
Object Recognit ion and Performance Bounds* 

J. K. Aggarwal and Shishir Shah 

Computer and Vision Research Center 
Department of Electrical and Computer Engineering, ENS 522 

The University of Texas at Austin 
Austin, TX 78712-1084, U.S.A. 

Abst rac t .  Object recognition is the classification of objects into one 
of many a p m o r i  known object classes. In addition, it may involve the 
estimation of the pose of tile object and/or the track of the object in 
a sequence of images. Bayesian statistical pattern recognition, neural 
networks and rule based syst~ems have been used to address the object 
recognition problem. In the case of statistical pattern recognition it is 
assumed that tile a p m o m  probability density functions are known or 
that they can be estimated from the given samples. For neural networks 
the samples may be used to train a network and the coefficients for the 
network function may be estimated. Whereas, in the case of the rule 
based system, rules may be given by an expert or they may be estimated 
from the samples. However, Bayesian framework provides a methodology 
for the estimation of error bounds on the performance of the recognition 
system. The paper discusses the Bayesian paradigm and contrasts its 
ability to provide performance bounds as compared to neural networks 
and rule based systems. I~'uture direction of results on object recognition 
and performance bounds will also be discussed. 

1 I n t r o d u c t i o n  

Humans recognize objects and understand complex scenes with multiple objects, 
noise, clutter, occlusion, and camouflage with great ease. Humans are able to 
recognize as many as I0,000 distinct objects [Bie85] under varying viewing condi- 
tions, while a state-of-the-art object recognition system can recognize relatively 
few objects. We know very little about the physiological mechanisms with which 
the human visual system solves and uses solutions to lower-level processes such 
as depth and shape in the task of object recognition [CJR93]. Modeling human 
object recognition systems in terms of evidence-based systems accounts for the 
issues of view-independence, partial occlusions, variation between objects within 
object classes, and novel exemplar of object classes. As long as an object has 
enough similarity to the other objects in its class, the same set of evidence is 
accumulated, which helps in its recognition as a member of that  object class. 
The evidence-based approach is also able to account for both perceptual and 
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semantic considerations with explanatory efficiency. Due to the lack of working 
knowledge of the human visual system, there are no algorithmic descriptions for 
the human or other biological object recognition systems (ORS). Machine ORS 
have been driven to duplicate this diversity and remarkable performance. It is 
safe to say that machine ORS have progressed significantly in the past decade. 
A number of machine vision systems are now available in the marketplace for 
applications in inspection, target recognition, robotic manipulation, etc. 

The dominant paradigm for object recognition in machine vision research is 
inverse optics, pioneered by Mart [Mar82]. Inverse optics is a bottom-up process 
where edges, surfaces, depth cues, etc. are identified before object recognition. 
While no precise definition of object recognition has been accepted, it is usu- 
ally considered as the description of the three-dimensional object/scene that 
accounts for the two-dimensional imagery. It is perceived as a high-level task 
in computer vision, relating semantic knowledge in terms of a configuration of 
known objects [Ros84]. Object recognition is then achieved by comparing de- 
scriptions of a priori known object models, which are generalized descriptors 
that define object classes. In contrast to the bottom-up process, model-driven 
or top-down approaches to object recognition employ object models to predict 
image features and seek to find these features in the image or in a transformed 
feature space. In both approaches, the task of object recognition involves pro- 
cessing at all levels of computer vision. Typically, the input to the process is an 
image or a set of images from a sensor or multiple sensors. Some preprocessing 
is performed on the data and relevant information is extracted from the pro- 
cessed data and associated with a known description of the object. Therefore, 
object recognition involves lower-level vision, as with edge detection and image 
segmentation; mid-level vision, as with representation and description of pattern 
shape, and feature extraction; and higher-level vision, as with pattern category 
assignment or classification with an a priori known object descriptor. 

In order to build a system that can achieve success in a realistic environment, 
certain simplifications and assumptions about the environment and the problem 
being tackled are generally made. This process of simplification introduces un- 
certainties into a problem that may create inaccuracies or difficulties in the sys- 
tem's reasoning abilities if these uncertainties are not represented and handled 
in a suitable manner. Some ways of dealing with uncertainty are by using: (1) 
methods that employ nonnumerical techniques, primarily nonmonotonic logic, 
(2) methods that are based on traditional probability theory, (3) methods that 
use neo-catculi techniques such as fuzzy logic, confidence factors and Dempster- 
Shafer calculus to represent uncertainties, and (4) approaches that are based on 
heuristic methods, where the uncertainties are not given explicit notations but 
are instead embedded in domain-specific procedures and data structures. 

