognition time is practically negligible, the training stage (in which all 
the 32 × 31/2 = 496 OSHs must be determined) takes about 15 minutes on a 
SPARC10 workstation. 

4 C o n c l u s i o n  

In this paper we have proposed a method for the recognition of 3-D objects 
from a single view based on support  vector machines. As predicted by the the- 
ory of SVMs, it appears that  the method can be effectively trained even if the 
number  of examples is much lower than the dimensionality of the object space. 
This agrees with the theoretical expectation that  can be derived by means of 
VC-dimension considerations [10]. The remarkably good results which we have 
described indicate that  the method is likely to be very useful for direct 3-D 
object recognition. 

Clearly, much work remains to be done. Currently we are looking at the 
stability of the method with respect to other form of perturbation,  like brightness 
and light changes. Presumably the most difficult open problem is to what extent 
the method can be adjusted to tolerate occlusions. 
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