It is not the intent of the authors to present another review of object recog- 
nition systems. A number of good reviews of various paradigms and techniques 
have appeared in the past [AA93b, B J85, CD86, SFH92]. The purpose of this 
paper is to look at the fundamental problems and discuss various ways of for- 
mulation in practical object recognition systems. This paper is organized into 
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the following sections: Section 2 briefly reviews the object recognition problem 
and some of the solutions proposed using both the model-based and bottom-up 
approaches. Next, a review of classification methods which allows for the incor- 
poration of uncertainties into the system and provides a theoretical foundation 
for the inaccuracies in the reasoning ability of object recognition systems is pre- 
sented in section 3. The classification paradigms considered are statistical or 
Bayesian, neurM network based, and rule-based. We present a coherent compar- 
ison of the methods and discuss the ability of each in measuring the performance 
of the object recognition process by incorporating a degree of uncertainty. Fi- 
nally, section 4 summarizes the trends of object recognition and discusses future 
directions of research. 

2 O b j e c t  R e c o g n i t i o n  

A wide range of approaches have been proposed and applied with limited success 
to the machine recognition of objects. Recognizing 3-dimensional (3D) objects 
from 2-dimensional (2D) images is an important part of computer vision [MA77]. 
The success of most computer vision applications (robotics, automatic target 
recognition, surveillance, etc.) is closely tied to reliable recognition of 3D objects 
or surfaces. The study of object recognition and the development of experimental 
object recognition systems has had a significant impact on the direction and con- 
tent of computer vision research. Although a plethora of paradigms, algorithms 
and systems has been proposed over the past two decades, a versatile solution 
has not yet been developed; thus far, only partial solutions and limited success 
in constrained environments has been achieved. Practical implementation of an 
ORS can be viewed as a multi-stage process, as illustrated in Figure 1. Ideally, 
all objects of interest pass through each step and are included in the output 
list. As the data moves through the stages, the processing algorithms become 
more object specific and the number of data items processed and the number 
of false alarms decrease. The bottom-up approach mentioned briefly earlier has 
been successfully applied in a number of application. Here minimal amount of a 
priori information about the objects is used in the earlier part of the recognition 
process. 

In model-based recognition, a 3D model(s) of the object(s) to be recognized 
is available. The 3D model contains concise and complete information about the 
object in terms of shape descriptions [VMA86], object parts information, rela- 
tionship between object parts, etc. The 3D structure of an object is frequently 
represented by CAD models [AA93a], where volume-based representations of the 
object are built using primitives such as generalized cones, generalized cylinders 
and spheres. A method that uses a rectangular parallelepiped as the primitive 
volume element to represent objects was developed in [KA86]. Octrees [CA84] 
have also been used for the volumetric representation of objects. Typically, recog- 
nition involves extracting 3D information from the image and comparing it with 
the model features [AA93a], or deriving a 2D description from the image and 
then comparing it with 2D projections of the model. In using the former method, 
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Fig. 1. Concep tua l  da t a  flow in objec t  recognit ion systems. 

the sensing device should be able to provide 3D information in some form (such 
as range data  or depth information using a stereo setup) which can then be 
compared with the model. In the latter case, the task is more difficult because 
(1) the effects of self-occlusions and perspective must be considered, and (2) the 
projection direction needs to be determined. In [WMA84], the 3D structure of an 
object is constructed using an observed sequence of silhouettes. During match- 
ing, the 3D structure of the unknown object is constructed from different image 
views, and more views are added to the construction process until features ex- 
tracted from the object match one of the object models. A comprehensive survey 
of model-based vision systems using dense-range images is presented in [AA93b], 
and a recent survey is found in [Pop94]. 

View-based object  recognition is often referred to as viewer-centered or 219 
object recognition, because direct information about  the 3D structure of the ob- 
ject (such as a 3D model) is not available; the only a priori information is in the 
form of representations of the object viewed at different angles (aspects) and dis- 
tances. Each representation (or characteristic view) describes the object from a 
single viewpoint, or from a range of viewpoints yielding similar views. Evidence 
shows that  object recognition in human vision is viewer-centered rather than  
object-centered [KvD79]. The characteristic views may be obtained by building 
a database of images of the object or may be rendered from a 3D model of the 
object [PC93], [ZSB93]. Matching, in this case, is simpler than in model-based 
recognition because it involves only a 2D/2D comparison. However, considerable 
storage space is required to represent all of the characteristic views of an object. 
The number of model features to search among also increases, because each char- 
acteristic view can be considered to be a model. Methods have been developed 
to reduce the search space by grouping similar views [Pop94] [BR92], [PPK92]. 
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Broadly speaking, there are two ways to approach this problem. The first is based 
on matching salient information, (e.g., corner points, lines, contours etc.,) that  
has been extracted from the image to the information obtained from the image 
database [MA77], [cJ93]. Based on the best match, the object is recognized and 
its pose estimated. The second approach extracts translation, rotation and scale 
invariant t~atures (such as moment invariants [Hu62], Zernike moments [KH90] 
or Fourier descriptors [CH91]) from each image and compares them to the fea- 
tures that have been extracted from sample images of all the objects. The com- 
parison is usually done in the form of a classification operation [DBM77]. 

Motivated by the human visual system, which strongly suggests a hierarchi- 
cal approach to recognition, machine vision systems have been developed which 
a t tempt  to mimic this process. Psychologists suggest that recognition of objects 
is guided by perceptual organization in the visual cortex. The principles of per- 
ceptual organization are the grouping of low-level, generic features to detect sym- 
metry, collinearity, and parallelism from an input image. These principles have 
been shown to be useful in machine ORS, especially when no prior information 
of the image content is available [LA92]. Perceptual organization has been used 
to segment images into visible object surfaces [MN89]. Detection and recogni- 
tion of various manmade objects in complex scenes has been accomplished using 
these principles. Most work in this area has concentrated on extracting groups of 
features, recognition of objects with exact models, and using additional sensing 
in format.ion. 

In some sense, every object recognition algorithm is model based because 
every algorithm makes and uses a priori assumptions about the image and object 
characteristics. It would be ditl~cult indeed to find an object about which we 
know nothing! With clutter,  noise, occlusions, varying environmental conditions, 
and imperfect sensor information, these assumptions about the objects play an 
important  role in the overall process. It becomes critical to incorporate a measure 
of uncertainty into the assumptions and algorithms we develop to evaluate the 
performance of the developed system. The final step for all recognition systems 
involves the classification of detected features to an a priori model. The success 
of this classification depends heavily on two main issues: (a) identifying the type 
of features to use in the matching, and (b) determining the best procedure to 
establish the correspondence between image and model features. The reliability 
and efficiency of an object recognition system directly depends on how carefully 
these issues are addressed. 

3 Recognition Paradigms 

A multitude of paradigms have been used to achieve success in constrained object 
recognition systems. Figure 2 shows the main technologies applied to this prob- 
lem. Bayesian statistical pa t tern  recognition, neural networks and rule based 
systems have been used extensively and successfully in addressing the object 
recognition problem. In this section we provide an overview of each of these 
methods and discuss their abilities to provide a performance measure. 
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Fig. 2. Ob jec t  recogni t ion  paradigms.  

3.1 Bayesian Formulat ions  

Bayesian methods provide a formal means to reason about partial beliefs un- 
der conditions of uncertainty [Pea88] [DH73]. Bayesian statistics have been used 
at various stages of the object recognition process to provide a firm theoreti- 
cal footing as well as to improve performance and incorporate error estimates 
for the overall process. The biggest advantage of a Bayesian (or probabilistic) 
framework is in its ability to incorporate uncertainty elegantly into a process. 
Bayesian approaches also provide error estimates with their decisions, which give 
another perspective for analyzing systems. Bayesian statistics have been used in 
the object recognition paradigm for indexing, model matching and incorporat- 
ing neighborhood relations under different contexts with some degree of success. 
In order to apply Bayes' theorem, one needs to have an estimate of the prior 
probabilities and also the underlying likelihood distributions. Depending on the 
application, different methods are used to determine these factors. Prior proba- 
bilities are usually estimated as the percentage of occurrence of the proposition 
over a period of time. The likelihoods are often estimated by making an assump- 
tion that simplifies the relationship between the hypothesis and the evidence. A 
commonly used assumption is tha t  the evidence and the hypothesis are related 
by a normal (Gaussian) distribution. 

Let us Consider a simple example. Suppose we are to recognize two objects, 
A and B, where the prior information is such that  the object A occurs 70% 
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of the t ime and object B, 30% of the time. This provides the est imate of a 
priori probabilities, P(A) = 0.7, and P(B) = 0.3. Now consider tha t  given the 
object data,  we are able to extract  a relevant feature for recognition, X.  Thus 
the recognition problem can be posed as the identification of object A or B,  
given only the feature X.  From a set of t raining samples, we can compute the 
parametr ized density function that  represents each of the objects. Assuming a 
normal distribution, 

1 - 1  X - p o ) 2  
p(X]O) - , ~ c r o  exp ~ - (  ---~o (1) 

where O may be object A or B, #o and c7o are the mean and variance for 
the respective object feature distribution. Given the prior probabil i ty and the 
likelihood, the posterior probability of recognizing the objects is given by the 
inversion formula, 

P(XIO)P(O) 
P(O lX )  : , (2) P(x) 

The denominator  P ( X ) ,  given by P ( X I A ) P ( A  ) + P(XIB)P(B) )  , is a normaliz- 
ing constant.  Thus the recognition is based on deciding object  A if P(AIX ) > 
P (BIX  ) and vice versa. In most practical formulations, the classification rule 
does not lead to perfect classification. One reason for this is tha t  features are 
common to two or more classes and the regions for supports ,  or likelihoods, 
overlap. The  Bayesian framework provides an es t imate  of the probabili ty of clas- 
sification error associated with each decision. These may take into account the 
significance of a classification error in addition to the probabil i ty of an error. 
The simple, two-object problem described above, which led to an intuitively 
appealing classification rule, (an be extended to consider the probabili ty of a 
classification error as a function of the measured feature X.  We incur an error 
if we choose object B and the true (;lass is object  A or if we choose A and the 
true class is B. The error corresponding to this decision can be formulated as: 

P(errortX ) = P ( A I X  ) i f  we decide B (3) 

= P(BIX  ) i f  we decide A 

The total  error of classification can be expanded as: 

P(error) = P(errorlA)P(A ) + P(errorlB)P(B ) (4) 

= P(X  • RBIA)P(A) + P ( X  • RAIB)P(B) 

= P ( X  < ¢IB)P(B) + P ( X  > ¢ ld )P(d )  

= P(B) p (X lB)dX  + P(A) p(XlA)dX 
O 0  

The Bayesian formulation can easily be extended to n-classes, thus n different 
objects can be represented by parametr ized density functions. The types and 
parameters  of these functions can vary between different objects. To realize a 
Bayesian object recognition system, three main steps have to be followed: 
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1. Training, where the parameters 0~, 1 _< c~ <: n, of the model density functions 
have to be estimated from a sample set of objects, A and B in our simple 
example. 

2. Localization, where the image information is processed to estimate data that 
is most relevant to learned object models. This marks the use of relevant 
features X. 

3. Recognition, where the localized image features are matched to the object 
model to determine the object class number a, by evaluating the discriminant 
function derived. 

Generalizing for classification error in the n class decision problem, the expected 
risk or error is given by application of the total probability theorem [DH73]: 

= ./ R[¢(x)IX]p(X)dX (5) 

where ¢(X) is the set of decision rules which maps the observed feature, X to 
its respective class. 

For indexing formulation in object recognition, a feature set(s) (index vector) 
is identified that maps each unique object model (or part of a model) into a dis- 
tinct point in the index space. This point is stored in a table with a pointer back 
to the object model. At runtime, the same type of feature set(s) are obtained 
from the image to form an index vector, which is then used to quickly access 
nearby pre-stored points. Thus a set of possible matches is found through cor- 
respondence of all possible image/model pairs. The distributions of the entries 
in the table could be organized based on similarities between object features or 
could be organized hierarchically such that the object classes are represented 
by a prototype table entry and further indexing is done to match the particular 
type of object within a class. Indexing using three points can be achieved us- 
ing a probabilistic indexing scheme, which is based on the probabilistic peaking 
effect [BA90]. Alignment [HUg0] and geometric hashing [GG92] are related tech- 
niques that are used for recognizing 3D object from 2D scenes. Both of these 
methods use a small number of points to find a transformation between the 
model space and the image space. Recognition then consists of finding evidence 
for instances of the models in the data, either by transforming the image into 
the model space and voting for an object's pose or by hypothesizing a pose and 
then transforming it into image space to guide the search. In [We193], a two- 
stage statistical formulation is used for feature-based object recognition. This 
work clearly shows how the Bayesian theory can be applied to model matching 
both in the correspondence space and the transformation space. A more detailed 
review of Bayesian techniques can be found in [AGNT96]. 

3.2 Neura l  Networks  

Artificial neural networks (ANN) are motivated by biological systems which im- 
plement pattern recognition computations via interconnections of physical cells, 
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called neurons. The idea that  the computations underlying the emulation of intel- 
ligent behavior may be accomplished by interactions of a large number of simple 
processing units is explored using ANNs. ANNs are highly parallel networks of 
simple computat ional  elements (nodes) [JMM96], where each node performs op- 
erations such as summing the weighted inputs coming into it and then amplifying 
/ thresholding the sum. The properties of the nodes, their interconnection topol- 
ogy (number of layers and number of nodes pet layer), tile connection strengths 
between pairs of nodes (weights) and the method used to update these weights 
(learning rule) characterize a neural network. Figure 3 shows a typical two-layer 
structure for an ANN. Neural networks are data-driven, and rnodifying pat terns 
of internode connectivity as a function of the training data  is the learning ap- 
proach. In other  words, the knowledge is stored in the form of network weights. 
Neural networks are trained so that subsequent associative behavior would rec- 
ognize new pat terns tha t  are similar to the learned patterns. Learning in a neural 
network is usually performed using two distinct techniques: supervised and un- 
supervised. In supervised learning, the network is presented with both the input 
and the desired output  for each input, and learning takes place to determine 
the weight s t ructure that  best realizes this input /output  relationship. In unsu- 
pervised learning, the network is presented only with the input data  and the 
network uses statistical regularities in the data to group it into categories. 

I 

N 

P 

U 

T 

0 

U 

T 

P 

U 

T 

HIDDEN L A Y E R  

F i g .  3. A t w o - l a y e r  n e u r a l  n e t w o r k .  

Several types of neural networks can serve as adaptive classifiers tha t  learn 
through examples and thus do not require a good a priori mathematical  model 
for the underlying physical characteristics. These include feed-forward networks 
such as the Multi-Layer Perceptron (MLP), as well as kernel-based classifiers 
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such as those employing Radial Basis Functions (RBFs). A second group of 
neural-like schemes such as the Learning Vector Quantization (LVQ) have also 
received considerable attention. These are adaptive, exemplar-based classifiers 
that are closer in spirit to the classical K-nearest neighbor method. The strength 
of both groups of classifiers lies in their applicability to problems involving arbi- 
trary distributions. Most neural network classifiers do not require the simultane- 
ous availability of all training data  and frequently yield error rates comparable 
to Bayesian methods without needing a priori information. Techniques such as 
fuzzy logic can be incorporated into a neural network classifier for applications 
with little training data.  A good review of probabilistic, hyperplane, kernel and 
exemplar-based classifiers that  discusses the relative merit of various schemes 
within each category is available in [NL91]. Although neural networks do not 
require geometric models, they do require that  the set of examples used for 
training should come from the same (possibly unknown) distribution as the set 
used for testing the networks, in order to provide valid generalization and good 
performance on classifying unknown signals [GT94]. To obtain valid results, the 
number of training examples must be adequate and comparable to the number 
of effective parameters  in the neural network. A deeper understanding of the 
properties of feed-forward neural networks has emerged recently that can relate 
their properties to Bayesian decision making and to information theoretic re- 
sults [Bis95]. To compare the ANN structure to the Bayesian approach, consider 
the problem of recognizing 1 of C objects in an environment. The evidence of an 
observed object is given by the feature vector X C R N. Using the Bayesian deci- 
sion, a network can be constructed where the hidden unit outputs represent the 
posterior estimates for each of the C classes and the final output  unit performs 
the max operation. This is just the Bayes decision rule, as the probabilities are 
learned prior to their  use in the network. 

The common approach to learning in any feed-forward neural network is to 
perform gradient descent on a criterion function. For a simple two-class problem, 
the input features to the network are represented by Z = ( -1 ,  X1, X 2 , . . . ,  X K )  
where - 1 is provided as a bias term. The weights to H hidden units are initialized 
to be A = (0, W1, W 2 , . . . ,  Wj) .  The activation or output  due to a single feature 
X is given as: 

g ( X )  --- W ' X  + 0 (6) 

The weights to the network are learned over the entire training set, so the final 
decision function is: 

g(Z) = A ' Z  (7) 

and the class label is assigned based on the output  sign. In order to learn the 
input-output  relationship and update the weights, the criterion function to be 
minimized is chosen as the mean squared error. Thus, if the true output  or class 
is d~ and the network output  is 9, (X) ,  over M training patterns,  the expected 
error cost is: 

M 

= E Z [ 9 , ( x )  _ (8) 
i : t  
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If we consider a two-layer network with linear output  units and hidden units 
with the logistic sigmoid activation, solving for a C class problem, the standard 
error function for each pat tern to be minimized in an iterative manner is 

C 

Em 1 E ( g  k _ dk)2 (9) =5 
k = l  

Using gradient descent, the derivative of the error is obtained by differentiating 
the error function with respect to the weights. As the output  unit is linear, the 
error for each unit is simply given by 

6~. = gk - dk (10) 

while for units in the hidden layer, the errors are 

C 

5, ---- z,(1 - zj) EWk/~k (11) 
k = l  

where z; is the activation for ti le j th  hidden unit,  wkj are the weight connections 
between the hidden and output  layer, and the sum runs over the output  units. 
Thus the weight updates are given by 

/Awk~ =--r~6kz a (12) 

AIUji -~ --?~(~jXi 

for the output layer and hidden layer respectively, where rl is the learning rate. 
After" learning the network weights, the resultant error indicates the per- 

formance of the network. Networks which can provide an estimate of prob- 
abilities associated with each decision can be used to determine the recogni- 
tion/classification performance. Taking P(X, C 3) to be the joint probability of 
input and the corresponding class label, and since P(X, Cj) = P(Cj IX)P(X), 
the expected error cost can be evaluated as: 

C' At 

= f Z - dd P(X, G)dX 
d = l  ~=1 

C M 

= f E E  x [Ud ) - d~]2P(CjIX)P(X) dX 
1=1  i ~ I  

C C M 

= f ~ [ ~ - ~  ~ [ [ g ~ ( X )  - &]2P(CjlX)IP(X, Ck)dX 
k = l  j = l  z = l  

C M 

= - dd P(CjlX)l] 
d:=r i = 1  

C' M 

= E [ E  E[g{(X)2P(CjIX) - 2gi(x)diP(CjIX ) + d~P(Cj IX)I] 
2=1  i = 1  
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Simplifying using the expectation of true class given input features: 

M M 

A = E[~-~[g~(X) - Ed~lX] 2] + E[~-~ Var[&lX]] 
~=1 i = 1  

Independent of  network 

(14) 

The first term on the right is simply the mean squared error between the network 
outputs and the conditional expectation of the desired outputs. Thus, when 
the network parameters are chosen to minimize a squared error cost function, 
outputs estimate the conditional expectation. For a 1 of C classification, d~ equals 
t if the input X belongs to class Ci and 0 otherwise. Therefore, 

M 

E[~lx] = • d ,P(G Ix) 
j = l  

= P ( C j l X )  

(15) 

which are nothing but posterior probabilities. It has been demonstrated that 
classifiers provide outputs which accurately estimate known Bayesian probabili- 
ties and the outputs sum to one even though they are not explicitly constrained 
during training. More details regarding estimating probabilities in other net- 
works and a survey of neural network approaches to machine inspection can be 
found in [Gho94]. 

3.3 Rule Based Approaches  

Artificial Intelligence (AI) techniques have proven to fit well in high-level tasks 
that require reasoning capabilities and prior domain knowledge representation. 
A typical AI system has two main components: (1)A knowledge-base component 
which includes general facts about the application domain as well as task specific 
knowledge, and (2)a control strategy such as an inference engine which controls 
the reasoning or search process. The knowledge-base component of an AI sys- 
tem can be represented either as a set of procedures or in a declarative (i.e., 
non-procedural) fashion. Propositional logic, predicate calculus, decision trees, 
production rules, semantic nets, frames and slots, fuzzy logic and probabilistic 
logic are some of the commonly used knowledge representation techniques in the 
AI field. Although top-down (or goal-driven) and bottom-up (or data-driven) 
are the most commonly used control strategies, many successful AI systems use 
a hybrid top-down and bottom-up control strategy. Rule-based approaches have 
commonly been used in relation to object recognition systems due to their emer- 
gence from inductive learning and explanation-based learning. Reasoning under 
uncertainty is how humans perform object recognition, and it is rarely done 
with 100% certainty. Evidence supporting or refuting each particular decision 
is collected, examined, and weighed against all evidence supporting or refuting 
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other  possible conclusions. Similarly, in real world complex problems such as ma- 
chine ORS, some type of probabilistic or uncertain reasoning is required [SP90]. 
Consider a hypothetical rule, expressed in s tandard logical notat ion 

a A bA cA d - +  O1 (16) 

for recognizing an object O1. An expert considering the same decision may choose 
the object despite lack of evidence for d if sufficient evidence exists for a A b A c. 
Without  the knowledge of certainty in each of the evidences considered, it is 
hard to incorporate this notion into a rule-based ORS. 

Rule-based paradigms provide a logical and understandable manner for using 
symbolic knowledge or domain knowledge in performing complex and heuristic 
tasks. Many object recognition systems have been developed based on these prin- 
ciples [Won87, Tou87, DMPA93, RH92]. In the overall s t ructure of the object 
recognition paradigm, rule-based systems provide added advantages by increas- 
ing the system abstraction level, system maintainability, and uncertainty han- 
dling, providing reasoning and explanation capability, providing a built-in control 
strategy, and adding learning capabilities. Due to their use of symbolic represen- 
tation, knowledge-based systems can be utilized to abstract  many segmentation 
and labeling details. In rule-based ORS, the knowledge base and the match- 
ing criterion are two separate modules. Therefore, they both  can be updated 
with little effort and time. Rule-based systems can handle uncertain decisions 
by attaching a measure of belief to each of their output  decisions. In real object 
recognition applications it is important,  if not essential, to have an explanation 
modality to clarify why and how a specific decision has been chosen over other 
decisions and to subsequently tune up the reasoning process. Reasoning and ex- 
planation capabilities are two unique features of rule-based systems. A rule-based 
system provides a built-in inference engine that  can be used in a bottom-up, top- 
down or hybrid top-down and bottom-up fashion. A bot tom-up control strategy 
can be used in a system when the noise level in the row data  is low or when the 
search span in the solution space is large and hard to prune. In other cases, when 
there is a lot of interaction between data  in the lower level tasks, a top-bot tom 
or a goal-driven control strategy is more appropriate.  However, in both cases, 
having a built-in control strategy with heuristic search criteria helps to reduce 
object recognition system complexity and implementation effort. 

A system for multisensor image interpretation using a rule-based approach 
was developed by Chu and Aggarwal [CA95]. The  AIMS (Automatic Interpre- 
tat ion system using Multiple Sensors) system has three main building blocks: 
(1) a segmentation module that  integrates segmentation information from ther- 
mal, range, intensity, and velocity images and combines them into an integrated 
segmentation map; (2) a representation module, in which the outcome of the 
segmentation module is represented in a s tructural  knowledge-based format tha t  
can be utilized by the KEE package; and (3) an interpretat ion module that  uses 
KEE and supplementary LISP procedures, in a bot tom-up manner to recognize 
different objects in an image. AIMS' reasoning process depends on knowledge 
in the form of rule-bases that are based on: (K1) knowledge of the imaging 
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geometry and device parameters, which are independent of the imaged scene; 
(K2) information on the segmented image regions, such as size, average tem- 
perature within the region, average distance, etc.; (K3) neighborhood relation- 
ships between the image regions; (K4) features and models of objects; and (K5) 
other general heuristics that are derived from known facts about the applica- 
tion domain and common sense. Using the above knowledge, a forward-chaining 
reasoning approach is adopted to recognize the objects that appear in an im- 
age, using six main consequent types of rules to: (R1) handle the difference 
between individual segmentation maps and the integrated segmentation map. 
These rules are also used to compute low-level attributes and place them in the 
corresponding knowledge structure. (R2) distinguish between man-made objects 
and background (MMO/BG). One such example is: 

If  (Segment A is relatively hot) AND 
(Segment A has a compact contour) 

Then (Segment A is a MMO, Confidence=Func(temperature, shape)), 

(R3) to group similar segments (regions) into objects based on neighborhood 
relationships and other similarity measures. (R4) to classify back-ground (BG) 
into SKY, TREE, and GROUND types, and (R5) to classify man-made objects 
(MMO) into different types such as BULLETIN-BOARD, TANK, JEEP, APC, 
or TRUCK based on shape and size analysis. One such rule is: 

IF (Segment A is o]" type MMO) AND 
(Segment AS has a cool sub-region located at its tower-half) AND 
(Segment A is about 2.0-2.5m high) AND 
(Segment A has a trapezoidal contour) AND 

THEN (Segment A is an APC with confidence of 0.8) 

and finally, (R6) to verify the interpretation of an object and its surrounding 
objects. As example, a region recognized as a SKY cannot be surrounded by a 
region classified as GROUND. Any conflicting interpretations lead to reduced 
certainty factor recognitions. 

Several algorithms have been developed for learning the domain knowledge 
from a set of learning examples in the form of a rule set. Sequential covering 
algorithms learn one rule at a time, subtracting out the covered examples and 
repeating the process on the remaining examples. In contrast, decision tree algo- 
rithms learn an entire set of disjuncts simultaneously as part of the single search 
for an acceptable decision tree. The main difference in the two approaches is in 
the partitions of data that they generate. Decision tree algorithms make fewer 
independent choices in selecting the precondition of each rule. Rule-based sys- 
tems have been able to perform 3D shape recovery and orientation from a single 
view [SSY92]. The system uses some geometric regularity assumptions about 
perceived objects and image formation to recognize the objects from the 2D im- 
ages. The system uses the expert system paradigms to perform some geometric 
reasoning from a given 2D image and form a set of possible 3D views and ori- 
entations that correspond to the given 2D object view. The reasoning process is 
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done in a forward-chaining fashion using OPS5, a production system language. 
The outcome of the reasoning process may result in more than one interpreta- 
tion, each with an at tached certainty factor that quantifies the system measure 
of belief in the recovered 3D object from the given prospective view. 

Overall, current rule-based systems are limited in their ability to interpret 
typical knowledge bases in object recognition. Better  outlier or exception dealing 
capabilities need to be explored along with retrieval or associative knowledge. 
Further, their capacity to evaluate error in the decision capability is limited and 
the authors are not aware of any means for characterizing the performance which 
can have a bound as provided through neural-network and Bayesian systems. 
Above all, bet ter  techniques to connect them with other kinds of representa- 
tions need to be addressed, so that  we can use rule-based approaches in object 
recognition systems in conjunction with different kinds of models and search 
I)rocedures. 

4 F u t u r e  D i r e c t i o n s  

A number of distinct paradigms have been applied in our continuing a t tempts  
at development of machine object recognition systems. Most of them have been 
successful at least partially in constrained environments. A general purpose ob- 
ject recognition system is not in sight as yet. The object recognition problem is 
like an "elephant" being examined by a number of "visionless" persons. Each 
of tile visionless persons gives a self-consistent and accurate description of the 
elephant. However, it would be difficult if not impossible to discover a complete 
description of the elephant from these partial "visionless" descriptions. Bayesian 
methodology is driven by probability theory. ANN methodology is motivated by 
the presumed behavior of a collection of biological neurons. Rule-based systems 
tend to emulate the presumed behavior of a human expert. An ideal ORS may 
be a combination of all three methodologies unified in a "visionary" fashion. Sys- 
tematic methods and formalisms need to be developed for the design of hybrid 
systems consisting of the basic paradigms, performing characteristic tasks while 
simultaneously interacting with other modules. Such interaction would allow for 
the flow of information and decisions with competition and cooperation, all in 
the context of a global constraint, while minimizing the error in object recogni- 
tion. The Bayesian paradigm in its formulation provides error estimates in the 
statistical formulation and yields similar estimates in the case of ANNs and pos- 
sibly rule-based paradigms, especially if tile relevant features have a Gaussian 
distribution. 
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